aboutsummaryrefslogtreecommitdiffstats
path: root/lib/AsmParser/llvmAsmParser.y
blob: 9d6c99d41ee3542909fd8ffcd4a237330492ce50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
//===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=//
//
//  This file implements the bison parser for LLVM assembly languages files.
//
//===------------------------------------------------------------------------=//

%{
#include "ParserInternals.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "Support/STLExtras.h"
#include "Support/DepthFirstIterator.h"
#include <list>
#include <utility>            // Get definition of pair class
#include <algorithm>
#include <stdio.h>            // This embarasment is due to our flex lexer...
#include <iostream>
using std::list;
using std::vector;
using std::pair;
using std::map;
using std::pair;
using std::make_pair;
using std::cerr;
using std::string;

int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
int yylex();                       // declaration" of xxx warnings.
int yyparse();

static Module *ParserResult;
string CurFilename;

// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
// relating to upreferences in the input stream.
//
//#define DEBUG_UPREFS 1
#ifdef DEBUG_UPREFS
#define UR_OUT(X) cerr << X
#else
#define UR_OUT(X)
#endif

// This contains info used when building the body of a method.  It is destroyed
// when the method is completed.
//
typedef vector<Value *> ValueList;           // Numbered defs
static void ResolveDefinitions(vector<ValueList> &LateResolvers,
                               vector<ValueList> *FutureLateResolvers = 0);

static struct PerModuleInfo {
  Module *CurrentModule;
  vector<ValueList>    Values;     // Module level numbered definitions
  vector<ValueList>    LateResolveValues;
  vector<PATypeHolder<Type> > Types;
  map<ValID, PATypeHolder<Type> > LateResolveTypes;

  // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
  // references to global values.  Global values may be referenced before they
  // are defined, and if so, the temporary object that they represent is held
  // here.  This is used for forward references of ConstantPointerRefs.
  //
  typedef map<pair<const PointerType *, ValID>, GlobalVariable*> GlobalRefsType;
  GlobalRefsType GlobalRefs;

  void ModuleDone() {
    // If we could not resolve some methods at method compilation time (calls to
    // methods before they are defined), resolve them now...  Types are resolved
    // when the constant pool has been completely parsed.
    //
    ResolveDefinitions(LateResolveValues);

    // Check to make sure that all global value forward references have been
    // resolved!
    //
    if (!GlobalRefs.empty()) {
      // TODO: Make this more detailed! Loop over each undef value and print
      // info
      ThrowException("TODO: Make better error - Unresolved forward constant "
                     "references exist!");
    }

    Values.clear();         // Clear out method local definitions
    Types.clear();
    CurrentModule = 0;
  }


  // DeclareNewGlobalValue - Called every type a new GV has been defined.  This
  // is used to remove things from the forward declaration map, resolving them
  // to the correct thing as needed.
  //
  void DeclareNewGlobalValue(GlobalValue *GV, ValID D) {
    // Check to see if there is a forward reference to this global variable...
    // if there is, eliminate it and patch the reference to use the new def'n.
    GlobalRefsType::iterator I = GlobalRefs.find(make_pair(GV->getType(), D));

    if (I != GlobalRefs.end()) {
      GlobalVariable *OldGV = I->second;   // Get the placeholder...
      I->first.second.destroy();  // Free string memory if neccesary
      
      // Loop over all of the uses of the GlobalValue.  The only thing they are
      // allowed to be at this point is ConstantPointerRef's.
      assert(OldGV->use_size() == 1 && "Only one reference should exist!");
      while (!OldGV->use_empty()) {
	User *U = OldGV->use_back();  // Must be a ConstantPointerRef...
	ConstantPointerRef *CPPR = cast<ConstantPointerRef>(U);
	assert(CPPR->getValue() == OldGV && "Something isn't happy");
	
	// Change the const pool reference to point to the real global variable
	// now.  This should drop a use from the OldGV.
	CPPR->mutateReference(GV);
      }
    
      // Remove GV from the module...
      CurrentModule->getGlobalList().remove(OldGV);
      delete OldGV;                        // Delete the old placeholder

      // Remove the map entry for the global now that it has been created...
      GlobalRefs.erase(I);
    }
  }

} CurModule;

static struct PerMethodInfo {
  Method *CurrentMethod;         // Pointer to current method being created

  vector<ValueList> Values;      // Keep track of numbered definitions
  vector<ValueList> LateResolveValues;
  vector<PATypeHolder<Type> > Types;
  map<ValID, PATypeHolder<Type> > LateResolveTypes;
  bool isDeclare;                // Is this method a forward declararation?

  inline PerMethodInfo() {
    CurrentMethod = 0;
    isDeclare = false;
  }

  inline ~PerMethodInfo() {}

  inline void MethodStart(Method *M) {
    CurrentMethod = M;
  }

  void MethodDone() {
    // If we could not resolve some blocks at parsing time (forward branches)
    // resolve the branches now...
    ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);

    Values.clear();         // Clear out method local definitions
    Types.clear();
    CurrentMethod = 0;
    isDeclare = false;
  }
} CurMeth;  // Info for the current method...

static bool inMethodScope() { return CurMeth.CurrentMethod != 0; }


//===----------------------------------------------------------------------===//
//               Code to handle definitions of all the types
//===----------------------------------------------------------------------===//

static int InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values) {
  if (D->hasName()) return -1;           // Is this a numbered definition?

  // Yes, insert the value into the value table...
  unsigned type = D->getType()->getUniqueID();
  if (ValueTab.size() <= type)
    ValueTab.resize(type+1, ValueList());
  //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
  ValueTab[type].push_back(D);
  return ValueTab[type].size()-1;
}

// TODO: FIXME when Type are not const
static void InsertType(const Type *Ty, vector<PATypeHolder<Type> > &Types) {
  Types.push_back(Ty);
}

static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
  switch (D.Type) {
  case 0: {                 // Is it a numbered definition?
    unsigned Num = (unsigned)D.Num;

    // Module constants occupy the lowest numbered slots...
    if (Num < CurModule.Types.size()) 
      return CurModule.Types[Num];

    Num -= CurModule.Types.size();

    // Check that the number is within bounds...
    if (Num <= CurMeth.Types.size())
      return CurMeth.Types[Num];
    break;
  }
  case 1: {                // Is it a named definition?
    string Name(D.Name);
    SymbolTable *SymTab = 0;
    if (inMethodScope()) SymTab = CurMeth.CurrentMethod->getSymbolTable();
    Value *N = SymTab ? SymTab->lookup(Type::TypeTy, Name) : 0;

    if (N == 0) {
      // Symbol table doesn't automatically chain yet... because the method
      // hasn't been added to the module...
      //
      SymTab = CurModule.CurrentModule->getSymbolTable();
      if (SymTab)
        N = SymTab->lookup(Type::TypeTy, Name);
      if (N == 0) break;
    }

    D.destroy();  // Free old strdup'd memory...
    return cast<const Type>(N);
  }
  default:
    ThrowException("Invalid symbol type reference!");
  }

  // If we reached here, we referenced either a symbol that we don't know about
  // or an id number that hasn't been read yet.  We may be referencing something
  // forward, so just create an entry to be resolved later and get to it...
  //
  if (DoNotImprovise) return 0;  // Do we just want a null to be returned?

  map<ValID, PATypeHolder<Type> > &LateResolver = inMethodScope() ? 
    CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
  
  map<ValID, PATypeHolder<Type> >::iterator I = LateResolver.find(D);
  if (I != LateResolver.end()) {
    return I->second;
  }

  Type *Typ = OpaqueType::get();
  LateResolver.insert(make_pair(D, Typ));
  return Typ;
}

static Value *lookupInSymbolTable(const Type *Ty, const string &Name) {
  SymbolTable *SymTab = 
    inMethodScope() ? CurMeth.CurrentMethod->getSymbolTable() : 0;
  Value *N = SymTab ? SymTab->lookup(Ty, Name) : 0;

  if (N == 0) {
    // Symbol table doesn't automatically chain yet... because the method
    // hasn't been added to the module...
    //
    SymTab = CurModule.CurrentModule->getSymbolTable();
    if (SymTab)
      N = SymTab->lookup(Ty, Name);
  }

  return N;
}

// getValNonImprovising - Look up the value specified by the provided type and
// the provided ValID.  If the value exists and has already been defined, return
// it.  Otherwise return null.
//
static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
  if (isa<MethodType>(Ty))
    ThrowException("Methods are not values and must be referenced as pointers");

  switch (D.Type) {
  case ValID::NumberVal: {                 // Is it a numbered definition?
    unsigned type = Ty->getUniqueID();
    unsigned Num = (unsigned)D.Num;

    // Module constants occupy the lowest numbered slots...
    if (type < CurModule.Values.size()) {
      if (Num < CurModule.Values[type].size()) 
        return CurModule.Values[type][Num];

      Num -= CurModule.Values[type].size();
    }

    // Make sure that our type is within bounds
    if (CurMeth.Values.size() <= type) return 0;

    // Check that the number is within bounds...
    if (CurMeth.Values[type].size() <= Num) return 0;
  
    return CurMeth.Values[type][Num];
  }

  case ValID::NameVal: {                // Is it a named definition?
    Value *N = lookupInSymbolTable(Ty, string(D.Name));
    if (N == 0) return 0;

    D.destroy();  // Free old strdup'd memory...
    return N;
  }

  // Check to make sure that "Ty" is an integral type, and that our 
  // value will fit into the specified type...
  case ValID::ConstSIntVal:    // Is it a constant pool reference??
    if (Ty == Type::BoolTy) {  // Special handling for boolean data
      return ConstantBool::get(D.ConstPool64 != 0);
    } else {
      if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
	ThrowException("Symbolic constant pool value '" +
		       itostr(D.ConstPool64) + "' is invalid for type '" + 
		       Ty->getDescription() + "'!");
      return ConstantSInt::get(Ty, D.ConstPool64);
    }

  case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
    if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
      if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
	ThrowException("Integral constant pool reference is invalid!");
      } else {     // This is really a signed reference.  Transmogrify.
	return ConstantSInt::get(Ty, D.ConstPool64);
      }
    } else {
      return ConstantUInt::get(Ty, D.UConstPool64);
    }

  case ValID::ConstStringVal:    // Is it a string const pool reference?
    cerr << "FIXME: TODO: String constants [sbyte] not implemented yet!\n";
    abort();
    return 0;

  case ValID::ConstFPVal:        // Is it a floating point const pool reference?
    if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
      ThrowException("FP constant invalid for type!!");
    return ConstantFP::get(Ty, D.ConstPoolFP);
    
  case ValID::ConstNullVal:      // Is it a null value?
    if (!Ty->isPointerType())
      ThrowException("Cannot create a a non pointer null!");
    return ConstantPointerNull::get(cast<PointerType>(Ty));
    
  default:
    assert(0 && "Unhandled case!");
    return 0;
  }   // End of switch

  assert(0 && "Unhandled case!");
  return 0;
}


// getVal - This function is identical to getValNonImprovising, except that if a
// value is not already defined, it "improvises" by creating a placeholder var
// that looks and acts just like the requested variable.  When the value is
// defined later, all uses of the placeholder variable are replaced with the
// real thing.
//
static Value *getVal(const Type *Ty, const ValID &D) {
  assert(Ty != Type::TypeTy && "Should use getTypeVal for types!");

  // See if the value has already been defined...
  Value *V = getValNonImprovising(Ty, D);
  if (V) return V;

  // If we reached here, we referenced either a symbol that we don't know about
  // or an id number that hasn't been read yet.  We may be referencing something
  // forward, so just create an entry to be resolved later and get to it...
  //
  Value *d = 0;
  switch (Ty->getPrimitiveID()) {
  case Type::LabelTyID:  d = new   BBPlaceHolder(Ty, D); break;
  default:               d = new ValuePlaceHolder(Ty, D); break;
  }

  assert(d != 0 && "How did we not make something?");
  if (inMethodScope())
    InsertValue(d, CurMeth.LateResolveValues);
  else 
    InsertValue(d, CurModule.LateResolveValues);
  return d;
}


//===----------------------------------------------------------------------===//
//              Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurMeth.LateResolveValues) of all such forward references
// and back patchs after we are done.
//

// ResolveDefinitions - If we could not resolve some defs at parsing 
// time (forward branches, phi functions for loops, etc...) resolve the 
// defs now...
//
static void ResolveDefinitions(vector<ValueList> &LateResolvers,
                               vector<ValueList> *FutureLateResolvers = 0) {
  // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
  for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
    while (!LateResolvers[ty].empty()) {
      Value *V = LateResolvers[ty].back();
      assert(!isa<Type>(V) && "Types should be in LateResolveTypes!");

      LateResolvers[ty].pop_back();
      ValID &DID = getValIDFromPlaceHolder(V);

      Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID);
      if (TheRealValue) {
        V->replaceAllUsesWith(TheRealValue);
        delete V;
      } else if (FutureLateResolvers) {
        // Methods have their unresolved items forwarded to the module late
        // resolver table
        InsertValue(V, *FutureLateResolvers);
      } else {
	if (DID.Type == 1)
	  ThrowException("Reference to an invalid definition: '" +DID.getName()+
			 "' of type '" + V->getType()->getDescription() + "'",
			 getLineNumFromPlaceHolder(V));
	else
	  ThrowException("Reference to an invalid definition: #" +
			 itostr(DID.Num) + " of type '" + 
			 V->getType()->getDescription() + "'",
			 getLineNumFromPlaceHolder(V));
      }
    }
  }

  LateResolvers.clear();
}

// ResolveTypeTo - A brand new type was just declared.  This means that (if
// name is not null) things referencing Name can be resolved.  Otherwise, things
// refering to the number can be resolved.  Do this now.
//
static void ResolveTypeTo(char *Name, const Type *ToTy) {
  vector<PATypeHolder<Type> > &Types = inMethodScope() ? 
     CurMeth.Types : CurModule.Types;

   ValID D;
   if (Name) D = ValID::create(Name);
   else      D = ValID::create((int)Types.size());

   map<ValID, PATypeHolder<Type> > &LateResolver = inMethodScope() ? 
     CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
  
   map<ValID, PATypeHolder<Type> >::iterator I = LateResolver.find(D);
   if (I != LateResolver.end()) {
     cast<DerivedType>(I->second.get())->refineAbstractTypeTo(ToTy);
     LateResolver.erase(I);
   }
}

// ResolveTypes - At this point, all types should be resolved.  Any that aren't
// are errors.
//
static void ResolveTypes(map<ValID, PATypeHolder<Type> > &LateResolveTypes) {
  if (!LateResolveTypes.empty()) {
    const ValID &DID = LateResolveTypes.begin()->first;

    if (DID.Type == ValID::NameVal)
      ThrowException("Reference to an invalid type: '" +DID.getName() + "'");
    else
      ThrowException("Reference to an invalid type: #" + itostr(DID.Num));
  }
}


// setValueName - Set the specified value to the name given.  The name may be
// null potentially, in which case this is a noop.  The string passed in is
// assumed to be a malloc'd string buffer, and is freed by this function.
//
// This function returns true if the value has already been defined, but is
// allowed to be redefined in the specified context.  If the name is a new name
// for the typeplane, false is returned.
//
static bool setValueName(Value *V, char *NameStr) {
  if (NameStr == 0) return false;
  
  string Name(NameStr);           // Copy string
  free(NameStr);                  // Free old string

  if (V->getType() == Type::VoidTy) 
    ThrowException("Can't assign name '" + Name + 
		   "' to a null valued instruction!");

  SymbolTable *ST = inMethodScope() ? 
    CurMeth.CurrentMethod->getSymbolTableSure() : 
    CurModule.CurrentModule->getSymbolTableSure();

  Value *Existing = ST->lookup(V->getType(), Name);
  if (Existing) {    // Inserting a name that is already defined???
    // There is only one case where this is allowed: when we are refining an
    // opaque type.  In this case, Existing will be an opaque type.
    if (const Type *Ty = dyn_cast<const Type>(Existing)) {
      if (OpaqueType *OpTy = dyn_cast<OpaqueType>(Ty)) {
	// We ARE replacing an opaque type!
	OpTy->refineAbstractTypeTo(cast<Type>(V));
	return true;
      }
    }

    // Otherwise, we are a simple redefinition of a value, check to see if it
    // is defined the same as the old one...
    if (const Type *Ty = dyn_cast<const Type>(Existing)) {
      if (Ty == cast<const Type>(V)) return true;  // Yes, it's equal.
      // cerr << "Type: " << Ty->getDescription() << " != "
      //      << cast<const Type>(V)->getDescription() << "!\n";
    } else if (GlobalVariable *EGV = dyn_cast<GlobalVariable>(Existing)) {
      // We are allowed to redefine a global variable in two circumstances:
      // 1. If at least one of the globals is uninitialized or 
      // 2. If both initializers have the same value.
      //
      // This can only be done if the const'ness of the vars is the same.
      //
      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
        if (EGV->isConstant() == GV->isConstant() &&
            (!EGV->hasInitializer() || !GV->hasInitializer() ||
             EGV->getInitializer() == GV->getInitializer())) {

          // Make sure the existing global version gets the initializer!
          if (GV->hasInitializer() && !EGV->hasInitializer())
            EGV->setInitializer(GV->getInitializer());
          
	  delete GV;     // Destroy the duplicate!
          return true;   // They are equivalent!
        }
      }
    }
    ThrowException("Redefinition of value named '" + Name + "' in the '" +
		   V->getType()->getDescription() + "' type plane!");
  }

  V->setName(Name, ST);
  return false;
}


//===----------------------------------------------------------------------===//
// Code for handling upreferences in type names...
//

// TypeContains - Returns true if Ty contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
  return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty);
}


static vector<pair<unsigned, OpaqueType *> > UpRefs;

static PATypeHolder<Type> HandleUpRefs(const Type *ty) {
  PATypeHolder<Type> Ty(ty);
  UR_OUT("Type '" << ty->getDescription() << 
         "' newly formed.  Resolving upreferences.\n" <<
         UpRefs.size() << " upreferences active!\n");
  for (unsigned i = 0; i < UpRefs.size(); ) {
    UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " 
	   << UpRefs[i].second->getDescription() << ") = " 
	   << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << endl);
    if (TypeContains(Ty, UpRefs[i].second)) {
      unsigned Level = --UpRefs[i].first;   // Decrement level of upreference
      UR_OUT("  Uplevel Ref Level = " << Level << endl);
      if (Level == 0) {                     // Upreference should be resolved! 
	UR_OUT("  * Resolving upreference for "
               << UpRefs[i].second->getDescription() << endl;
	       string OldName = UpRefs[i].second->getDescription());
	UpRefs[i].second->refineAbstractTypeTo(Ty);
	UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
	UR_OUT("  * Type '" << OldName << "' refined upreference to: "
	       << (const void*)Ty << ", " << Ty->getDescription() << endl);
	continue;
      }
    }

    ++i;                                  // Otherwise, no resolve, move on...
  }
  // FIXME: TODO: this should return the updated type
  return Ty;
}

template <class TypeTy>
inline static void TypeDone(PATypeHolder<TypeTy> *Ty) {
  if (UpRefs.size())
    ThrowException("Invalid upreference in type: " + (*Ty)->getDescription());
}

// newTH - Allocate a new type holder for the specified type
template <class TypeTy>
inline static PATypeHolder<TypeTy> *newTH(const TypeTy *Ty) {
  return new PATypeHolder<TypeTy>(Ty);
}
template <class TypeTy>
inline static PATypeHolder<TypeTy> *newTH(const PATypeHolder<TypeTy> &TH) {
  return new PATypeHolder<TypeTy>(TH);
}


//===----------------------------------------------------------------------===//
//            RunVMAsmParser - Define an interface to this parser
//===----------------------------------------------------------------------===//
//
Module *RunVMAsmParser(const string &Filename, FILE *F) {
  llvmAsmin = F;
  CurFilename = Filename;
  llvmAsmlineno = 1;      // Reset the current line number...

  CurModule.CurrentModule = new Module();  // Allocate a new module to read
  yyparse();       // Parse the file.
  Module *Result = ParserResult;
  llvmAsmin = stdin;    // F is about to go away, don't use it anymore...
  ParserResult = 0;

  return Result;
}

%}

%union {
  Module                           *ModuleVal;
  Method                           *MethodVal;
  std::pair<MethodArgument*,char*> *MethArgVal;
  BasicBlock                       *BasicBlockVal;
  TerminatorInst                   *TermInstVal;
  Instruction                      *InstVal;
  Constant                         *ConstVal;

  const Type                       *PrimType;
  PATypeHolder<Type>               *TypeVal;
  Value                            *ValueVal;

  std::list<std::pair<MethodArgument*,char*> > *MethodArgList;
  std::vector<Value*>              *ValueList;
  std::list<PATypeHolder<Type> >   *TypeList;
  std::list<std::pair<Value*,
                      BasicBlock*> > *PHIList; // Represent the RHS of PHI node
  std::list<std::pair<Constant*, BasicBlock*> > *JumpTable;
  std::vector<Constant*>           *ConstVector;

  int64_t                           SInt64Val;
  uint64_t                          UInt64Val;
  int                               SIntVal;
  unsigned                          UIntVal;
  double                            FPVal;
  bool                              BoolVal;

  char                             *StrVal;   // This memory is strdup'd!
  ValID                             ValIDVal; // strdup'd memory maybe!

  Instruction::UnaryOps             UnaryOpVal;
  Instruction::BinaryOps            BinaryOpVal;
  Instruction::TermOps              TermOpVal;
  Instruction::MemoryOps            MemOpVal;
  Instruction::OtherOps             OtherOpVal;
}

%type <ModuleVal>     Module MethodList
%type <MethodVal>     Method MethodProto MethodHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal>   BBTerminatorInst
%type <InstVal>       Inst InstVal MemoryInst
%type <ConstVal>      ConstVal
%type <ConstVector>   ConstVector
%type <MethodArgList> ArgList ArgListH
%type <MethArgVal>    ArgVal
%type <PHIList>       PHIList
%type <ValueList>     ValueRefList ValueRefListE  // For call param lists
%type <ValueList>     IndexList                   // For GEP derived indices
%type <TypeList>      TypeListI ArgTypeListI
%type <JumpTable>     JumpTable
%type <BoolVal>       GlobalType OptInternal      // GLOBAL or CONSTANT? Intern?

// ValueRef - Unresolved reference to a definition or BB
%type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
%type <ValueVal>      ResolvedVal            // <type> <valref> pair
// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL

// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type  <SInt64Val> EINT64VAL

%token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
%token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
%type   <SIntVal>   INTVAL
%token  <FPVal>     FPVAL     // Float or Double constant

// Built in types...
%type  <TypeVal> Types TypesV UpRTypes UpRTypesV
%type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications
%token <TypeVal>  OPAQUE
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <PrimType> FLOAT DOUBLE TYPE LABEL

%token <StrVal>     VAR_ID LABELSTR STRINGCONSTANT
%type  <StrVal>  OptVAR_ID OptAssign


%token IMPLEMENTATION TRUE FALSE BEGINTOK END DECLARE GLOBAL CONSTANT UNINIT
%token TO EXCEPT DOTDOTDOT STRING NULL_TOK CONST INTERNAL

// Basic Block Terminating Operators 
%token <TermOpVal> RET BR SWITCH

// Unary Operators 
%type  <UnaryOpVal> UnaryOps  // all the unary operators
%token <UnaryOpVal> NOT

// Binary Operators 
%type  <BinaryOpVal> BinaryOps  // all the binary operators
%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comarators

// Memory Instructions
%token <MemoryOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR

// Other Operators
%type  <OtherOpVal> ShiftOps
%token <OtherOpVal> PHI CALL INVOKE CAST SHL SHR

%start Module
%%

// Handle constant integer size restriction and conversion...
//

INTVAL : SINTVAL
INTVAL : UINTVAL {
  if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
    ThrowException("Value too large for type!");
  $$ = (int32_t)$1;
}


EINT64VAL : ESINT64VAL       // These have same type and can't cause problems...
EINT64VAL : EUINT64VAL {
  if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
    ThrowException("Value too large for type!");
  $$ = (int64_t)$1;
}

// Operations that are notably excluded from this list include: 
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
UnaryOps  : NOT
BinaryOps : ADD | SUB | MUL | DIV | REM | AND | OR | XOR
BinaryOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
ShiftOps  : SHL | SHR

// These are some types that allow classification if we only want a particular 
// thing... for example, only a signed, unsigned, or integral type.
SIntType :  LONG |  INT |  SHORT | SBYTE
UIntType : ULONG | UINT | USHORT | UBYTE
IntType  : SIntType | UIntType
FPType   : FLOAT | DOUBLE

// OptAssign - Value producing statements have an optional assignment component
OptAssign : VAR_ID '=' {
    $$ = $1;
  }
  | /*empty*/ { 
    $$ = 0; 
  }

OptInternal : INTERNAL { $$ = true; } | /*empty*/ { $$ = false; }

//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (method returning void for example).  To have
// access to it, a user must explicitly use TypesV.
//

// TypesV includes all of 'Types', but it also includes the void type.
TypesV    : Types    | VOID { $$ = newTH($1); }
UpRTypesV : UpRTypes | VOID { $$ = newTH($1); }

Types     : UpRTypes {
    TypeDone($$ = $1);
  }


// Derived types are added later...
//
PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT 
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL
UpRTypes : OPAQUE | PrimType { $$ = newTH($1); }
UpRTypes : ValueRef {                    // Named types are also simple types...
  $$ = newTH(getTypeVal($1));
}

// Include derived types in the Types production.
//
UpRTypes : '\\' EUINT64VAL {                   // Type UpReference
    if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!");
    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
    UpRefs.push_back(make_pair((unsigned)$2, OT));  // Add to vector...
    $$ = newTH<Type>(OT);
    UR_OUT("New Upreference!\n");
  }
  | UpRTypesV '(' ArgTypeListI ')' {           // Method derived type?
    vector<const Type*> Params;
    mapto($3->begin(), $3->end(), std::back_inserter(Params), 
	  std::mem_fun_ref(&PATypeHandle<Type>::get));
    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
    if (isVarArg) Params.pop_back();

    $$ = newTH(HandleUpRefs(MethodType::get(*$1, Params, isVarArg)));
    delete $3;      // Delete the argument list
    delete $1;      // Delete the old type handle
  }
  | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
    $$ = newTH<Type>(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
    delete $4;
  }
  | '{' TypeListI '}' {                        // Structure type?
    vector<const Type*> Elements;
    mapto($2->begin(), $2->end(), std::back_inserter(Elements), 
	std::mem_fun_ref(&PATypeHandle<Type>::get));

    $$ = newTH<Type>(HandleUpRefs(StructType::get(Elements)));
    delete $2;
  }
  | '{' '}' {                                  // Empty structure type?
    $$ = newTH<Type>(StructType::get(vector<const Type*>()));
  }
  | UpRTypes '*' {                             // Pointer type?
    $$ = newTH<Type>(HandleUpRefs(PointerType::get(*$1)));
    delete $1;
  }

// TypeList - Used for struct declarations and as a basis for method type 
// declaration type lists
//
TypeListI : UpRTypes {
    $$ = new list<PATypeHolder<Type> >();
    $$->push_back(*$1); delete $1;
  }
  | TypeListI ',' UpRTypes {
    ($$=$1)->push_back(*$3); delete $3;
  }

// ArgTypeList - List of types for a method type declaration...
ArgTypeListI : TypeListI
  | TypeListI ',' DOTDOTDOT {
    ($$=$1)->push_back(Type::VoidTy);
  }
  | DOTDOTDOT {
    ($$ = new list<PATypeHolder<Type> >())->push_back(Type::VoidTy);
  }
  | /*empty*/ {
    $$ = new list<PATypeHolder<Type> >();
  }


// ConstVal - The various declarations that go into the constant pool.  This
// includes all forward declarations of types, constants, and functions.
//
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
    const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
    if (ATy == 0)
      ThrowException("Cannot make array constant with type: '" + 
                     (*$1)->getDescription() + "'!");
    const Type *ETy = ATy->getElementType();
    int NumElements = ATy->getNumElements();

    // Verify that we have the correct size...
    if (NumElements != -1 && NumElements != (int)$3->size())
      ThrowException("Type mismatch: constant sized array initialized with " +
		     utostr($3->size()) +  " arguments, but has size of " + 
		     itostr(NumElements) + "!");

    // Verify all elements are correct type!
    for (unsigned i = 0; i < $3->size(); i++) {
      if (ETy != (*$3)[i]->getType())
	ThrowException("Element #" + utostr(i) + " is not of type '" + 
		       ETy->getDescription() +"' as required!\nIt is of type '"+
		       (*$3)[i]->getType()->getDescription() + "'.");
    }

    $$ = ConstantArray::get(ATy, *$3);
    delete $1; delete $3;
  }
  | Types '[' ']' {
    const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
    if (ATy == 0)
      ThrowException("Cannot make array constant with type: '" + 
                     (*$1)->getDescription() + "'!");

    int NumElements = ATy->getNumElements();
    if (NumElements != -1 && NumElements != 0) 
      ThrowException("Type mismatch: constant sized array initialized with 0"
		     " arguments, but has size of " + itostr(NumElements) +"!");
    $$ = ConstantArray::get(ATy, vector<Constant*>());
    delete $1;
  }
  | Types 'c' STRINGCONSTANT {
    const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
    if (ATy == 0)
      ThrowException("Cannot make array constant with type: '" + 
                     (*$1)->getDescription() + "'!");

    int NumElements = ATy->getNumElements();
    const Type *ETy = ATy->getElementType();
    char *EndStr = UnEscapeLexed($3, true);
    if (NumElements != -1 && NumElements != (EndStr-$3))
      ThrowException("Can't build string constant of size " + 
		     itostr((int)(EndStr-$3)) +
		     " when array has size " + itostr(NumElements) + "!");
    vector<Constant*> Vals;
    if (ETy == Type::SByteTy) {
      for (char *C = $3; C != EndStr; ++C)
	Vals.push_back(ConstantSInt::get(ETy, *C));
    } else if (ETy == Type::UByteTy) {
      for (char *C = $3; C != EndStr; ++C)
	Vals.push_back(ConstantUInt::get(ETy, *C));
    } else {
      free($3);
      ThrowException("Cannot build string arrays of non byte sized elements!");
    }
    free($3);
    $$ = ConstantArray::get(ATy, Vals);
    delete $1;
  }
  | Types '{' ConstVector '}' {
    const StructType *STy = dyn_cast<const StructType>($1->get());
    if (STy == 0)
      ThrowException("Cannot make struct constant with type: '" + 
                     (*$1)->getDescription() + "'!");
    // FIXME: TODO: Check to see that the constants are compatible with the type
    // initializer!
    $$ = ConstantStruct::get(STy, *$3);
    delete $1; delete $3;
  }
  | Types NULL_TOK {
    const PointerType *PTy = dyn_cast<const PointerType>($1->get());
    if (PTy == 0)
      ThrowException("Cannot make null pointer constant with type: '" + 
                     (*$1)->getDescription() + "'!");

    $$ = ConstantPointerNull::get(PTy);
    delete $1;
  }
  | Types SymbolicValueRef {
    const PointerType *Ty = dyn_cast<const PointerType>($1->get());
    if (Ty == 0)
      ThrowException("Global const reference must be a pointer type!");

    Value *V = getValNonImprovising(Ty, $2);

    // If this is an initializer for a constant pointer, which is referencing a
    // (currently) undefined variable, create a stub now that shall be replaced
    // in the future with the right type of variable.
    //
    if (V == 0) {
      assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
      const PointerType *PT = cast<PointerType>(Ty);

      // First check to see if the forward references value is already created!
      PerModuleInfo::GlobalRefsType::iterator I =
	CurModule.GlobalRefs.find(make_pair(PT, $2));
    
      if (I != CurModule.GlobalRefs.end()) {
	V = I->second;             // Placeholder already exists, use it...
      } else {
	// TODO: Include line number info by creating a subclass of
	// TODO: GlobalVariable here that includes the said information!
	
	// Create a placeholder for the global variable reference...
	GlobalVariable *GV = new GlobalVariable(PT->getElementType(),
                                                false, true);
	// Keep track of the fact that we have a forward ref to recycle it
	CurModule.GlobalRefs.insert(make_pair(make_pair(PT, $2), GV));

	// Must temporarily push this value into the module table...
	CurModule.CurrentModule->getGlobalList().push_back(GV);
	V = GV;
      }
    }

    GlobalValue *GV = cast<GlobalValue>(V);
    $$ = ConstantPointerRef::get(GV);
    delete $1;            // Free the type handle
  }


ConstVal : SIntType EINT64VAL {     // integral constants
    if (!ConstantSInt::isValueValidForType($1, $2))
      ThrowException("Constant value doesn't fit in type!");
    $$ = ConstantSInt::get($1, $2);
  } 
  | UIntType EUINT64VAL {           // integral constants
    if (!ConstantUInt::isValueValidForType($1, $2))
      ThrowException("Constant value doesn't fit in type!");
    $$ = ConstantUInt::get($1, $2);
  } 
  | BOOL TRUE {                     // Boolean constants
    $$ = ConstantBool::True;
  }
  | BOOL FALSE {                    // Boolean constants
    $$ = ConstantBool::False;
  }
  | FPType FPVAL {                   // Float & Double constants
    $$ = ConstantFP::get($1, $2);
  }

// ConstVector - A list of comma seperated constants.
ConstVector : ConstVector ',' ConstVal {
    ($$ = $1)->push_back($3);
  }
  | ConstVal {
    $$ = new vector<Constant*>();
    $$->push_back($1);
  }


// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }


// ConstPool - Constants with optional names assigned to them.
ConstPool : ConstPool OptAssign CONST ConstVal { 
    if (setValueName($4, $2)) { assert(0 && "No redefinitions allowed!"); }
    InsertValue($4);
  }
  | ConstPool OptAssign TYPE TypesV {  // Types can be defined in the const pool
    // Eagerly resolve types.  This is not an optimization, this is a
    // requirement that is due to the fact that we could have this:
    //
    // %list = type { %list * }
    // %list = type { %list * }    ; repeated type decl
    //
    // If types are not resolved eagerly, then the two types will not be
    // determined to be the same type!
    //
    ResolveTypeTo($2, $4->get());

    // TODO: FIXME when Type are not const
    if (!setValueName(const_cast<Type*>($4->get()), $2)) {
      // If this is not a redefinition of a type...
      if (!$2) {
        InsertType($4->get(),
                   inMethodScope() ? CurMeth.Types : CurModule.Types);
      }
    }

    delete $4;
  }
  | ConstPool MethodProto {            // Method prototypes can be in const pool
  }
  | ConstPool OptAssign OptInternal GlobalType ConstVal {
    const Type *Ty = $5->getType();
    // Global declarations appear in Constant Pool
    Constant *Initializer = $5;
    if (Initializer == 0)
      ThrowException("Global value initializer is not a constant!");
	 
    GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer);
    if (!setValueName(GV, $2)) {   // If not redefining...
      CurModule.CurrentModule->getGlobalList().push_back(GV);
      int Slot = InsertValue(GV, CurModule.Values);

      if (Slot != -1) {
	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
      } else {
	CurModule.DeclareNewGlobalValue(GV, ValID::create(
				                (char*)GV->getName().c_str()));
      }
    }
  }
  | ConstPool OptAssign OptInternal UNINIT GlobalType Types {
    const Type *Ty = *$6;
    // Global declarations appear in Constant Pool
    GlobalVariable *GV = new GlobalVariable(Ty, $5, $3);
    if (!setValueName(GV, $2)) {   // If not redefining...
      CurModule.CurrentModule->getGlobalList().push_back(GV);
      int Slot = InsertValue(GV, CurModule.Values);

      if (Slot != -1) {
	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
      } else {
	assert(GV->hasName() && "Not named and not numbered!?");
	CurModule.DeclareNewGlobalValue(GV, ValID::create(
				                (char*)GV->getName().c_str()));
      }
    }
  }
  | /* empty: end of list */ { 
  }


//===----------------------------------------------------------------------===//
//                             Rules to match Modules
//===----------------------------------------------------------------------===//

// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module : MethodList {
  $$ = ParserResult = $1;
  CurModule.ModuleDone();
}

// MethodList - A list of methods, preceeded by a constant pool.
//
MethodList : MethodList Method {
    $$ = $1;
    if (!$2->getParent())
      $1->getMethodList().push_back($2);
    CurMeth.MethodDone();
  } 
  | MethodList MethodProto {
    $$ = $1;
  }
  | ConstPool IMPLEMENTATION {
    $$ = CurModule.CurrentModule;
    // Resolve circular types before we parse the body of the module
    ResolveTypes(CurModule.LateResolveTypes);
  }


//===----------------------------------------------------------------------===//
//                       Rules to match Method Headers
//===----------------------------------------------------------------------===//

OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; }

ArgVal : Types OptVAR_ID {
  $$ = new pair<MethodArgument*,char*>(new MethodArgument(*$1), $2);
  delete $1;  // Delete the type handle..
}

ArgListH : ArgVal ',' ArgListH {
    $$ = $3;
    $3->push_front(*$1);
    delete $1;
  }
  | ArgVal {
    $$ = new list<pair<MethodArgument*,char*> >();
    $$->push_front(*$1);
    delete $1;
  }
  | DOTDOTDOT {
    $$ = new list<pair<MethodArgument*, char*> >();
    $$->push_front(pair<MethodArgument*,char*>(
                            new MethodArgument(Type::VoidTy), 0));
  }

ArgList : ArgListH {
    $$ = $1;
  }
  | /* empty */ {
    $$ = 0;
  }

MethodHeaderH : OptInternal TypesV STRINGCONSTANT '(' ArgList ')' {
  UnEscapeLexed($3);
  string MethodName($3);
  
  vector<const Type*> ParamTypeList;
  if ($5)
    for (list<pair<MethodArgument*,char*> >::iterator I = $5->begin();
         I != $5->end(); ++I)
      ParamTypeList.push_back(I->first->getType());

  bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
  if (isVarArg) ParamTypeList.pop_back();

  const MethodType  *MT  = MethodType::get(*$2, ParamTypeList, isVarArg);
  const PointerType *PMT = PointerType::get(MT);
  delete $2;

  Method *M = 0;
  if (SymbolTable *ST = CurModule.CurrentModule->getSymbolTable()) {
    if (Value *V = ST->lookup(PMT, MethodName)) {  // Method already in symtab?
      M = cast<Method>(V);

      // Yes it is.  If this is the case, either we need to be a forward decl,
      // or it needs to be.
      if (!CurMeth.isDeclare && !M->isExternal())
	ThrowException("Redefinition of method '" + MethodName + "'!");      
    }
  }

  if (M == 0) {  // Not already defined?
    M = new Method(MT, $1, MethodName);
    InsertValue(M, CurModule.Values);
    CurModule.DeclareNewGlobalValue(M, ValID::create($3));
  }
  free($3);  // Free strdup'd memory!

  CurMeth.MethodStart(M);

  // Add all of the arguments we parsed to the method...
  if ($5 && !CurMeth.isDeclare) {        // Is null if empty...
    Method::ArgumentListType &ArgList = M->getArgumentList();

    for (list<pair<MethodArgument*, char*> >::iterator I = $5->begin();
         I != $5->end(); ++I) {
      if (setValueName(I->first, I->second)) {  // Insert into symtab...
        assert(0 && "No arg redef allowed!");
      }
      
      InsertValue(I->first);
      ArgList.push_back(I->first);
    }
    delete $5;                     // We're now done with the argument list
  } else if ($5) {
    // If we are a declaration, we should free the memory for the argument list!
    for (list<pair<MethodArgument*, char*> >::iterator I = $5->begin();
         I != $5->end(); ++I)
      if (I->second) free(I->second);   // Free the memory for the name...
    delete $5;                          // Free the memory for the list itself
  }
}

MethodHeader : MethodHeaderH ConstPool BEGINTOK {
  $$ = CurMeth.CurrentMethod;

  // Resolve circular types before we parse the body of the method.
  ResolveTypes(CurMeth.LateResolveTypes);
}

Method : BasicBlockList END {
  $$ = $1;
}

MethodProto : DECLARE { CurMeth.isDeclare = true; } MethodHeaderH {
  $$ = CurMeth.CurrentMethod;
  if (!$$->getParent())
    CurModule.CurrentModule->getMethodList().push_back($$);
  CurMeth.MethodDone();
}

//===----------------------------------------------------------------------===//
//                        Rules to match Basic Blocks
//===----------------------------------------------------------------------===//

ConstValueRef : ESINT64VAL {    // A reference to a direct constant
    $$ = ValID::create($1);
  }
  | EUINT64VAL {
    $$ = ValID::create($1);
  }
  | FPVAL {                     // Perhaps it's an FP constant?
    $$ = ValID::create($1);
  }
  | TRUE {
    $$ = ValID::create((int64_t)1);
  } 
  | FALSE {
    $$ = ValID::create((int64_t)0);
  }
  | NULL_TOK {
    $$ = ValID::createNull();
  }

/*
  | STRINGCONSTANT {        // Quoted strings work too... especially for methods
    $$ = ValID::create_conststr($1);
  }
*/

// SymbolicValueRef - Reference to one of two ways of symbolically refering to
// another value.
//
SymbolicValueRef : INTVAL {  // Is it an integer reference...?
    $$ = ValID::create($1);
  }
  | VAR_ID {                 // Is it a named reference...?
    $$ = ValID::create($1);
  }

// ValueRef - A reference to a definition... either constant or symbolic
ValueRef : SymbolicValueRef | ConstValueRef


// ResolvedVal - a <type> <value> pair.  This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal : Types ValueRef {
    $$ = getVal(*$1, $2); delete $1;
  }


BasicBlockList : BasicBlockList BasicBlock {
    ($$ = $1)->getBasicBlocks().push_back($2);
  }
  | MethodHeader BasicBlock { // Do not allow methods with 0 basic blocks   
    ($$ = $1)->getBasicBlocks().push_back($2);
  }


// Basic blocks are terminated by branching instructions: 
// br, br/cc, switch, ret
//
BasicBlock : InstructionList OptAssign BBTerminatorInst  {
    if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); }
    InsertValue($3);

    $1->getInstList().push_back($3);
    InsertValue($1);
    $$ = $1;
  }
  | LABELSTR InstructionList OptAssign BBTerminatorInst  {
    if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); }
    InsertValue($4);

    $2->getInstList().push_back($4);
    if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); }

    InsertValue($2);
    $$ = $2;
  }

InstructionList : InstructionList Inst {
    $1->getInstList().push_back($2);
    $$ = $1;
  }
  | /* empty */ {
    $$ = new BasicBlock();
  }

BBTerminatorInst : RET ResolvedVal {              // Return with a result...
    $$ = new ReturnInst($2);
  }
  | RET VOID {                                       // Return with no result...
    $$ = new ReturnInst();
  }
  | BR LABEL ValueRef {                         // Unconditional Branch...
    $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $3)));
  }                                                  // Conditional Branch...
  | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
    $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $6)), 
			cast<BasicBlock>(getVal(Type::LabelTy, $9)),
			getVal(Type::BoolTy, $3));
  }
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
    SwitchInst *S = new SwitchInst(getVal($2, $3), 
                                   cast<BasicBlock>(getVal(Type::LabelTy, $6)));
    $$ = S;

    list<pair<Constant*, BasicBlock*> >::iterator I = $8->begin(), 
                                                      end = $8->end();
    for (; I != end; ++I)
      S->dest_push_back(I->first, I->second);
  }
  | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal 
    EXCEPT ResolvedVal {
    const PointerType *PMTy;
    const MethodType *Ty;

    if (!(PMTy = dyn_cast<PointerType>($2->get())) ||
        !(Ty = dyn_cast<MethodType>(PMTy->getElementType()))) {
      // Pull out the types of all of the arguments...
      vector<const Type*> ParamTypes;
      if ($5) {
        for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
          ParamTypes.push_back((*I)->getType());
      }

      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
      if (isVarArg) ParamTypes.pop_back();

      Ty = MethodType::get($2->get(), ParamTypes, isVarArg);
      PMTy = PointerType::get(Ty);
    }
    delete $2;

    Value *V = getVal(PMTy, $3);   // Get the method we're calling...

    BasicBlock *Normal = dyn_cast<BasicBlock>($8);
    BasicBlock *Except = dyn_cast<BasicBlock>($10);

    if (Normal == 0 || Except == 0)
      ThrowException("Invoke instruction without label destinations!");

    // Create the call node...
    if (!$5) {                                   // Has no arguments?
      $$ = new InvokeInst(V, Normal, Except, vector<Value*>());
    } else {                                     // Has arguments?
      // Loop through MethodType's arguments and ensure they are specified
      // correctly!
      //
      MethodType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
      MethodType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
      vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();

      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
	if ((*ArgI)->getType() != *I)
	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
			 (*I)->getDescription() + "'!");

      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
	ThrowException("Invalid number of parameters detected!");

      $$ = new InvokeInst(V, Normal, Except, *$5);
    }
    delete $5;
  }



JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
    $$ = $1;
    Constant *V = cast<Constant>(getValNonImprovising($2, $3));
    if (V == 0)
      ThrowException("May only switch on a constant pool value!");

    $$->push_back(make_pair(V, cast<BasicBlock>(getVal($5, $6))));
  }
  | IntType ConstValueRef ',' LABEL ValueRef {
    $$ = new list<pair<Constant*, BasicBlock*> >();
    Constant *V = cast<Constant>(getValNonImprovising($1, $2));

    if (V == 0)
      ThrowException("May only switch on a constant pool value!");

    $$->push_back(make_pair(V, cast<BasicBlock>(getVal($4, $5))));
  }

Inst : OptAssign InstVal {
  // Is this definition named?? if so, assign the name...
  if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); }
  InsertValue($2);
  $$ = $2;
}

PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
    $$ = new list<pair<Value*, BasicBlock*> >();
    $$->push_back(make_pair(getVal(*$1, $3), 
                            cast<BasicBlock>(getVal(Type::LabelTy, $5))));
    delete $1;
  }
  | PHIList ',' '[' ValueRef ',' ValueRef ']' {
    $$ = $1;
    $1->push_back(make_pair(getVal($1->front().first->getType(), $4),
                            cast<BasicBlock>(getVal(Type::LabelTy, $6))));
  }


ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
    $$ = new vector<Value*>();
    $$->push_back($1);
  }
  | ValueRefList ',' ResolvedVal {
    $$ = $1;
    $1->push_back($3);
  }

// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }

InstVal : BinaryOps Types ValueRef ',' ValueRef {
    $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
    if ($$ == 0)
      ThrowException("binary operator returned null!");
    delete $2;
  }
  | UnaryOps ResolvedVal {
    $$ = UnaryOperator::create($1, $2);
    if ($$ == 0)
      ThrowException("unary operator returned null!");
  }
  | ShiftOps ResolvedVal ',' ResolvedVal {
    if ($4->getType() != Type::UByteTy)
      ThrowException("Shift amount must be ubyte!");
    $$ = new ShiftInst($1, $2, $4);
  }
  | CAST ResolvedVal TO Types {
    $$ = new CastInst($2, *$4);
    delete $4;
  }
  | PHI PHIList {
    const Type *Ty = $2->front().first->getType();
    $$ = new PHINode(Ty);
    while ($2->begin() != $2->end()) {
      if ($2->front().first->getType() != Ty) 
	ThrowException("All elements of a PHI node must be of the same type!");
      cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
      $2->pop_front();
    }
    delete $2;  // Free the list...
  } 
  | CALL TypesV ValueRef '(' ValueRefListE ')' {
    const PointerType *PMTy;
    const MethodType *Ty;

    if (!(PMTy = dyn_cast<PointerType>($2->get())) ||
        !(Ty = dyn_cast<MethodType>(PMTy->getElementType()))) {
      // Pull out the types of all of the arguments...
      vector<const Type*> ParamTypes;
      if ($5) {
        for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
          ParamTypes.push_back((*I)->getType());
      }

      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
      if (isVarArg) ParamTypes.pop_back();

      Ty = MethodType::get($2->get(), ParamTypes, isVarArg);
      PMTy = PointerType::get(Ty);
    }
    delete $2;

    Value *V = getVal(PMTy, $3);   // Get the method we're calling...

    // Create the call node...
    if (!$5) {                                   // Has no arguments?
      $$ = new CallInst(V, vector<Value*>());
    } else {                                     // Has arguments?
      // Loop through MethodType's arguments and ensure they are specified
      // correctly!
      //
      MethodType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
      MethodType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
      vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();

      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
	if ((*ArgI)->getType() != *I)
	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
			 (*I)->getDescription() + "'!");

      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
	ThrowException("Invalid number of parameters detected!");

      $$ = new CallInst(V, *$5);
    }
    delete $5;
  }
  | MemoryInst {
    $$ = $1;
  }


// IndexList - List of indices for GEP based instructions...
IndexList : ',' ValueRefList { 
  $$ = $2; 
} | /* empty */ { 
  $$ = new vector<Value*>(); 
}

MemoryInst : MALLOC Types {
    $$ = new MallocInst(PointerType::get(*$2));
    delete $2;
  }
  | MALLOC Types ',' UINT ValueRef {
    const Type *Ty = PointerType::get(*$2);
    $$ = new MallocInst(Ty, getVal($4, $5));
    delete $2;
  }
  | ALLOCA Types {
    $$ = new AllocaInst(PointerType::get(*$2));
    delete $2;
  }
  | ALLOCA Types ',' UINT ValueRef {
    const Type *Ty = PointerType::get(*$2);
    Value *ArrSize = getVal($4, $5);
    $$ = new AllocaInst(Ty, ArrSize);
    delete $2;
  }
  | FREE ResolvedVal {
    if (!$2->getType()->isPointerType())
      ThrowException("Trying to free nonpointer type " + 
                     $2->getType()->getDescription() + "!");
    $$ = new FreeInst($2);
  }

  | LOAD Types ValueRef IndexList {
    if (!(*$2)->isPointerType())
      ThrowException("Can't load from nonpointer type: " +
		     (*$2)->getDescription());
    if (LoadInst::getIndexedType(*$2, *$4) == 0)
      ThrowException("Invalid indices for load instruction!");

    $$ = new LoadInst(getVal(*$2, $3), *$4);
    delete $4;   // Free the vector...
    delete $2;
  }
  | STORE ResolvedVal ',' Types ValueRef IndexList {
    if (!(*$4)->isPointerType())
      ThrowException("Can't store to a nonpointer type: " +
                     (*$4)->getDescription());
    const Type *ElTy = StoreInst::getIndexedType(*$4, *$6);
    if (ElTy == 0)
      ThrowException("Can't store into that field list!");
    if (ElTy != $2->getType())
      ThrowException("Can't store '" + $2->getType()->getDescription() +
                     "' into space of type '" + ElTy->getDescription() + "'!");
    $$ = new StoreInst($2, getVal(*$4, $5), *$6);
    delete $4; delete $6;
  }
  | GETELEMENTPTR Types ValueRef IndexList {
    if (!(*$2)->isPointerType())
      ThrowException("getelementptr insn requires pointer operand!");
    if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
      ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!");
    $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
    delete $2; delete $4;
  }

%%
int yyerror(const char *ErrorMsg) {
  ThrowException(string("Parse error: ") + ErrorMsg);
  return 0;
}