aboutsummaryrefslogtreecommitdiffstats
path: root/lib/AsmParser/llvmAsmParser.y
blob: 33f46fc4caa8ff14e68f84a091a17014e4603aca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
//===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=//
//
//  This file implements the bison parser for LLVM assembly languages files.
//
//===------------------------------------------------------------------------=//

//
// TODO: Parse comments and add them to an internal node... so that they may
// be saved in the bytecode format as well as everything else.  Very important
// for a general IR format.
//

%{
#include "ParserInternals.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/Support/DepthFirstIterator.h"
#include <list>
#include <utility>            // Get definition of pair class
#include <algorithm>
#include <stdio.h>            // This embarasment is due to our flex lexer...

int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit 
int yylex();                       // declaration" of xxx warnings.
int yyparse();

static Module *ParserResult;
string CurFilename;

// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
// relating to upreferences in the input stream.
//
//#define DEBUG_UPREFS 1
#ifdef DEBUG_UPREFS
#define UR_OUT(X) cerr << X
#else
#define UR_OUT(X)
#endif

// This contains info used when building the body of a method.  It is destroyed
// when the method is completed.
//
typedef vector<Value *> ValueList;           // Numbered defs
static void ResolveDefinitions(vector<ValueList> &LateResolvers);
static void ResolveTypes      (vector<PATypeHolder<Type> > &LateResolveTypes);

static struct PerModuleInfo {
  Module *CurrentModule;
  vector<ValueList>    Values;     // Module level numbered definitions
  vector<ValueList>    LateResolveValues;
  vector<PATypeHolder<Type> > Types, LateResolveTypes;

  void ModuleDone() {
    // If we could not resolve some methods at method compilation time (calls to
    // methods before they are defined), resolve them now...  Types are resolved
    // when the constant pool has been completely parsed.
    //
    ResolveDefinitions(LateResolveValues);

    Values.clear();         // Clear out method local definitions
    Types.clear();
    CurrentModule = 0;
  }
} CurModule;

static struct PerMethodInfo {
  Method *CurrentMethod;         // Pointer to current method being created

  vector<ValueList> Values;      // Keep track of numbered definitions
  vector<ValueList> LateResolveValues;
  vector<PATypeHolder<Type> > Types, LateResolveTypes;
  bool isDeclare;                // Is this method a forward declararation?

  inline PerMethodInfo() {
    CurrentMethod = 0;
    isDeclare = false;
  }

  inline ~PerMethodInfo() {}

  inline void MethodStart(Method *M) {
    CurrentMethod = M;
  }

  void MethodDone() {
    // If we could not resolve some blocks at parsing time (forward branches)
    // resolve the branches now...
    ResolveDefinitions(LateResolveValues);

    Values.clear();         // Clear out method local definitions
    Types.clear();
    CurrentMethod = 0;
    isDeclare = false;
  }
} CurMeth;  // Info for the current method...


//===----------------------------------------------------------------------===//
//               Code to handle definitions of all the types
//===----------------------------------------------------------------------===//

static void InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values){
  if (!D->hasName()) {             // Is this a numbered definition?
    unsigned type = D->getType()->getUniqueID();
    if (ValueTab.size() <= type)
      ValueTab.resize(type+1, ValueList());
    //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
    ValueTab[type].push_back(D);
  }
}

// TODO: FIXME when Type are not const
static void InsertType(const Type *Ty, vector<PATypeHolder<Type> > &Types) {
  Types.push_back(Ty);
}

static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
  switch (D.Type) {
  case 0: {                 // Is it a numbered definition?
    unsigned Num = (unsigned)D.Num;

    // Module constants occupy the lowest numbered slots...
    if (Num < CurModule.Types.size()) 
      return CurModule.Types[Num];

    Num -= CurModule.Types.size();

    // Check that the number is within bounds...
    if (Num <= CurMeth.Types.size())
      return CurMeth.Types[Num];
  }
  case 1: {                // Is it a named definition?
    string Name(D.Name);
    SymbolTable *SymTab = 0;
    if (CurMeth.CurrentMethod) 
      SymTab = CurMeth.CurrentMethod->getSymbolTable();
    Value *N = SymTab ? SymTab->lookup(Type::TypeTy, Name) : 0;

    if (N == 0) {
      // Symbol table doesn't automatically chain yet... because the method
      // hasn't been added to the module...
      //
      SymTab = CurModule.CurrentModule->getSymbolTable();
      if (SymTab)
        N = SymTab->lookup(Type::TypeTy, Name);
      if (N == 0) break;
    }

    D.destroy();  // Free old strdup'd memory...
    return N->castTypeAsserting();
  }
  default:
    ThrowException("Invalid symbol type reference!");
  }

  // If we reached here, we referenced either a symbol that we don't know about
  // or an id number that hasn't been read yet.  We may be referencing something
  // forward, so just create an entry to be resolved later and get to it...
  //
  if (DoNotImprovise) return 0;  // Do we just want a null to be returned?

  vector<PATypeHolder<Type> > *LateResolver = CurMeth.CurrentMethod ? 
    &CurMeth.LateResolveTypes : &CurModule.LateResolveTypes;

  Type *Typ = new TypePlaceHolder(Type::TypeTy, D);
  InsertType(Typ, *LateResolver);
  return Typ;
}

static Value *getVal(const Type *Ty, const ValID &D, 
                     bool DoNotImprovise = false) {
  assert(Ty != Type::TypeTy && "Should use getTypeVal for types!");

  switch (D.Type) {
  case 0: {                 // Is it a numbered definition?
    unsigned type = Ty->getUniqueID();
    unsigned Num = (unsigned)D.Num;

    // Module constants occupy the lowest numbered slots...
    if (type < CurModule.Values.size()) {
      if (Num < CurModule.Values[type].size()) 
        return CurModule.Values[type][Num];

      Num -= CurModule.Values[type].size();
    }

    // Make sure that our type is within bounds
    if (CurMeth.Values.size() <= type)
      break;

    // Check that the number is within bounds...
    if (CurMeth.Values[type].size() <= Num)
      break;
  
    return CurMeth.Values[type][Num];
  }
  case 1: {                // Is it a named definition?
    string Name(D.Name);
    SymbolTable *SymTab = 0;
    if (CurMeth.CurrentMethod) 
      SymTab = CurMeth.CurrentMethod->getSymbolTable();
    Value *N = SymTab ? SymTab->lookup(Ty, Name) : 0;

    if (N == 0) {
      // Symbol table doesn't automatically chain yet... because the method
      // hasn't been added to the module...
      //
      SymTab = CurModule.CurrentModule->getSymbolTable();
      if (SymTab)
        N = SymTab->lookup(Ty, Name);
      if (N == 0) break;
    }

    D.destroy();  // Free old strdup'd memory...
    return N;
  }

  case 2:                 // Is it a constant pool reference??
  case 3:                 // Is it an unsigned const pool reference?
  case 4:                 // Is it a string const pool reference?
  case 5:{                // Is it a floating point const pool reference?
    ConstPoolVal *CPV = 0;

    // Check to make sure that "Ty" is an integral type, and that our 
    // value will fit into the specified type...
    switch (D.Type) {
    case 2:
      if (Ty == Type::BoolTy) {  // Special handling for boolean data
        CPV = ConstPoolBool::get(D.ConstPool64 != 0);
      } else {
        if (!ConstPoolSInt::isValueValidForType(Ty, D.ConstPool64))
          ThrowException("Symbolic constant pool value '" +
			 itostr(D.ConstPool64) + "' is invalid for type '" + 
			 Ty->getName() + "'!");
        CPV = ConstPoolSInt::get(Ty, D.ConstPool64);
      }
      break;
    case 3:
      if (!ConstPoolUInt::isValueValidForType(Ty, D.UConstPool64)) {
        if (!ConstPoolSInt::isValueValidForType(Ty, D.ConstPool64)) {
          ThrowException("Integral constant pool reference is invalid!");
        } else {     // This is really a signed reference.  Transmogrify.
          CPV = ConstPoolSInt::get(Ty, D.ConstPool64);
        }
      } else {
        CPV = ConstPoolUInt::get(Ty, D.UConstPool64);
      }
      break;
    case 4:
      cerr << "FIXME: TODO: String constants [sbyte] not implemented yet!\n";
      abort();
      break;
    case 5:
      if (!ConstPoolFP::isValueValidForType(Ty, D.ConstPoolFP))
	ThrowException("FP constant invalid for type!!");
      else
	CPV = ConstPoolFP::get(Ty, D.ConstPoolFP);
      break;
    }
    assert(CPV && "How did we escape creating a constant??");
    return CPV;
  }   // End of case 2,3,4
  default:
    assert(0 && "Unhandled case!");
  }   // End of switch


  // If we reached here, we referenced either a symbol that we don't know about
  // or an id number that hasn't been read yet.  We may be referencing something
  // forward, so just create an entry to be resolved later and get to it...
  //
  if (DoNotImprovise) return 0;  // Do we just want a null to be returned?

  Value *d = 0;
  vector<ValueList> *LateResolver =  (CurMeth.CurrentMethod) ? 
    &CurMeth.LateResolveValues : &CurModule.LateResolveValues;

  switch (Ty->getPrimitiveID()) {
  case Type::LabelTyID:  d = new   BBPlaceHolder(Ty, D); break;
  case Type::MethodTyID: d = new MethPlaceHolder(Ty, D); 
                         LateResolver = &CurModule.LateResolveValues; break;
  default:               d = new ValuePlaceHolder(Ty, D); break;
  }

  assert(d != 0 && "How did we not make something?");
  InsertValue(d, *LateResolver);
  return d;
}


//===----------------------------------------------------------------------===//
//              Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurMeth.LateResolveValues) of all such forward references
// and back patchs after we are done.
//

// ResolveDefinitions - If we could not resolve some defs at parsing 
// time (forward branches, phi functions for loops, etc...) resolve the 
// defs now...
//
static void ResolveDefinitions(vector<ValueList> &LateResolvers) {
  // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
  for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
    while (!LateResolvers[ty].empty()) {
      Value *V = LateResolvers[ty].back();
      LateResolvers[ty].pop_back();
      ValID &DID = getValIDFromPlaceHolder(V);

      Value *TheRealValue = getVal(Type::getUniqueIDType(ty), DID, true);

      if (TheRealValue == 0) {
	if (DID.Type == 1)
	  ThrowException("Reference to an invalid definition: '" +DID.getName()+
			 "' of type '" + V->getType()->getDescription() + "'",
			 getLineNumFromPlaceHolder(V));
	else
	  ThrowException("Reference to an invalid definition: #" +
			 itostr(DID.Num) + " of type '" + 
			 V->getType()->getDescription() + "'",
			 getLineNumFromPlaceHolder(V));
      }

      assert(!V->isType() && "Types should be in LateResolveTypes!");

      V->replaceAllUsesWith(TheRealValue);
      delete V;
    }
  }

  LateResolvers.clear();
}


// ResolveTypes - This goes through the forward referenced type table and makes
// sure that all type references are complete.  This code is executed after the
// constant pool of a method or module is completely parsed.
//
static void ResolveTypes(vector<PATypeHolder<Type> > &LateResolveTypes) {
  while (!LateResolveTypes.empty()) {
    const Type *Ty = LateResolveTypes.back();
    ValID &DID = getValIDFromPlaceHolder(Ty);

    const Type *TheRealType = getTypeVal(DID, true);
    if (TheRealType == 0) {
      if (DID.Type == 1)
	ThrowException("Reference to an invalid type: '" +DID.getName(),
		       getLineNumFromPlaceHolder(Ty));
      else
	ThrowException("Reference to an invalid type: #" + itostr(DID.Num),
		       getLineNumFromPlaceHolder(Ty));
    }

    // FIXME: When types are not const
    DerivedType *DTy = const_cast<DerivedType*>(Ty->castDerivedTypeAsserting());
    
    // Refine the opaque type we had to the new type we are getting.
    DTy->refineAbstractTypeTo(TheRealType);

    // No need to delete type, refine does that for us.
    LateResolveTypes.pop_back();
  }
}

// setValueName - Set the specified value to the name given.  The name may be
// null potentially, in which case this is a noop.  The string passed in is
// assumed to be a malloc'd string buffer, and is freed by this function.
//
static void setValueName(Value *V, char *NameStr) {
  if (NameStr == 0) return;
  string Name(NameStr);           // Copy string
  free(NameStr);                  // Free old string

  SymbolTable *ST = CurMeth.CurrentMethod ? 
    CurMeth.CurrentMethod->getSymbolTableSure() : 
    CurModule.CurrentModule->getSymbolTableSure();

  Value *Existing = ST->lookup(V->getType(), Name);
  if (Existing) {    // Inserting a name that is already defined???
    // There is only one case where this is allowed: when we are refining an
    // opaque type.  In this case, Existing will be an opaque type.
    if (const Type *Ty = Existing->castType())
      if (Ty->isOpaqueType()) {
	// We ARE replacing an opaque type!

	// TODO: FIXME when types are not const!
	const_cast<DerivedType*>(Ty->castDerivedTypeAsserting())->refineAbstractTypeTo(V->castTypeAsserting());
	return;
      }

    // Otherwise, we are a simple redefinition of a value, baaad
    ThrowException("Redefinition of value name '" + Name + "' in the '" +
		   V->getType()->getDescription() + "' type plane!");
  }

  V->setName(Name, ST);
}


//===----------------------------------------------------------------------===//
// Code for handling upreferences in type names...
//

// TypeContains - Returns true if Ty contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
  return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty);
}


static vector<pair<unsigned, OpaqueType *> > UpRefs;

static PATypeHolder<Type> HandleUpRefs(const Type *ty) {
  PATypeHolder<Type> Ty(ty);
  UR_OUT(UpRefs.size() << " upreferences active!\n");
  for (unsigned i = 0; i < UpRefs.size(); ) {
    UR_OUT("TypeContains(" << Ty->getDescription() << ", " 
	   << UpRefs[i].second->getDescription() << ") = " 
	   << TypeContains(Ty, UpRefs[i].second) << endl);
    if (TypeContains(Ty, UpRefs[i].second)) {
      unsigned Level = --UpRefs[i].first;   // Decrement level of upreference
      UR_OUT("Uplevel Ref Level = " << Level << endl);
      if (Level == 0) {                     // Upreference should be resolved! 
	UR_OUT("About to resolve upreference!\n";
	       string OldName = UpRefs[i].second->getDescription());
	UpRefs[i].second->refineAbstractTypeTo(Ty);
	UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
	UR_OUT("Type '" << OldName << "' refined upreference to: "
	       << (const void*)Ty << ", " << Ty->getDescription() << endl);
	continue;
      }
    }

    ++i;                                  // Otherwise, no resolve, move on...
  }
  // FIXME: TODO: this should return the updated type
  return Ty;
}

template <class TypeTy>
inline static void TypeDone(PATypeHolder<TypeTy> *Ty) {
  if (UpRefs.size())
    ThrowException("Invalid upreference in type: " + (*Ty)->getDescription());
}

// newTH - Allocate a new type holder for the specified type
template <class TypeTy>
inline static PATypeHolder<TypeTy> *newTH(const TypeTy *Ty) {
  return new PATypeHolder<TypeTy>(Ty);
}
template <class TypeTy>
inline static PATypeHolder<TypeTy> *newTH(const PATypeHolder<TypeTy> &TH) {
  return new PATypeHolder<TypeTy>(TH);
}


// newTHC - Allocate a new type holder for the specified type that can be
// casted to a new Type type.
template <class TypeTy, class OldTy>
inline static PATypeHolder<TypeTy> *newTHC(const PATypeHolder<OldTy> &Old) {
  return new PATypeHolder<TypeTy>((const TypeTy*)Old.get());
}


//===----------------------------------------------------------------------===//
//            RunVMAsmParser - Define an interface to this parser
//===----------------------------------------------------------------------===//
//
Module *RunVMAsmParser(const string &Filename, FILE *F) {
  llvmAsmin = F;
  CurFilename = Filename;
  llvmAsmlineno = 1;      // Reset the current line number...

  CurModule.CurrentModule = new Module();  // Allocate a new module to read
  yyparse();       // Parse the file.
  Module *Result = ParserResult;
  llvmAsmin = stdin;    // F is about to go away, don't use it anymore...
  ParserResult = 0;

  return Result;
}

%}

%union {
  Module                           *ModuleVal;
  Method                           *MethodVal;
  MethodArgument                   *MethArgVal;
  BasicBlock                       *BasicBlockVal;
  TerminatorInst                   *TermInstVal;
  Instruction                      *InstVal;
  ConstPoolVal                     *ConstVal;

  const Type                       *PrimType;
  PATypeHolder<Type>               *TypeVal;
  PATypeHolder<ArrayType>          *ArrayTypeTy;
  PATypeHolder<StructType>         *StructTypeTy;
  Value                            *ValueVal;

  list<MethodArgument*>            *MethodArgList;
  list<Value*>                     *ValueList;
  list<PATypeHolder<Type> >        *TypeList;
  list<pair<Value*, BasicBlock*> > *PHIList;   // Represent the RHS of PHI node
  list<pair<ConstPoolVal*, BasicBlock*> > *JumpTable;
  vector<ConstPoolVal*>            *ConstVector;

  int64_t                           SInt64Val;
  uint64_t                          UInt64Val;
  int                               SIntVal;
  unsigned                          UIntVal;
  double                            FPVal;
  bool                              BoolVal;

  char                             *StrVal;   // This memory is strdup'd!
  ValID                             ValIDVal; // strdup'd memory maybe!

  Instruction::UnaryOps             UnaryOpVal;
  Instruction::BinaryOps            BinaryOpVal;
  Instruction::TermOps              TermOpVal;
  Instruction::MemoryOps            MemOpVal;
  Instruction::OtherOps             OtherOpVal;
}

%type <ModuleVal>     Module MethodList
%type <MethodVal>     Method MethodProto MethodHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal>   BBTerminatorInst
%type <InstVal>       Inst InstVal MemoryInst
%type <ConstVal>      ConstVal ExtendedConstVal
%type <ConstVector>   ConstVector UByteList
%type <MethodArgList> ArgList ArgListH
%type <MethArgVal>    ArgVal
%type <PHIList>       PHIList
%type <ValueList>     ValueRefList ValueRefListE  // For call param lists
%type <TypeList>      TypeListI ArgTypeListI
%type <JumpTable>     JumpTable
%type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT?

%type <ValIDVal>      ValueRef ConstValueRef // Reference to a definition or BB
%type <ValueVal>      ResolvedVal            // <type> <valref> pair
// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL

// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type  <SInt64Val> EINT64VAL

%token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
%token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
%type   <SIntVal>   INTVAL
%token  <FPVal>     FPVAL     // Float or Double constant

// Built in types...
%type  <TypeVal> Types TypesV UpRTypes UpRTypesV
%type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications
%token <TypeVal>  OPAQUE
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <PrimType> FLOAT DOUBLE TYPE LABEL
%type  <ArrayTypeTy> ArrayType ArrayTypeI
%type  <StructTypeTy> StructType StructTypeI

%token <StrVal>     VAR_ID LABELSTR STRINGCONSTANT
%type  <StrVal>  OptVAR_ID OptAssign


%token IMPLEMENTATION TRUE FALSE BEGINTOK END DECLARE GLOBAL CONSTANT UNINIT
%token TO DOTDOTDOT STRING

// Basic Block Terminating Operators 
%token <TermOpVal> RET BR SWITCH

// Unary Operators 
%type  <UnaryOpVal> UnaryOps  // all the unary operators
%token <UnaryOpVal> NOT

// Binary Operators 
%type  <BinaryOpVal> BinaryOps  // all the binary operators
%token <BinaryOpVal> ADD SUB MUL DIV REM
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comarators

// Memory Instructions
%token <MemoryOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR

// Other Operators
%type  <OtherOpVal> ShiftOps
%token <OtherOpVal> PHI CALL CAST SHL SHR

%start Module
%%

// Handle constant integer size restriction and conversion...
//

INTVAL : SINTVAL
INTVAL : UINTVAL {
  if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
    ThrowException("Value too large for type!");
  $$ = (int32_t)$1;
}


EINT64VAL : ESINT64VAL       // These have same type and can't cause problems...
EINT64VAL : EUINT64VAL {
  if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
    ThrowException("Value too large for type!");
  $$ = (int64_t)$1;
}

// Operations that are notably excluded from this list include: 
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
UnaryOps  : NOT
BinaryOps : ADD | SUB | MUL | DIV | REM
BinaryOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
ShiftOps  : SHL | SHR

// These are some types that allow classification if we only want a particular 
// thing... for example, only a signed, unsigned, or integral type.
SIntType :  LONG |  INT |  SHORT | SBYTE
UIntType : ULONG | UINT | USHORT | UBYTE
IntType  : SIntType | UIntType
FPType   : FLOAT | DOUBLE

// OptAssign - Value producing statements have an optional assignment component
OptAssign : VAR_ID '=' {
    $$ = $1;
  }
  | /*empty*/ { 
    $$ = 0; 
  }


//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (method returning void for example).  To have
// access to it, a user must explicitly use TypesV.
//

// TypesV includes all of 'Types', but it also includes the void type.
TypesV    : Types    | VOID { $$ = newTH($1); }
UpRTypesV : UpRTypes | VOID { $$ = newTH($1); }

Types     : UpRTypes {
    TypeDone($$ = $1);
  }


// Derived types are added later...
//
PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT 
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL
UpRTypes : OPAQUE | PrimType { $$ = newTH($1); }
UpRTypes : ValueRef {                    // Named types are also simple types...
  $$ = newTH(getTypeVal($1));
}

// ArrayTypeI - Internal version of ArrayType that can have incomplete uprefs
//
ArrayTypeI : '[' UpRTypesV ']' {               // Unsized array type?
    $$ = newTHC<ArrayType>(HandleUpRefs(ArrayType::get(*$2)));
    delete $2;
  }
  | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
    $$ = newTHC<ArrayType>(HandleUpRefs(ArrayType::get(*$4, (int)$2)));
    delete $4;
  }

StructTypeI : '{' TypeListI '}' {              // Structure type?
    vector<const Type*> Elements;
    mapto($2->begin(), $2->end(), back_inserter(Elements), 
	mem_fun_ref(&PATypeHandle<Type>::get));

    $$ = newTHC<StructType>(HandleUpRefs(StructType::get(Elements)));
    delete $2;
  }
  | '{' '}' {                                  // Empty structure type?
    $$ = newTH(StructType::get(vector<const Type*>()));
  }


// Include derived types in the Types production.
//
UpRTypes : '\\' EUINT64VAL {                   // Type UpReference
    if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!");
    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
    UpRefs.push_back(make_pair((unsigned)$2, OT));  // Add to vector...
    $$ = newTH<Type>(OT);
    UR_OUT("New Upreference!\n");
  }
  | UpRTypesV '(' ArgTypeListI ')' {           // Method derived type?
    vector<const Type*> Params;
    mapto($3->begin(), $3->end(), back_inserter(Params), 
	  mem_fun_ref(&PATypeHandle<Type>::get));
    $$ = newTH(HandleUpRefs(MethodType::get(*$1, Params)));
    delete $3;      // Delete the argument list
    delete $1;      // Delete the old type handle
  }
  | ArrayTypeI {                               // [Un]sized array type?
    $$ = newTHC<Type>(*$1); delete $1;
  }
  | StructTypeI {                              // Structure type?
    $$ = newTHC<Type>(*$1); delete $1;
  }
  | UpRTypes '*' {                             // Pointer type?
    $$ = newTH(HandleUpRefs(PointerType::get(*$1)));
    delete $1;  // Delete the type handle
  }

// Define some helpful top level types that do not allow UpReferences to escape
//
ArrayType  : ArrayTypeI  { TypeDone($$ = $1); }
StructType : StructTypeI { TypeDone($$ = $1); }



// TypeList - Used for struct declarations and as a basis for method type 
// declaration type lists
//
TypeListI : UpRTypes {
    $$ = new list<PATypeHolder<Type> >();
    $$->push_back(*$1); delete $1;
  }
  | TypeListI ',' UpRTypes {
    ($$=$1)->push_back(*$3); delete $3;
  }

// ArgTypeList - List of types for a method type declaration...
ArgTypeListI : TypeListI
  | TypeListI ',' DOTDOTDOT {
    ($$=$1)->push_back(Type::VoidTy);
  }
  | DOTDOTDOT {
    ($$ = new list<PATypeHolder<Type> >())->push_back(Type::VoidTy);
  }
  | /*empty*/ {
    $$ = new list<PATypeHolder<Type> >();
  }


// ConstVal - The various declarations that go into the constant pool.  This
// includes all forward declarations of types, constants, and functions.
//
// This is broken into two sections: ExtendedConstVal and ConstVal
//
ExtendedConstVal: ArrayType '[' ConstVector ']' { // Nonempty unsized arr
    const ArrayType *ATy = *$1;
    const Type *ETy = ATy->getElementType();
    int NumElements = ATy->getNumElements();

    // Verify that we have the correct size...
    if (NumElements != -1 && NumElements != (int)$3->size())
      ThrowException("Type mismatch: constant sized array initialized with " +
		     utostr($3->size()) +  " arguments, but has size of " + 
		     itostr(NumElements) + "!");

    // Verify all elements are correct type!
    for (unsigned i = 0; i < $3->size(); i++) {
      if (ETy != (*$3)[i]->getType())
	ThrowException("Element #" + utostr(i) + " is not of type '" + 
		       ETy->getName() + "' as required!\nIt is of type '" +
		       (*$3)[i]->getType()->getName() + "'.");
    }

    $$ = ConstPoolArray::get(ATy, *$3);
    delete $1; delete $3;
  }
  | ArrayType '[' ']' {
    int NumElements = (*$1)->getNumElements();
    if (NumElements != -1 && NumElements != 0) 
      ThrowException("Type mismatch: constant sized array initialized with 0"
		     " arguments, but has size of " + itostr(NumElements) +"!");
    $$ = ConstPoolArray::get((*$1), vector<ConstPoolVal*>());
    delete $1;
  }
  | ArrayType 'c' STRINGCONSTANT {
    const ArrayType *ATy = *$1;
    int NumElements = ATy->getNumElements();
    const Type *ETy = ATy->getElementType();
    char *EndStr = UnEscapeLexed($3, true);
    if (NumElements != -1 && NumElements != (EndStr-$3))
      ThrowException("Can't build string constant of size " + 
		     itostr((int)(EndStr-$3)) +
		     " when array has size " + itostr(NumElements) + "!");
    vector<ConstPoolVal*> Vals;
    if (ETy == Type::SByteTy) {
      for (char *C = $3; C != EndStr; ++C)
	Vals.push_back(ConstPoolSInt::get(ETy, *C));
    } else if (ETy == Type::UByteTy) {
      for (char *C = $3; C != EndStr; ++C)
	Vals.push_back(ConstPoolUInt::get(ETy, *C));
    } else {
      free($3);
      ThrowException("Cannot build string arrays of non byte sized elements!");
    }
    free($3);
    $$ = ConstPoolArray::get(ATy, Vals);
    delete $1;
  }
  | StructType '{' ConstVector '}' {
    // FIXME: TODO: Check to see that the constants are compatible with the type
    // initializer!
    $$ = ConstPoolStruct::get(*$1, *$3);
    delete $1; delete $3;
  }
/*
  | Types '*' ConstVal {
    assert(0);
    $$ = 0;
  }
*/

ConstVal : ExtendedConstVal {
    $$ = $1;
  }
  | SIntType EINT64VAL {     // integral constants
    if (!ConstPoolSInt::isValueValidForType($1, $2))
      ThrowException("Constant value doesn't fit in type!");
    $$ = ConstPoolSInt::get($1, $2);
  } 
  | UIntType EUINT64VAL {           // integral constants
    if (!ConstPoolUInt::isValueValidForType($1, $2))
      ThrowException("Constant value doesn't fit in type!");
    $$ = ConstPoolUInt::get($1, $2);
  } 
  | BOOL TRUE {                     // Boolean constants
    $$ = ConstPoolBool::True;
  }
  | BOOL FALSE {                    // Boolean constants
    $$ = ConstPoolBool::False;
  }
  | FPType FPVAL {                   // Float & Double constants
    $$ = ConstPoolFP::get($1, $2);
  }

// ConstVector - A list of comma seperated constants.
ConstVector : ConstVector ',' ConstVal {
    ($$ = $1)->push_back($3);
  }
  | ConstVal {
    $$ = new vector<ConstPoolVal*>();
    $$->push_back($1);
  }


// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }


// ConstPool - Constants with optional names assigned to them.
ConstPool : ConstPool OptAssign ConstVal { 
    setValueName($3, $2);
    InsertValue($3);
  }
  | ConstPool OptAssign TYPE TypesV {  // Types can be defined in the const pool
    // TODO: FIXME when Type are not const
    setValueName(const_cast<Type*>($4->get()), $2);

    if (!$2) {
      InsertType($4->get(),
		 CurMeth.CurrentMethod ? CurMeth.Types : CurModule.Types);
    }
    delete $4;
  }
  | ConstPool MethodProto {            // Method prototypes can be in const pool
  }
  | ConstPool OptAssign GlobalType ResolvedVal {
    const Type *Ty = $4->getType();
    // Global declarations appear in Constant Pool
    ConstPoolVal *Initializer = $4->castConstant();
    if (Initializer == 0)
      ThrowException("Global value initializer is not a constant!");
	 
    GlobalVariable *GV = new GlobalVariable(PointerType::get(Ty), $3,
					    Initializer);
    setValueName(GV, $2);

    CurModule.CurrentModule->getGlobalList().push_back(GV);
    InsertValue(GV, CurModule.Values);
  }
  | ConstPool OptAssign UNINIT GlobalType Types {
    const Type *Ty = *$5;
    // Global declarations appear in Constant Pool
    if (Ty->isArrayType() && Ty->castArrayType()->isUnsized()) {
      ThrowException("Type '" + Ty->getDescription() +
		     "' is not a sized type!");
    }

    GlobalVariable *GV = new GlobalVariable(PointerType::get(Ty), $4);
    setValueName(GV, $2);

    CurModule.CurrentModule->getGlobalList().push_back(GV);
    InsertValue(GV, CurModule.Values);
  }
  | /* empty: end of list */ { 
  }


//===----------------------------------------------------------------------===//
//                             Rules to match Modules
//===----------------------------------------------------------------------===//

// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module : MethodList {
  $$ = ParserResult = $1;
  CurModule.ModuleDone();
}

// MethodList - A list of methods, preceeded by a constant pool.
//
MethodList : MethodList Method {
    $$ = $1;
    if (!$2->getParent())
      $1->getMethodList().push_back($2);
    CurMeth.MethodDone();
  } 
  | MethodList MethodProto {
    $$ = $1;
  }
  | ConstPool IMPLEMENTATION {
    $$ = CurModule.CurrentModule;
    // Resolve circular types before we parse the body of the module
    ResolveTypes(CurModule.LateResolveTypes);
  }


//===----------------------------------------------------------------------===//
//                       Rules to match Method Headers
//===----------------------------------------------------------------------===//

OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; }

ArgVal : Types OptVAR_ID {
  $$ = new MethodArgument(*$1); delete $1;
  setValueName($$, $2);
}

ArgListH : ArgVal ',' ArgListH {
    $$ = $3;
    $3->push_front($1);
  }
  | ArgVal {
    $$ = new list<MethodArgument*>();
    $$->push_front($1);
  }
  | DOTDOTDOT {
    $$ = new list<MethodArgument*>();
    $$->push_back(new MethodArgument(Type::VoidTy));
  }

ArgList : ArgListH {
    $$ = $1;
  }
  | /* empty */ {
    $$ = 0;
  }

MethodHeaderH : TypesV STRINGCONSTANT '(' ArgList ')' {
  UnEscapeLexed($2);
  vector<const Type*> ParamTypeList;
  if ($4)
    for (list<MethodArgument*>::iterator I = $4->begin(); I != $4->end(); ++I)
      ParamTypeList.push_back((*I)->getType());

  const MethodType *MT = MethodType::get(*$1, ParamTypeList);
  delete $1;

  Method *M = 0;
  if (SymbolTable *ST = CurModule.CurrentModule->getSymbolTable()) {
    if (Value *V = ST->lookup(MT, $2)) {  // Method already in symtab?
      M = V->castMethodAsserting();

      // Yes it is.  If this is the case, either we need to be a forward decl,
      // or it needs to be.
      if (!CurMeth.isDeclare && !M->isExternal())
	ThrowException("Redefinition of method '" + string($2) + "'!");      
    }
  }

  if (M == 0) {  // Not already defined?
    M = new Method(MT, $2);
    InsertValue(M, CurModule.Values);
  }

  free($2);  // Free strdup'd memory!

  CurMeth.MethodStart(M);

  // Add all of the arguments we parsed to the method...
  if ($4 && !CurMeth.isDeclare) {        // Is null if empty...
    Method::ArgumentListType &ArgList = M->getArgumentList();

    for (list<MethodArgument*>::iterator I = $4->begin(); I != $4->end(); ++I) {
      InsertValue(*I);
      ArgList.push_back(*I);
    }
    delete $4;                     // We're now done with the argument list
  }
}

MethodHeader : MethodHeaderH ConstPool BEGINTOK {
  $$ = CurMeth.CurrentMethod;

  // Resolve circular types before we parse the body of the method.
  ResolveTypes(CurMeth.LateResolveTypes);
}

Method : BasicBlockList END {
  $$ = $1;
}

MethodProto : DECLARE { CurMeth.isDeclare = true; } MethodHeaderH {
  $$ = CurMeth.CurrentMethod;
  if (!$$->getParent())
    CurModule.CurrentModule->getMethodList().push_back($$);
  CurMeth.MethodDone();
}

//===----------------------------------------------------------------------===//
//                        Rules to match Basic Blocks
//===----------------------------------------------------------------------===//

ConstValueRef : ESINT64VAL {    // A reference to a direct constant
    $$ = ValID::create($1);
  }
  | EUINT64VAL {
    $$ = ValID::create($1);
  }
  | FPVAL {                     // Perhaps it's an FP constant?
    $$ = ValID::create($1);
  }
  | TRUE {
    $$ = ValID::create((int64_t)1);
  } 
  | FALSE {
    $$ = ValID::create((int64_t)0);
  }
/*
  | STRINGCONSTANT {        // Quoted strings work too... especially for methods
    $$ = ValID::create_conststr($1);
  }
*/

// ValueRef - A reference to a definition... 
ValueRef : INTVAL {           // Is it an integer reference...?
    $$ = ValID::create($1);
  }
  | VAR_ID {                 // Is it a named reference...?
    $$ = ValID::create($1);
  }
  | ConstValueRef {
    $$ = $1;
  }

// ResolvedVal - a <type> <value> pair.  This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal : ExtendedConstVal {
    $$ = $1;
  }
  | Types ValueRef {
    $$ = getVal(*$1, $2); delete $1;
  }


BasicBlockList : BasicBlockList BasicBlock {
    $1->getBasicBlocks().push_back($2);
    $$ = $1;
  }
  | MethodHeader BasicBlock { // Do not allow methods with 0 basic blocks   
    $$ = $1;                  // in them...
    $1->getBasicBlocks().push_back($2);
  }


// Basic blocks are terminated by branching instructions: 
// br, br/cc, switch, ret
//
BasicBlock : InstructionList BBTerminatorInst  {
    $1->getInstList().push_back($2);
    InsertValue($1);
    $$ = $1;
  }
  | LABELSTR InstructionList BBTerminatorInst  {
    $2->getInstList().push_back($3);
    setValueName($2, $1);

    InsertValue($2);
    $$ = $2;
  }

InstructionList : InstructionList Inst {
    $1->getInstList().push_back($2);
    $$ = $1;
  }
  | /* empty */ {
    $$ = new BasicBlock();
  }

BBTerminatorInst : RET ResolvedVal {              // Return with a result...
    $$ = new ReturnInst($2);
  }
  | RET VOID {                                       // Return with no result...
    $$ = new ReturnInst();
  }
  | BR LABEL ValueRef {                         // Unconditional Branch...
    $$ = new BranchInst(getVal(Type::LabelTy, $3)->castBasicBlockAsserting());
  }                                                  // Conditional Branch...
  | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
    $$ = new BranchInst(getVal(Type::LabelTy, $6)->castBasicBlockAsserting(), 
			getVal(Type::LabelTy, $9)->castBasicBlockAsserting(),
			getVal(Type::BoolTy, $3));
  }
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
    SwitchInst *S = new SwitchInst(getVal($2, $3), 
                          getVal(Type::LabelTy, $6)->castBasicBlockAsserting());
    $$ = S;

    list<pair<ConstPoolVal*, BasicBlock*> >::iterator I = $8->begin(), 
                                                      end = $8->end();
    for (; I != end; ++I)
      S->dest_push_back(I->first, I->second);
  }

JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
    $$ = $1;
    ConstPoolVal *V = getVal($2, $3, true)->castConstantAsserting();
    if (V == 0)
      ThrowException("May only switch on a constant pool value!");

    $$->push_back(make_pair(V, getVal($5, $6)->castBasicBlockAsserting()));
  }
  | IntType ConstValueRef ',' LABEL ValueRef {
    $$ = new list<pair<ConstPoolVal*, BasicBlock*> >();
    ConstPoolVal *V = getVal($1, $2, true)->castConstantAsserting();

    if (V == 0)
      ThrowException("May only switch on a constant pool value!");

    $$->push_back(make_pair(V, getVal($4, $5)->castBasicBlockAsserting()));
  }

Inst : OptAssign InstVal {
  setValueName($2, $1);  // Is this definition named?? if so, assign the name...

  InsertValue($2);
  $$ = $2;
}

PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
    $$ = new list<pair<Value*, BasicBlock*> >();
    $$->push_back(make_pair(getVal(*$1, $3), 
			 getVal(Type::LabelTy, $5)->castBasicBlockAsserting()));
    delete $1;
  }
  | PHIList ',' '[' ValueRef ',' ValueRef ']' {
    $$ = $1;
    $1->push_back(make_pair(getVal($1->front().first->getType(), $4),
			 getVal(Type::LabelTy, $6)->castBasicBlockAsserting()));
  }


ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
    $$ = new list<Value*>();
    $$->push_back($1);
  }
  | ValueRefList ',' ResolvedVal {
    $$ = $1;
    $1->push_back($3);
  }

// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }

InstVal : BinaryOps Types ValueRef ',' ValueRef {
    $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
    if ($$ == 0)
      ThrowException("binary operator returned null!");
    delete $2;
  }
  | UnaryOps ResolvedVal {
    $$ = UnaryOperator::create($1, $2);
    if ($$ == 0)
      ThrowException("unary operator returned null!");
  }
  | ShiftOps ResolvedVal ',' ResolvedVal {
    if ($4->getType() != Type::UByteTy)
      ThrowException("Shift amount must be ubyte!");
    $$ = new ShiftInst($1, $2, $4);
  }
  | CAST ResolvedVal TO Types {
    $$ = new CastInst($2, *$4);
    delete $4;
  }
  | PHI PHIList {
    const Type *Ty = $2->front().first->getType();
    $$ = new PHINode(Ty);
    while ($2->begin() != $2->end()) {
      if ($2->front().first->getType() != Ty) 
	ThrowException("All elements of a PHI node must be of the same type!");
      ((PHINode*)$$)->addIncoming($2->front().first, $2->front().second);
      $2->pop_front();
    }
    delete $2;  // Free the list...
  } 
  | CALL TypesV ValueRef '(' ValueRefListE ')' {
    const MethodType *Ty;

    if (!(Ty = (*$2)->dyncastMethodType())) {
      // Pull out the types of all of the arguments...
      vector<const Type*> ParamTypes;
      for (list<Value*>::iterator I = $5->begin(), E = $5->end(); I != E; ++I)
	ParamTypes.push_back((*I)->getType());
      Ty = MethodType::get(*$2, ParamTypes);
    }
    delete $2;

    Value *V = getVal(Ty, $3);   // Get the method we're calling...

    // Create the call node...
    if (!$5) {                                   // Has no arguments?
      $$ = new CallInst(V->castMethodAsserting(), vector<Value*>());
    } else {                                     // Has arguments?
      // Loop through MethodType's arguments and ensure they are specified
      // correctly!
      //
      MethodType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
      MethodType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
      list<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();

      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
	if ((*ArgI)->getType() != *I)
	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
			 (*I)->getName() + "'!");

      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
	ThrowException("Invalid number of parameters detected!");

      $$ = new CallInst(V->castMethodAsserting(),
			vector<Value*>($5->begin(), $5->end()));
    }
    delete $5;
  }
  | MemoryInst {
    $$ = $1;
  }

// UByteList - List of ubyte values for load and store instructions
UByteList : ',' ConstVector { 
  $$ = $2; 
} | /* empty */ { 
  $$ = new vector<ConstPoolVal*>(); 
}

MemoryInst : MALLOC Types {
    $$ = new MallocInst(PointerType::get(*$2));
    delete $2;
  }
  | MALLOC Types ',' UINT ValueRef {
    if (!(*$2)->isArrayType() || ((const ArrayType*)$2->get())->isSized())
      ThrowException("Trying to allocate " + (*$2)->getName() + 
		     " as unsized array!");
    const Type *Ty = PointerType::get(*$2);
    $$ = new MallocInst(Ty, getVal($4, $5));
    delete $2;
  }
  | ALLOCA Types {
    $$ = new AllocaInst(PointerType::get(*$2));
    delete $2;
  }
  | ALLOCA Types ',' UINT ValueRef {
    if (!(*$2)->isArrayType() || ((const ArrayType*)$2->get())->isSized())
      ThrowException("Trying to allocate " + (*$2)->getName() + 
		     " as unsized array!");
    const Type *Ty = PointerType::get(*$2);
    Value *ArrSize = getVal($4, $5);
    $$ = new AllocaInst(Ty, ArrSize);
    delete $2;
  }
  | FREE ResolvedVal {
    if (!$2->getType()->isPointerType())
      ThrowException("Trying to free nonpointer type " + 
                     $2->getType()->getName() + "!");
    $$ = new FreeInst($2);
  }

  | LOAD Types ValueRef UByteList {
    if (!(*$2)->isPointerType())
      ThrowException("Can't load from nonpointer type: " + (*$2)->getName());
    if (LoadInst::getIndexedType(*$2, *$4) == 0)
      ThrowException("Invalid indices for load instruction!");

    $$ = new LoadInst(getVal(*$2, $3), *$4);
    delete $4;   // Free the vector...
    delete $2;
  }
  | STORE ResolvedVal ',' Types ValueRef UByteList {
    if (!(*$4)->isPointerType())
      ThrowException("Can't store to a nonpointer type: " + (*$4)->getName());
    const Type *ElTy = StoreInst::getIndexedType(*$4, *$6);
    if (ElTy == 0)
      ThrowException("Can't store into that field list!");
    if (ElTy != $2->getType())
      ThrowException("Can't store '" + $2->getType()->getName() +
                     "' into space of type '" + ElTy->getName() + "'!");
    $$ = new StoreInst($2, getVal(*$4, $5), *$6);
    delete $4; delete $6;
  }
  | GETELEMENTPTR Types ValueRef UByteList {
    if (!(*$2)->isPointerType())
      ThrowException("getelementptr insn requires pointer operand!");
    if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
      ThrowException("Can't get element ptr '" + (*$2)->getName() + "'!");
    $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
    delete $2; delete $4;
  }

%%
int yyerror(const char *ErrorMsg) {
  ThrowException(string("Parse error: ") + ErrorMsg);
  return 0;
}