aboutsummaryrefslogtreecommitdiffstats
path: root/lib/AsmParser/llvmAsmParser.y
blob: ad431d03887d7357fdc1d45736bd077a683dae8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
//  This file implements the bison parser for LLVM assembly languages files.
//
//===----------------------------------------------------------------------===//

%{
#include "ParserInternals.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/iOperators.h"
#include "llvm/iPHINode.h"
#include "Support/STLExtras.h"
#include <list>
#include <utility>
#include <algorithm>

int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
int yylex();                       // declaration" of xxx warnings.
int yyparse();

namespace llvm {

static Module *ParserResult;
std::string CurFilename;

// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
// relating to upreferences in the input stream.
//
//#define DEBUG_UPREFS 1
#ifdef DEBUG_UPREFS
#define UR_OUT(X) std::cerr << X
#else
#define UR_OUT(X)
#endif

#define YYERROR_VERBOSE 1

// HACK ALERT: This variable is used to implement the automatic conversion of
// variable argument instructions from their old to new forms.  When this
// compatiblity "Feature" is removed, this should be too.
//
static BasicBlock *CurBB;
static bool ObsoleteVarArgs;


// This contains info used when building the body of a function.  It is
// destroyed when the function is completed.
//
typedef std::vector<Value *> ValueList;           // Numbered defs
static void ResolveDefinitions(std::vector<ValueList> &LateResolvers,
                               std::vector<ValueList> *FutureLateResolvers = 0);

static struct PerModuleInfo {
  Module *CurrentModule;
  std::vector<ValueList>    Values;     // Module level numbered definitions
  std::vector<ValueList>    LateResolveValues;
  std::vector<PATypeHolder> Types;
  std::map<ValID, PATypeHolder> LateResolveTypes;

  // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
  // references to global values.  Global values may be referenced before they
  // are defined, and if so, the temporary object that they represent is held
  // here.  This is used for forward references of ConstantPointerRefs.
  //
  typedef std::map<std::pair<const PointerType *,
                             ValID>, GlobalVariable*> GlobalRefsType;
  GlobalRefsType GlobalRefs;

  void ModuleDone() {
    // If we could not resolve some functions at function compilation time
    // (calls to functions before they are defined), resolve them now...  Types
    // are resolved when the constant pool has been completely parsed.
    //
    ResolveDefinitions(LateResolveValues);

    // Check to make sure that all global value forward references have been
    // resolved!
    //
    if (!GlobalRefs.empty()) {
      std::string UndefinedReferences = "Unresolved global references exist:\n";
      
      for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
           I != E; ++I) {
        UndefinedReferences += "  " + I->first.first->getDescription() + " " +
                               I->first.second.getName() + "\n";
      }
      ThrowException(UndefinedReferences);
    }

    Values.clear();         // Clear out function local definitions
    Types.clear();
    CurrentModule = 0;
  }


  // DeclareNewGlobalValue - Called every time a new GV has been defined.  This
  // is used to remove things from the forward declaration map, resolving them
  // to the correct thing as needed.
  //
  void DeclareNewGlobalValue(GlobalValue *GV, ValID D) {
    // Check to see if there is a forward reference to this global variable...
    // if there is, eliminate it and patch the reference to use the new def'n.
    GlobalRefsType::iterator I =
      GlobalRefs.find(std::make_pair(GV->getType(), D));

    if (I != GlobalRefs.end()) {
      GlobalVariable *OldGV = I->second;   // Get the placeholder...
      I->first.second.destroy();  // Free string memory if necessary
      
      // Loop over all of the uses of the GlobalValue.  The only thing they are
      // allowed to be is ConstantPointerRef's.
      assert(OldGV->hasOneUse() && "Only one reference should exist!");
      User *U = OldGV->use_back();  // Must be a ConstantPointerRef...
      ConstantPointerRef *CPR = cast<ConstantPointerRef>(U);
        
      // Change the const pool reference to point to the real global variable
      // now.  This should drop a use from the OldGV.
      CPR->mutateReferences(OldGV, GV);
      assert(OldGV->use_empty() && "All uses should be gone now!");
      
      // Remove OldGV from the module...
      CurrentModule->getGlobalList().remove(OldGV);
      delete OldGV;                        // Delete the old placeholder
      
      // Remove the map entry for the global now that it has been created...
      GlobalRefs.erase(I);
    }
  }

} CurModule;

static struct PerFunctionInfo {
  Function *CurrentFunction;     // Pointer to current function being created

  std::vector<ValueList> Values;      // Keep track of numbered definitions
  std::vector<ValueList> LateResolveValues;
  std::vector<PATypeHolder> Types;
  std::map<ValID, PATypeHolder> LateResolveTypes;
  SymbolTable LocalSymtab;
  bool isDeclare;                // Is this function a forward declararation?

  inline PerFunctionInfo() {
    CurrentFunction = 0;
    isDeclare = false;
  }

  inline void FunctionStart(Function *M) {
    CurrentFunction = M;
  }

  void FunctionDone() {
    // If we could not resolve some blocks at parsing time (forward branches)
    // resolve the branches now...
    ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);

    // Make sure to resolve any constant expr references that might exist within
    // the function we just declared itself.
    ValID FID;
    if (CurrentFunction->hasName()) {
      FID = ValID::create((char*)CurrentFunction->getName().c_str());
    } else {
      unsigned Slot = CurrentFunction->getType()->getUniqueID();
      assert(CurModule.Values.size() > Slot && "Function not inserted?");
      // Figure out which slot number if is...
      for (unsigned i = 0; ; ++i) {
        assert(i < CurModule.Values[Slot].size() && "Function not found!");
        if (CurModule.Values[Slot][i] == CurrentFunction) {
          FID = ValID::create((int)i);
          break;
        }
      }
    }
    CurModule.DeclareNewGlobalValue(CurrentFunction, FID);

    Values.clear();         // Clear out function local definitions
    Types.clear();          // Clear out function local types
    LocalSymtab.clear();    // Clear out function local symbol table
    CurrentFunction = 0;
    isDeclare = false;
  }
} CurFun;  // Info for the current function...

static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }


//===----------------------------------------------------------------------===//
//               Code to handle definitions of all the types
//===----------------------------------------------------------------------===//

static int InsertValue(Value *D,
                       std::vector<ValueList> &ValueTab = CurFun.Values) {
  if (D->hasName()) return -1;           // Is this a numbered definition?

  // Yes, insert the value into the value table...
  unsigned type = D->getType()->getUniqueID();
  if (ValueTab.size() <= type)
    ValueTab.resize(type+1, ValueList());
  //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
  ValueTab[type].push_back(D);
  return ValueTab[type].size()-1;
}

// TODO: FIXME when Type are not const
static void InsertType(const Type *Ty, std::vector<PATypeHolder> &Types) {
  Types.push_back(Ty);
}

static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
  switch (D.Type) {
  case ValID::NumberVal: {                 // Is it a numbered definition?
    unsigned Num = (unsigned)D.Num;

    // Module constants occupy the lowest numbered slots...
    if (Num < CurModule.Types.size()) 
      return CurModule.Types[Num];

    Num -= CurModule.Types.size();

    // Check that the number is within bounds...
    if (Num <= CurFun.Types.size())
      return CurFun.Types[Num];
    break;
  }
  case ValID::NameVal: {                // Is it a named definition?
    std::string Name(D.Name);
    SymbolTable *SymTab = 0;
    Value *N = 0;
    if (inFunctionScope()) {
      SymTab = &CurFun.CurrentFunction->getSymbolTable();
      N = SymTab->lookup(Type::TypeTy, Name);
    }

    if (N == 0) {
      // Symbol table doesn't automatically chain yet... because the function
      // hasn't been added to the module...
      //
      SymTab = &CurModule.CurrentModule->getSymbolTable();
      N = SymTab->lookup(Type::TypeTy, Name);
      if (N == 0) break;
    }

    D.destroy();  // Free old strdup'd memory...
    return cast<Type>(N);
  }
  default:
    ThrowException("Internal parser error: Invalid symbol type reference!");
  }

  // If we reached here, we referenced either a symbol that we don't know about
  // or an id number that hasn't been read yet.  We may be referencing something
  // forward, so just create an entry to be resolved later and get to it...
  //
  if (DoNotImprovise) return 0;  // Do we just want a null to be returned?

  std::map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ? 
    CurFun.LateResolveTypes : CurModule.LateResolveTypes;
  
  std::map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
  if (I != LateResolver.end()) {
    return I->second;
  }

  Type *Typ = OpaqueType::get();
  LateResolver.insert(std::make_pair(D, Typ));
  return Typ;
}

static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) {
  SymbolTable &SymTab = 
    inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() :
                        CurModule.CurrentModule->getSymbolTable();
  return SymTab.lookup(Ty, Name);
}

// getValNonImprovising - Look up the value specified by the provided type and
// the provided ValID.  If the value exists and has already been defined, return
// it.  Otherwise return null.
//
static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
  if (isa<FunctionType>(Ty))
    ThrowException("Functions are not values and "
                   "must be referenced as pointers");

  switch (D.Type) {
  case ValID::NumberVal: {                 // Is it a numbered definition?
    unsigned type = Ty->getUniqueID();
    unsigned Num = (unsigned)D.Num;

    // Module constants occupy the lowest numbered slots...
    if (type < CurModule.Values.size()) {
      if (Num < CurModule.Values[type].size()) 
        return CurModule.Values[type][Num];

      Num -= CurModule.Values[type].size();
    }

    // Make sure that our type is within bounds
    if (CurFun.Values.size() <= type) return 0;

    // Check that the number is within bounds...
    if (CurFun.Values[type].size() <= Num) return 0;
  
    return CurFun.Values[type][Num];
  }

  case ValID::NameVal: {                // Is it a named definition?
    Value *N = lookupInSymbolTable(Ty, std::string(D.Name));
    if (N == 0) return 0;

    D.destroy();  // Free old strdup'd memory...
    return N;
  }

  // Check to make sure that "Ty" is an integral type, and that our 
  // value will fit into the specified type...
  case ValID::ConstSIntVal:    // Is it a constant pool reference??
    if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
      ThrowException("Signed integral constant '" +
                     itostr(D.ConstPool64) + "' is invalid for type '" + 
                     Ty->getDescription() + "'!");
    return ConstantSInt::get(Ty, D.ConstPool64);

  case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
    if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
      if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
	ThrowException("Integral constant '" + utostr(D.UConstPool64) +
                       "' is invalid or out of range!");
      } else {     // This is really a signed reference.  Transmogrify.
	return ConstantSInt::get(Ty, D.ConstPool64);
      }
    } else {
      return ConstantUInt::get(Ty, D.UConstPool64);
    }

  case ValID::ConstFPVal:        // Is it a floating point const pool reference?
    if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
      ThrowException("FP constant invalid for type!!");
    return ConstantFP::get(Ty, D.ConstPoolFP);
    
  case ValID::ConstNullVal:      // Is it a null value?
    if (!isa<PointerType>(Ty))
      ThrowException("Cannot create a a non pointer null!");
    return ConstantPointerNull::get(cast<PointerType>(Ty));
    
  case ValID::ConstantVal:       // Fully resolved constant?
    if (D.ConstantValue->getType() != Ty)
      ThrowException("Constant expression type different from required type!");
    return D.ConstantValue;

  default:
    assert(0 && "Unhandled case!");
    return 0;
  }   // End of switch

  assert(0 && "Unhandled case!");
  return 0;
}


// getVal - This function is identical to getValNonImprovising, except that if a
// value is not already defined, it "improvises" by creating a placeholder var
// that looks and acts just like the requested variable.  When the value is
// defined later, all uses of the placeholder variable are replaced with the
// real thing.
//
static Value *getVal(const Type *Ty, const ValID &D) {
  assert(Ty != Type::TypeTy && "Should use getTypeVal for types!");

  // See if the value has already been defined...
  Value *V = getValNonImprovising(Ty, D);
  if (V) return V;

  // If we reached here, we referenced either a symbol that we don't know about
  // or an id number that hasn't been read yet.  We may be referencing something
  // forward, so just create an entry to be resolved later and get to it...
  //
  Value *d = 0;
  switch (Ty->getPrimitiveID()) {
  case Type::LabelTyID:  d = new   BBPlaceHolder(Ty, D); break;
  default:               d = new ValuePlaceHolder(Ty, D); break;
  }

  assert(d != 0 && "How did we not make something?");
  if (inFunctionScope())
    InsertValue(d, CurFun.LateResolveValues);
  else 
    InsertValue(d, CurModule.LateResolveValues);
  return d;
}


//===----------------------------------------------------------------------===//
//              Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurFun.LateResolveValues) of all such forward references
// and back patchs after we are done.
//

// ResolveDefinitions - If we could not resolve some defs at parsing 
// time (forward branches, phi functions for loops, etc...) resolve the 
// defs now...
//
static void ResolveDefinitions(std::vector<ValueList> &LateResolvers,
                               std::vector<ValueList> *FutureLateResolvers) {
  // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
  for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
    while (!LateResolvers[ty].empty()) {
      Value *V = LateResolvers[ty].back();
      assert(!isa<Type>(V) && "Types should be in LateResolveTypes!");

      LateResolvers[ty].pop_back();
      ValID &DID = getValIDFromPlaceHolder(V);

      Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID);
      if (TheRealValue) {
        V->replaceAllUsesWith(TheRealValue);
        delete V;
      } else if (FutureLateResolvers) {
        // Functions have their unresolved items forwarded to the module late
        // resolver table
        InsertValue(V, *FutureLateResolvers);
      } else {
	if (DID.Type == ValID::NameVal)
	  ThrowException("Reference to an invalid definition: '" +DID.getName()+
			 "' of type '" + V->getType()->getDescription() + "'",
			 getLineNumFromPlaceHolder(V));
	else
	  ThrowException("Reference to an invalid definition: #" +
			 itostr(DID.Num) + " of type '" + 
			 V->getType()->getDescription() + "'",
			 getLineNumFromPlaceHolder(V));
      }
    }
  }

  LateResolvers.clear();
}

// ResolveTypeTo - A brand new type was just declared.  This means that (if
// name is not null) things referencing Name can be resolved.  Otherwise, things
// refering to the number can be resolved.  Do this now.
//
static void ResolveTypeTo(char *Name, const Type *ToTy) {
  std::vector<PATypeHolder> &Types = inFunctionScope() ? 
     CurFun.Types : CurModule.Types;

   ValID D;
   if (Name) D = ValID::create(Name);
   else      D = ValID::create((int)Types.size());

   std::map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ? 
     CurFun.LateResolveTypes : CurModule.LateResolveTypes;
  
   std::map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
   if (I != LateResolver.end()) {
     ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
     LateResolver.erase(I);
   }
}

// ResolveTypes - At this point, all types should be resolved.  Any that aren't
// are errors.
//
static void ResolveTypes(std::map<ValID, PATypeHolder> &LateResolveTypes) {
  if (!LateResolveTypes.empty()) {
    const ValID &DID = LateResolveTypes.begin()->first;

    if (DID.Type == ValID::NameVal)
      ThrowException("Reference to an invalid type: '" +DID.getName() + "'");
    else
      ThrowException("Reference to an invalid type: #" + itostr(DID.Num));
  }
}


// setValueName - Set the specified value to the name given.  The name may be
// null potentially, in which case this is a noop.  The string passed in is
// assumed to be a malloc'd string buffer, and is freed by this function.
//
// This function returns true if the value has already been defined, but is
// allowed to be redefined in the specified context.  If the name is a new name
// for the typeplane, false is returned.
//
static bool setValueName(Value *V, char *NameStr) {
  if (NameStr == 0) return false;
  
  std::string Name(NameStr);      // Copy string
  free(NameStr);                  // Free old string

  if (V->getType() == Type::VoidTy) 
    ThrowException("Can't assign name '" + Name + 
		   "' to a null valued instruction!");

  SymbolTable &ST = inFunctionScope() ? 
    CurFun.CurrentFunction->getSymbolTable() : 
    CurModule.CurrentModule->getSymbolTable();

  Value *Existing = ST.lookup(V->getType(), Name);
  if (Existing) {    // Inserting a name that is already defined???
    // There is only one case where this is allowed: when we are refining an
    // opaque type.  In this case, Existing will be an opaque type.
    if (const Type *Ty = dyn_cast<Type>(Existing)) {
      if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Ty)) {
	// We ARE replacing an opaque type!
	((OpaqueType*)OpTy)->refineAbstractTypeTo(cast<Type>(V));
	return true;
      }
    }

    // Otherwise, we are a simple redefinition of a value, check to see if it
    // is defined the same as the old one...
    if (const Type *Ty = dyn_cast<Type>(Existing)) {
      if (Ty == cast<Type>(V)) return true;  // Yes, it's equal.
      // std::cerr << "Type: " << Ty->getDescription() << " != "
      //      << cast<Type>(V)->getDescription() << "!\n";
    } else if (const Constant *C = dyn_cast<Constant>(Existing)) {
      if (C == V) return true;      // Constants are equal to themselves
    } else if (GlobalVariable *EGV = dyn_cast<GlobalVariable>(Existing)) {
      // We are allowed to redefine a global variable in two circumstances:
      // 1. If at least one of the globals is uninitialized or 
      // 2. If both initializers have the same value.
      //
      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
        if (!EGV->hasInitializer() || !GV->hasInitializer() ||
             EGV->getInitializer() == GV->getInitializer()) {

          // Make sure the existing global version gets the initializer!  Make
          // sure that it also gets marked const if the new version is.
          if (GV->hasInitializer() && !EGV->hasInitializer())
            EGV->setInitializer(GV->getInitializer());
          if (GV->isConstant())
            EGV->setConstant(true);
          EGV->setLinkage(GV->getLinkage());
          
	  delete GV;     // Destroy the duplicate!
          return true;   // They are equivalent!
        }
      }
    }

    ThrowException("Redefinition of value named '" + Name + "' in the '" +
		   V->getType()->getDescription() + "' type plane!");
  }

  // Set the name
  V->setName(Name, &ST);

  // If we're in function scope
  if (inFunctionScope()) {
    // Look up the symbol in the function's local symboltable
    Existing = CurFun.LocalSymtab.lookup(V->getType(),Name);

    // If it already exists
    if (Existing) {
      // Bail
      ThrowException("Redefinition of value named '" + Name + "' in the '" +
		   V->getType()->getDescription() + "' type plane!");

    // otherwise, since it doesn't exist
    } else {
      // Insert it.
      CurFun.LocalSymtab.insert(V);
    }
  }
  return false;
}


//===----------------------------------------------------------------------===//
// Code for handling upreferences in type names...
//

// TypeContains - Returns true if Ty directly contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
  return find(Ty->subtype_begin(), Ty->subtype_end(), E) != Ty->subtype_end();
}

namespace {
  struct UpRefRecord {
    // NestingLevel - The number of nesting levels that need to be popped before
    // this type is resolved.
    unsigned NestingLevel;
    
    // LastContainedTy - This is the type at the current binding level for the
    // type.  Every time we reduce the nesting level, this gets updated.
    const Type *LastContainedTy;

    // UpRefTy - This is the actual opaque type that the upreference is
    // represented with.
    OpaqueType *UpRefTy;

    UpRefRecord(unsigned NL, OpaqueType *URTy)
      : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
  };
}

// UpRefs - A list of the outstanding upreferences that need to be resolved.
static std::vector<UpRefRecord> UpRefs;

/// HandleUpRefs - Every time we finish a new layer of types, this function is
/// called.  It loops through the UpRefs vector, which is a list of the
/// currently active types.  For each type, if the up reference is contained in
/// the newly completed type, we decrement the level count.  When the level
/// count reaches zero, the upreferenced type is the type that is passed in:
/// thus we can complete the cycle.
///
static PATypeHolder HandleUpRefs(const Type *ty) {
  if (!ty->isAbstract()) return ty;
  PATypeHolder Ty(ty);
  UR_OUT("Type '" << Ty->getDescription() << 
         "' newly formed.  Resolving upreferences.\n" <<
         UpRefs.size() << " upreferences active!\n");
  for (unsigned i = 0; i != UpRefs.size(); ++i) {
    UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " 
	   << UpRefs[i].second->getDescription() << ") = " 
	   << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
    if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
      // Decrement level of upreference
      unsigned Level = --UpRefs[i].NestingLevel;
      UpRefs[i].LastContainedTy = Ty;
      UR_OUT("  Uplevel Ref Level = " << Level << "\n");
      if (Level == 0) {                     // Upreference should be resolved! 
	UR_OUT("  * Resolving upreference for "
               << UpRefs[i].second->getDescription() << "\n";
	       std::string OldName = UpRefs[i].UpRefTy->getDescription());
	UpRefs[i].UpRefTy->refineAbstractTypeTo(Ty);
	UR_OUT("  * Type '" << OldName << "' refined upreference to: "
	       << (const void*)Ty << ", " << Ty->getDescription() << "\n");
	UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
        --i;                                // Do not skip the next element...
      }
    }
  }

  return Ty;
}


//===----------------------------------------------------------------------===//
//            RunVMAsmParser - Define an interface to this parser
//===----------------------------------------------------------------------===//
//
Module *RunVMAsmParser(const std::string &Filename, FILE *F) {
  llvmAsmin = F;
  CurFilename = Filename;
  llvmAsmlineno = 1;      // Reset the current line number...
  ObsoleteVarArgs = false;

  // Allocate a new module to read
  CurModule.CurrentModule = new Module(Filename);

  try {
    yyparse();       // Parse the file.
  } catch (...) {
    // Clear the symbol table so it doesn't complain when it
    // gets destructed
    CurFun.LocalSymtab.clear();
    throw;
  }

  Module *Result = ParserResult;

  // Check to see if they called va_start but not va_arg..
  if (!ObsoleteVarArgs)
    if (Function *F = Result->getNamedFunction("llvm.va_start"))
      if (F->asize() == 1) {
        std::cerr << "WARNING: this file uses obsolete features.  "
                  << "Assemble and disassemble to update it.\n";
        ObsoleteVarArgs = true;
      }


  if (ObsoleteVarArgs) {
    // If the user is making use of obsolete varargs intrinsics, adjust them for
    // the user.
    if (Function *F = Result->getNamedFunction("llvm.va_start")) {
      assert(F->asize() == 1 && "Obsolete va_start takes 1 argument!");

      const Type *RetTy = F->getFunctionType()->getParamType(0);
      RetTy = cast<PointerType>(RetTy)->getElementType();
      Function *NF = Result->getOrInsertFunction("llvm.va_start", RetTy, 0);
      
      while (!F->use_empty()) {
        CallInst *CI = cast<CallInst>(F->use_back());
        Value *V = new CallInst(NF, "", CI);
        new StoreInst(V, CI->getOperand(1), CI);
        CI->getParent()->getInstList().erase(CI);
      }
      Result->getFunctionList().erase(F);
    }
    
    if (Function *F = Result->getNamedFunction("llvm.va_end")) {
      assert(F->asize() == 1 && "Obsolete va_end takes 1 argument!");
      const Type *ArgTy = F->getFunctionType()->getParamType(0);
      ArgTy = cast<PointerType>(ArgTy)->getElementType();
      Function *NF = Result->getOrInsertFunction("llvm.va_end", Type::VoidTy,
                                                 ArgTy, 0);

      while (!F->use_empty()) {
        CallInst *CI = cast<CallInst>(F->use_back());
        Value *V = new LoadInst(CI->getOperand(1), "", CI);
        new CallInst(NF, V, "", CI);
        CI->getParent()->getInstList().erase(CI);
      }
      Result->getFunctionList().erase(F);
    }

    if (Function *F = Result->getNamedFunction("llvm.va_copy")) {
      assert(F->asize() == 2 && "Obsolete va_copy takes 2 argument!");
      const Type *ArgTy = F->getFunctionType()->getParamType(0);
      ArgTy = cast<PointerType>(ArgTy)->getElementType();
      Function *NF = Result->getOrInsertFunction("llvm.va_copy", ArgTy,
                                                 ArgTy, 0);

      while (!F->use_empty()) {
        CallInst *CI = cast<CallInst>(F->use_back());
        Value *V = new CallInst(NF, CI->getOperand(2), "", CI);
        new StoreInst(V, CI->getOperand(1), CI);
        CI->getParent()->getInstList().erase(CI);
      }
      Result->getFunctionList().erase(F);
    }
  }

  llvmAsmin = stdin;    // F is about to go away, don't use it anymore...
  ParserResult = 0;

  return Result;
}

} // End llvm namespace

using namespace llvm;

%}

%union {
  llvm::Module                           *ModuleVal;
  llvm::Function                         *FunctionVal;
  std::pair<llvm::PATypeHolder*, char*>  *ArgVal;
  llvm::BasicBlock                       *BasicBlockVal;
  llvm::TerminatorInst                   *TermInstVal;
  llvm::Instruction                      *InstVal;
  llvm::Constant                         *ConstVal;

  const llvm::Type                       *PrimType;
  llvm::PATypeHolder                     *TypeVal;
  llvm::Value                            *ValueVal;

  std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList;
  std::vector<llvm::Value*>              *ValueList;
  std::list<llvm::PATypeHolder>          *TypeList;
  std::list<std::pair<llvm::Value*,
                      llvm::BasicBlock*> > *PHIList; // Represent the RHS of PHI node
  std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
  std::vector<llvm::Constant*>           *ConstVector;

  llvm::GlobalValue::LinkageTypes         Linkage;
  int64_t                           SInt64Val;
  uint64_t                          UInt64Val;
  int                               SIntVal;
  unsigned                          UIntVal;
  double                            FPVal;
  bool                              BoolVal;

  char                             *StrVal;   // This memory is strdup'd!
  llvm::ValID                             ValIDVal; // strdup'd memory maybe!

  llvm::Instruction::BinaryOps            BinaryOpVal;
  llvm::Instruction::TermOps              TermOpVal;
  llvm::Instruction::MemoryOps            MemOpVal;
  llvm::Instruction::OtherOps             OtherOpVal;
  llvm::Module::Endianness                Endianness;
}

%type <ModuleVal>     Module FunctionList
%type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal>   BBTerminatorInst
%type <InstVal>       Inst InstVal MemoryInst
%type <ConstVal>      ConstVal ConstExpr
%type <ConstVector>   ConstVector
%type <ArgList>       ArgList ArgListH
%type <ArgVal>        ArgVal
%type <PHIList>       PHIList
%type <ValueList>     ValueRefList ValueRefListE  // For call param lists
%type <ValueList>     IndexList                   // For GEP derived indices
%type <TypeList>      TypeListI ArgTypeListI
%type <JumpTable>     JumpTable
%type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT?
%type <BoolVal>       OptVolatile                 // 'volatile' or not
%type <Linkage>       OptLinkage
%type <Endianness>    BigOrLittle

// ValueRef - Unresolved reference to a definition or BB
%type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
%type <ValueVal>      ResolvedVal            // <type> <valref> pair
// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL

// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type  <SInt64Val> EINT64VAL

%token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
%token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
%type   <SIntVal>   INTVAL
%token  <FPVal>     FPVAL     // Float or Double constant

// Built in types...
%type  <TypeVal> Types TypesV UpRTypes UpRTypesV
%type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <PrimType> FLOAT DOUBLE TYPE LABEL

%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
%type  <StrVal> Name OptName OptAssign


%token IMPLEMENTATION ZEROINITIALIZER TRUE FALSE BEGINTOK ENDTOK
%token DECLARE GLOBAL CONSTANT VOLATILE
%token TO DOTDOTDOT NULL_TOK CONST INTERNAL LINKONCE WEAK  APPENDING
%token OPAQUE NOT EXTERNAL TARGET ENDIAN POINTERSIZE LITTLE BIG

// Basic Block Terminating Operators 
%token <TermOpVal> RET BR SWITCH INVOKE UNWIND

// Binary Operators 
%type  <BinaryOpVal> BinaryOps  // all the binary operators
%type  <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comarators

// Memory Instructions
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR

// Other Operators
%type  <OtherOpVal> ShiftOps
%token <OtherOpVal> PHI_TOK CALL CAST SHL SHR VAARG VANEXT
%token VA_ARG // FIXME: OBSOLETE

%start Module
%%

// Handle constant integer size restriction and conversion...
//
INTVAL : SINTVAL;
INTVAL : UINTVAL {
  if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
    ThrowException("Value too large for type!");
  $$ = (int32_t)$1;
};


EINT64VAL : ESINT64VAL;      // These have same type and can't cause problems...
EINT64VAL : EUINT64VAL {
  if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
    ThrowException("Value too large for type!");
  $$ = (int64_t)$1;
};

// Operations that are notably excluded from this list include: 
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
ArithmeticOps: ADD | SUB | MUL | DIV | REM;
LogicalOps   : AND | OR | XOR;
SetCondOps   : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
BinaryOps : ArithmeticOps | LogicalOps | SetCondOps;

ShiftOps  : SHL | SHR;

// These are some types that allow classification if we only want a particular 
// thing... for example, only a signed, unsigned, or integral type.
SIntType :  LONG |  INT |  SHORT | SBYTE;
UIntType : ULONG | UINT | USHORT | UBYTE;
IntType  : SIntType | UIntType;
FPType   : FLOAT | DOUBLE;

// OptAssign - Value producing statements have an optional assignment component
OptAssign : Name '=' {
    $$ = $1;
  }
  | /*empty*/ { 
    $$ = 0; 
  };

OptLinkage : INTERNAL  { $$ = GlobalValue::InternalLinkage; } |
             LINKONCE  { $$ = GlobalValue::LinkOnceLinkage; } |
             WEAK      { $$ = GlobalValue::WeakLinkage; } |
             APPENDING { $$ = GlobalValue::AppendingLinkage; } |
             /*empty*/ { $$ = GlobalValue::ExternalLinkage; };

//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (function returning void for example).  To have
// access to it, a user must explicitly use TypesV.
//

// TypesV includes all of 'Types', but it also includes the void type.
TypesV    : Types    | VOID { $$ = new PATypeHolder($1); };
UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };

Types     : UpRTypes {
    if (!UpRefs.empty())
      ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
    $$ = $1;
  };


// Derived types are added later...
//
PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT ;
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL;
UpRTypes : OPAQUE {
    $$ = new PATypeHolder(OpaqueType::get());
  }
  | PrimType {
    $$ = new PATypeHolder($1);
  };
UpRTypes : SymbolicValueRef {            // Named types are also simple types...
  $$ = new PATypeHolder(getTypeVal($1));
};

// Include derived types in the Types production.
//
UpRTypes : '\\' EUINT64VAL {                   // Type UpReference
    if ($2 > (uint64_t)~0U) ThrowException("Value out of range!");
    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
    UpRefs.push_back(UpRefRecord((unsigned)$2, OT));  // Add to vector...
    $$ = new PATypeHolder(OT);
    UR_OUT("New Upreference!\n");
  }
  | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type?
    std::vector<const Type*> Params;
    mapto($3->begin(), $3->end(), std::back_inserter(Params), 
	  std::mem_fun_ref(&PATypeHolder::get));
    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
    if (isVarArg) Params.pop_back();

    $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
    delete $3;      // Delete the argument list
    delete $1;      // Delete the return type handle
  }
  | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
    $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
    delete $4;
  }
  | '{' TypeListI '}' {                        // Structure type?
    std::vector<const Type*> Elements;
    mapto($2->begin(), $2->end(), std::back_inserter(Elements), 
	std::mem_fun_ref(&PATypeHolder::get));

    $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
    delete $2;
  }
  | '{' '}' {                                  // Empty structure type?
    $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
  }
  | UpRTypes '*' {                             // Pointer type?
    $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
    delete $1;
  };

// TypeList - Used for struct declarations and as a basis for function type 
// declaration type lists
//
TypeListI : UpRTypes {
    $$ = new std::list<PATypeHolder>();
    $$->push_back(*$1); delete $1;
  }
  | TypeListI ',' UpRTypes {
    ($$=$1)->push_back(*$3); delete $3;
  };

// ArgTypeList - List of types for a function type declaration...
ArgTypeListI : TypeListI
  | TypeListI ',' DOTDOTDOT {
    ($$=$1)->push_back(Type::VoidTy);
  }
  | DOTDOTDOT {
    ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy);
  }
  | /*empty*/ {
    $$ = new std::list<PATypeHolder>();
  };

// ConstVal - The various declarations that go into the constant pool.  This
// production is used ONLY to represent constants that show up AFTER a 'const',
// 'constant' or 'global' token at global scope.  Constants that can be inlined
// into other expressions (such as integers and constexprs) are handled by the
// ResolvedVal, ValueRef and ConstValueRef productions.
//
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
    if (ATy == 0)
      ThrowException("Cannot make array constant with type: '" + 
                     (*$1)->getDescription() + "'!");
    const Type *ETy = ATy->getElementType();
    int NumElements = ATy->getNumElements();

    // Verify that we have the correct size...
    if (NumElements != -1 && NumElements != (int)$3->size())
      ThrowException("Type mismatch: constant sized array initialized with " +
		     utostr($3->size()) +  " arguments, but has size of " + 
		     itostr(NumElements) + "!");

    // Verify all elements are correct type!
    for (unsigned i = 0; i < $3->size(); i++) {
      if (ETy != (*$3)[i]->getType())
	ThrowException("Element #" + utostr(i) + " is not of type '" + 
		       ETy->getDescription() +"' as required!\nIt is of type '"+
		       (*$3)[i]->getType()->getDescription() + "'.");
    }

    $$ = ConstantArray::get(ATy, *$3);
    delete $1; delete $3;
  }
  | Types '[' ']' {
    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
    if (ATy == 0)
      ThrowException("Cannot make array constant with type: '" + 
                     (*$1)->getDescription() + "'!");

    int NumElements = ATy->getNumElements();
    if (NumElements != -1 && NumElements != 0) 
      ThrowException("Type mismatch: constant sized array initialized with 0"
		     " arguments, but has size of " + itostr(NumElements) +"!");
    $$ = ConstantArray::get(ATy, std::vector<Constant*>());
    delete $1;
  }
  | Types 'c' STRINGCONSTANT {
    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
    if (ATy == 0)
      ThrowException("Cannot make array constant with type: '" + 
                     (*$1)->getDescription() + "'!");

    int NumElements = ATy->getNumElements();
    const Type *ETy = ATy->getElementType();
    char *EndStr = UnEscapeLexed($3, true);
    if (NumElements != -1 && NumElements != (EndStr-$3))
      ThrowException("Can't build string constant of size " + 
		     itostr((int)(EndStr-$3)) +
		     " when array has size " + itostr(NumElements) + "!");
    std::vector<Constant*> Vals;
    if (ETy == Type::SByteTy) {
      for (char *C = $3; C != EndStr; ++C)
	Vals.push_back(ConstantSInt::get(ETy, *C));
    } else if (ETy == Type::UByteTy) {
      for (char *C = $3; C != EndStr; ++C)
	Vals.push_back(ConstantUInt::get(ETy, (unsigned char)*C));
    } else {
      free($3);
      ThrowException("Cannot build string arrays of non byte sized elements!");
    }
    free($3);
    $$ = ConstantArray::get(ATy, Vals);
    delete $1;
  }
  | Types '{' ConstVector '}' {
    const StructType *STy = dyn_cast<StructType>($1->get());
    if (STy == 0)
      ThrowException("Cannot make struct constant with type: '" + 
                     (*$1)->getDescription() + "'!");

    if ($3->size() != STy->getNumContainedTypes())
      ThrowException("Illegal number of initializers for structure type!");

    // Check to ensure that constants are compatible with the type initializer!
    for (unsigned i = 0, e = $3->size(); i != e; ++i)
      if ((*$3)[i]->getType() != STy->getElementType(i))
        ThrowException("Expected type '" +
                       STy->getElementType(i)->getDescription() +
                       "' for element #" + utostr(i) +
                       " of structure initializer!");

    $$ = ConstantStruct::get(STy, *$3);
    delete $1; delete $3;
  }
  | Types '{' '}' {
    const StructType *STy = dyn_cast<StructType>($1->get());
    if (STy == 0)
      ThrowException("Cannot make struct constant with type: '" + 
                     (*$1)->getDescription() + "'!");

    if (STy->getNumContainedTypes() != 0)
      ThrowException("Illegal number of initializers for structure type!");

    $$ = ConstantStruct::get(STy, std::vector<Constant*>());
    delete $1;
  }
  | Types NULL_TOK {
    const PointerType *PTy = dyn_cast<PointerType>($1->get());
    if (PTy == 0)
      ThrowException("Cannot make null pointer constant with type: '" + 
                     (*$1)->getDescription() + "'!");

    $$ = ConstantPointerNull::get(PTy);
    delete $1;
  }
  | Types SymbolicValueRef {
    const PointerType *Ty = dyn_cast<PointerType>($1->get());
    if (Ty == 0)
      ThrowException("Global const reference must be a pointer type!");

    // ConstExprs can exist in the body of a function, thus creating
    // ConstantPointerRefs whenever they refer to a variable.  Because we are in
    // the context of a function, getValNonImprovising will search the functions
    // symbol table instead of the module symbol table for the global symbol,
    // which throws things all off.  To get around this, we just tell
    // getValNonImprovising that we are at global scope here.
    //
    Function *SavedCurFn = CurFun.CurrentFunction;
    CurFun.CurrentFunction = 0;

    Value *V = getValNonImprovising(Ty, $2);

    CurFun.CurrentFunction = SavedCurFn;

    // If this is an initializer for a constant pointer, which is referencing a
    // (currently) undefined variable, create a stub now that shall be replaced
    // in the future with the right type of variable.
    //
    if (V == 0) {
      assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
      const PointerType *PT = cast<PointerType>(Ty);

      // First check to see if the forward references value is already created!
      PerModuleInfo::GlobalRefsType::iterator I =
	CurModule.GlobalRefs.find(std::make_pair(PT, $2));
    
      if (I != CurModule.GlobalRefs.end()) {
	V = I->second;             // Placeholder already exists, use it...
        $2.destroy();
      } else {
	// Create a placeholder for the global variable reference...
	GlobalVariable *GV = new GlobalVariable(PT->getElementType(),
                                                false,
                                                GlobalValue::ExternalLinkage);
	// Keep track of the fact that we have a forward ref to recycle it
	CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));

	// Must temporarily push this value into the module table...
	CurModule.CurrentModule->getGlobalList().push_back(GV);
	V = GV;
      }
    }

    GlobalValue *GV = cast<GlobalValue>(V);
    $$ = ConstantPointerRef::get(GV);
    delete $1;            // Free the type handle
  }
  | Types ConstExpr {
    if ($1->get() != $2->getType())
      ThrowException("Mismatched types for constant expression!");
    $$ = $2;
    delete $1;
  }
  | Types ZEROINITIALIZER {
    $$ = Constant::getNullValue($1->get());
    delete $1;
  };

ConstVal : SIntType EINT64VAL {      // integral constants
    if (!ConstantSInt::isValueValidForType($1, $2))
      ThrowException("Constant value doesn't fit in type!");
    $$ = ConstantSInt::get($1, $2);
  }
  | UIntType EUINT64VAL {            // integral constants
    if (!ConstantUInt::isValueValidForType($1, $2))
      ThrowException("Constant value doesn't fit in type!");
    $$ = ConstantUInt::get($1, $2);
  }
  | BOOL TRUE {                      // Boolean constants
    $$ = ConstantBool::True;
  }
  | BOOL FALSE {                     // Boolean constants
    $$ = ConstantBool::False;
  }
  | FPType FPVAL {                   // Float & Double constants
    $$ = ConstantFP::get($1, $2);
  };


ConstExpr: CAST '(' ConstVal TO Types ')' {
    if (!$3->getType()->isFirstClassType())
      ThrowException("cast constant expression from a non-primitive type: '" +
                     $3->getType()->getDescription() + "'!");
    if (!$5->get()->isFirstClassType())
      ThrowException("cast constant expression to a non-primitive type: '" +
                     $5->get()->getDescription() + "'!");
    $$ = ConstantExpr::getCast($3, $5->get());
    delete $5;
  }
  | GETELEMENTPTR '(' ConstVal IndexList ')' {
    if (!isa<PointerType>($3->getType()))
      ThrowException("GetElementPtr requires a pointer operand!");

    const Type *IdxTy =
      GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
    if (!IdxTy)
      ThrowException("Index list invalid for constant getelementptr!");

    std::vector<Constant*> IdxVec;
    for (unsigned i = 0, e = $4->size(); i != e; ++i)
      if (Constant *C = dyn_cast<Constant>((*$4)[i]))
        IdxVec.push_back(C);
      else
        ThrowException("Indices to constant getelementptr must be constants!");

    delete $4;

    $$ = ConstantExpr::getGetElementPtr($3, IdxVec);
  }
  | BinaryOps '(' ConstVal ',' ConstVal ')' {
    if ($3->getType() != $5->getType())
      ThrowException("Binary operator types must match!");
    $$ = ConstantExpr::get($1, $3, $5);
  }
  | ShiftOps '(' ConstVal ',' ConstVal ')' {
    if ($5->getType() != Type::UByteTy)
      ThrowException("Shift count for shift constant must be unsigned byte!");
    if (!$3->getType()->isInteger())
      ThrowException("Shift constant expression requires integer operand!");
    $$ = ConstantExpr::get($1, $3, $5);
  };


// ConstVector - A list of comma separated constants.
ConstVector : ConstVector ',' ConstVal {
    ($$ = $1)->push_back($3);
  }
  | ConstVal {
    $$ = new std::vector<Constant*>();
    $$->push_back($1);
  };


// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };


//===----------------------------------------------------------------------===//
//                             Rules to match Modules
//===----------------------------------------------------------------------===//

// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module : FunctionList {
  $$ = ParserResult = $1;
  CurModule.ModuleDone();
};

// FunctionList - A list of functions, preceeded by a constant pool.
//
FunctionList : FunctionList Function {
    $$ = $1;
    assert($2->getParent() == 0 && "Function already in module!");
    $1->getFunctionList().push_back($2);
    CurFun.FunctionDone();
  } 
  | FunctionList FunctionProto {
    $$ = $1;
  }
  | FunctionList IMPLEMENTATION {
    $$ = $1;
  }
  | ConstPool {
    $$ = CurModule.CurrentModule;
    // Resolve circular types before we parse the body of the module
    ResolveTypes(CurModule.LateResolveTypes);
  };

// ConstPool - Constants with optional names assigned to them.
ConstPool : ConstPool OptAssign CONST ConstVal { 
    if (!setValueName($4, $2))
      InsertValue($4);
  }
  | ConstPool OptAssign TYPE TypesV {  // Types can be defined in the const pool
    // Eagerly resolve types.  This is not an optimization, this is a
    // requirement that is due to the fact that we could have this:
    //
    // %list = type { %list * }
    // %list = type { %list * }    ; repeated type decl
    //
    // If types are not resolved eagerly, then the two types will not be
    // determined to be the same type!
    //
    ResolveTypeTo($2, $4->get());

    // TODO: FIXME when Type are not const
    if (!setValueName(const_cast<Type*>($4->get()), $2)) {
      // If this is not a redefinition of a type...
      if (!$2) {
        InsertType($4->get(),
                   inFunctionScope() ? CurFun.Types : CurModule.Types);
      }
    }

    delete $4;
  }
  | ConstPool FunctionProto {       // Function prototypes can be in const pool
  }
  | ConstPool OptAssign OptLinkage GlobalType ConstVal {
    const Type *Ty = $5->getType();
    // Global declarations appear in Constant Pool
    Constant *Initializer = $5;
    if (Initializer == 0)
      ThrowException("Global value initializer is not a constant!");
    
    GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer);
    if (!setValueName(GV, $2)) {   // If not redefining...
      CurModule.CurrentModule->getGlobalList().push_back(GV);
      int Slot = InsertValue(GV, CurModule.Values);

      if (Slot != -1) {
	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
      } else {
	CurModule.DeclareNewGlobalValue(GV, ValID::create(
				                (char*)GV->getName().c_str()));
      }
    }
  }
  | ConstPool OptAssign EXTERNAL GlobalType Types {
    const Type *Ty = *$5;
    // Global declarations appear in Constant Pool
    GlobalVariable *GV = new GlobalVariable(Ty,$4,GlobalValue::ExternalLinkage);
    if (!setValueName(GV, $2)) {   // If not redefining...
      CurModule.CurrentModule->getGlobalList().push_back(GV);
      int Slot = InsertValue(GV, CurModule.Values);

      if (Slot != -1) {
	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
      } else {
	assert(GV->hasName() && "Not named and not numbered!?");
	CurModule.DeclareNewGlobalValue(GV, ValID::create(
				                (char*)GV->getName().c_str()));
      }
    }
    delete $5;
  }
  | ConstPool TARGET TargetDefinition { 
  }
  | /* empty: end of list */ { 
  };



BigOrLittle : BIG    { $$ = Module::BigEndian; };
BigOrLittle : LITTLE { $$ = Module::LittleEndian; };

TargetDefinition : ENDIAN '=' BigOrLittle {
    CurModule.CurrentModule->setEndianness($3);
  }
  | POINTERSIZE '=' EUINT64VAL {
    if ($3 == 32)
      CurModule.CurrentModule->setPointerSize(Module::Pointer32);
    else if ($3 == 64)
      CurModule.CurrentModule->setPointerSize(Module::Pointer64);
    else
      ThrowException("Invalid pointer size: '" + utostr($3) + "'!");
  };


//===----------------------------------------------------------------------===//
//                       Rules to match Function Headers
//===----------------------------------------------------------------------===//

Name : VAR_ID | STRINGCONSTANT;
OptName : Name | /*empty*/ { $$ = 0; };

ArgVal : Types OptName {
  if (*$1 == Type::VoidTy)
    ThrowException("void typed arguments are invalid!");
  $$ = new std::pair<PATypeHolder*, char*>($1, $2);
};

ArgListH : ArgListH ',' ArgVal {
    $$ = $1;
    $1->push_back(*$3);
    delete $3;
  }
  | ArgVal {
    $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
    $$->push_back(*$1);
    delete $1;
  };

ArgList : ArgListH {
    $$ = $1;
  }
  | ArgListH ',' DOTDOTDOT {
    $$ = $1;
    $$->push_back(std::pair<PATypeHolder*,
                            char*>(new PATypeHolder(Type::VoidTy), 0));
  }
  | DOTDOTDOT {
    $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
    $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0));
  }
  | /* empty */ {
    $$ = 0;
  };

FunctionHeaderH : TypesV Name '(' ArgList ')' {
  UnEscapeLexed($2);
  std::string FunctionName($2);
  
  if (!(*$1)->isFirstClassType() && *$1 != Type::VoidTy)
    ThrowException("LLVM functions cannot return aggregate types!");

  std::vector<const Type*> ParamTypeList;
  if ($4) {   // If there are arguments...
    for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $4->begin();
         I != $4->end(); ++I)
      ParamTypeList.push_back(I->first->get());
  }

  bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
  if (isVarArg) ParamTypeList.pop_back();

  const FunctionType *FT = FunctionType::get(*$1, ParamTypeList, isVarArg);
  const PointerType *PFT = PointerType::get(FT);
  delete $1;

  Function *Fn = 0;
  // Is the function already in symtab?
  if ((Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
    // Yes it is.  If this is the case, either we need to be a forward decl,
    // or it needs to be.
    if (!CurFun.isDeclare && !Fn->isExternal())
      ThrowException("Redefinition of function '" + FunctionName + "'!");
    
    // If we found a preexisting function prototype, remove it from the
    // module, so that we don't get spurious conflicts with global & local
    // variables.
    //
    CurModule.CurrentModule->getFunctionList().remove(Fn);

    // Make sure to strip off any argument names so we can't get conflicts...
    for (Function::aiterator AI = Fn->abegin(), AE = Fn->aend(); AI != AE; ++AI)
      AI->setName("");

  } else  {  // Not already defined?
    Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName);
    InsertValue(Fn, CurModule.Values);
    CurModule.DeclareNewGlobalValue(Fn, ValID::create($2));
  }
  free($2);  // Free strdup'd memory!

  CurFun.FunctionStart(Fn);

  // Add all of the arguments we parsed to the function...
  if ($4) {                     // Is null if empty...
    if (isVarArg) {  // Nuke the last entry
      assert($4->back().first->get() == Type::VoidTy && $4->back().second == 0&&
             "Not a varargs marker!");
      delete $4->back().first;
      $4->pop_back();  // Delete the last entry
    }
    Function::aiterator ArgIt = Fn->abegin();
    for (std::vector<std::pair<PATypeHolder*, char*> >::iterator I =$4->begin();
         I != $4->end(); ++I, ++ArgIt) {
      delete I->first;                          // Delete the typeholder...

      if (setValueName(ArgIt, I->second))       // Insert arg into symtab...
        assert(0 && "No arg redef allowed!");
      
      InsertValue(ArgIt);
    }

    delete $4;                     // We're now done with the argument list
  }
};

BEGIN : BEGINTOK | '{';                // Allow BEGIN or '{' to start a function

FunctionHeader : OptLinkage FunctionHeaderH BEGIN {
  $$ = CurFun.CurrentFunction;

  // Make sure that we keep track of the linkage type even if there was a
  // previous "declare".
  $$->setLinkage($1);

  // Resolve circular types before we parse the body of the function.
  ResolveTypes(CurFun.LateResolveTypes);
};

END : ENDTOK | '}';                    // Allow end of '}' to end a function

Function : BasicBlockList END {
  $$ = $1;
};

FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH {
  $$ = CurFun.CurrentFunction;
  assert($$->getParent() == 0 && "Function already in module!");
  CurModule.CurrentModule->getFunctionList().push_back($$);
  CurFun.FunctionDone();
};

//===----------------------------------------------------------------------===//
//                        Rules to match Basic Blocks
//===----------------------------------------------------------------------===//

ConstValueRef : ESINT64VAL {    // A reference to a direct constant
    $$ = ValID::create($1);
  }
  | EUINT64VAL {
    $$ = ValID::create($1);
  }
  | FPVAL {                     // Perhaps it's an FP constant?
    $$ = ValID::create($1);
  }
  | TRUE {
    $$ = ValID::create(ConstantBool::True);
  } 
  | FALSE {
    $$ = ValID::create(ConstantBool::False);
  }
  | NULL_TOK {
    $$ = ValID::createNull();
  }
  | ConstExpr {
    $$ = ValID::create($1);
  };

// SymbolicValueRef - Reference to one of two ways of symbolically refering to
// another value.
//
SymbolicValueRef : INTVAL {  // Is it an integer reference...?
    $$ = ValID::create($1);
  }
  | Name {                   // Is it a named reference...?
    $$ = ValID::create($1);
  };

// ValueRef - A reference to a definition... either constant or symbolic
ValueRef : SymbolicValueRef | ConstValueRef;


// ResolvedVal - a <type> <value> pair.  This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal : Types ValueRef {
    $$ = getVal(*$1, $2); delete $1;
  };

BasicBlockList : BasicBlockList BasicBlock {
    ($$ = $1)->getBasicBlockList().push_back($2);
  }
  | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
    ($$ = $1)->getBasicBlockList().push_back($2);
  };


// Basic blocks are terminated by branching instructions: 
// br, br/cc, switch, ret
//
BasicBlock : InstructionList OptAssign BBTerminatorInst  {
    if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); }
    InsertValue($3);

    $1->getInstList().push_back($3);
    InsertValue($1);
    $$ = $1;
  }
  | LABELSTR InstructionList OptAssign BBTerminatorInst  {
    if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); }
    InsertValue($4);

    $2->getInstList().push_back($4);
    if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); }

    InsertValue($2);
    $$ = $2;
  };

InstructionList : InstructionList Inst {
    $1->getInstList().push_back($2);
    $$ = $1;
  }
  | /* empty */ {
    $$ = CurBB = new BasicBlock();
  };

BBTerminatorInst : RET ResolvedVal {              // Return with a result...
    $$ = new ReturnInst($2);
  }
  | RET VOID {                                       // Return with no result...
    $$ = new ReturnInst();
  }
  | BR LABEL ValueRef {                         // Unconditional Branch...
    $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $3)));
  }                                                  // Conditional Branch...
  | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
    $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $6)), 
			cast<BasicBlock>(getVal(Type::LabelTy, $9)),
			getVal(Type::BoolTy, $3));
  }
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
    SwitchInst *S = new SwitchInst(getVal($2, $3), 
                                   cast<BasicBlock>(getVal(Type::LabelTy, $6)));
    $$ = S;

    std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
      E = $8->end();
    for (; I != E; ++I)
      S->addCase(I->first, I->second);
  }
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
    SwitchInst *S = new SwitchInst(getVal($2, $3), 
                                   cast<BasicBlock>(getVal(Type::LabelTy, $6)));
    $$ = S;
  }
  | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal 
    UNWIND ResolvedVal {
    const PointerType *PFTy;
    const FunctionType *Ty;

    if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
      // Pull out the types of all of the arguments...
      std::vector<const Type*> ParamTypes;
      if ($5) {
        for (std::vector<Value*>::iterator I = $5->begin(), E = $5->end();
             I != E; ++I)
          ParamTypes.push_back((*I)->getType());
      }

      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
      if (isVarArg) ParamTypes.pop_back();

      Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
      PFTy = PointerType::get(Ty);
    }

    Value *V = getVal(PFTy, $3);   // Get the function we're calling...

    BasicBlock *Normal = dyn_cast<BasicBlock>($8);
    BasicBlock *Except = dyn_cast<BasicBlock>($10);

    if (Normal == 0 || Except == 0)
      ThrowException("Invoke instruction without label destinations!");

    // Create the call node...
    if (!$5) {                                   // Has no arguments?
      $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
    } else {                                     // Has arguments?
      // Loop through FunctionType's arguments and ensure they are specified
      // correctly!
      //
      FunctionType::param_iterator I = Ty->param_begin();
      FunctionType::param_iterator E = Ty->param_end();
      std::vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();

      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
	if ((*ArgI)->getType() != *I)
	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
			 (*I)->getDescription() + "'!");

      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
	ThrowException("Invalid number of parameters detected!");

      $$ = new InvokeInst(V, Normal, Except, *$5);
    }
    delete $2;
    delete $5;
  }
  | UNWIND {
    $$ = new UnwindInst();
  };



JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
    $$ = $1;
    Constant *V = cast<Constant>(getValNonImprovising($2, $3));
    if (V == 0)
      ThrowException("May only switch on a constant pool value!");

    $$->push_back(std::make_pair(V, cast<BasicBlock>(getVal($5, $6))));
  }
  | IntType ConstValueRef ',' LABEL ValueRef {
    $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
    Constant *V = cast<Constant>(getValNonImprovising($1, $2));

    if (V == 0)
      ThrowException("May only switch on a constant pool value!");

    $$->push_back(std::make_pair(V, cast<BasicBlock>(getVal($4, $5))));
  };

Inst : OptAssign InstVal {
  // Is this definition named?? if so, assign the name...
  if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); }
  InsertValue($2);
  $$ = $2;
};

PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
    $$ = new std::list<std::pair<Value*, BasicBlock*> >();
    $$->push_back(std::make_pair(getVal(*$1, $3), 
                                 cast<BasicBlock>(getVal(Type::LabelTy, $5))));
    delete $1;
  }
  | PHIList ',' '[' ValueRef ',' ValueRef ']' {
    $$ = $1;
    $1->push_back(std::make_pair(getVal($1->front().first->getType(), $4),
                                 cast<BasicBlock>(getVal(Type::LabelTy, $6))));
  };


ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
    $$ = new std::vector<Value*>();
    $$->push_back($1);
  }
  | ValueRefList ',' ResolvedVal {
    $$ = $1;
    $1->push_back($3);
  };

// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };

InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
    if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint())
      ThrowException("Arithmetic operator requires integer or FP operands!");
    $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
    if ($$ == 0)
      ThrowException("binary operator returned null!");
    delete $2;
  }
  | LogicalOps Types ValueRef ',' ValueRef {
    if (!(*$2)->isIntegral())
      ThrowException("Logical operator requires integral operands!");
    $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
    if ($$ == 0)
      ThrowException("binary operator returned null!");
    delete $2;
  }
  | SetCondOps Types ValueRef ',' ValueRef {
    $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
    if ($$ == 0)
      ThrowException("binary operator returned null!");
    delete $2;
  }
  | NOT ResolvedVal {
    std::cerr << "WARNING: Use of eliminated 'not' instruction:"
              << " Replacing with 'xor'.\n";

    Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
    if (Ones == 0)
      ThrowException("Expected integral type for not instruction!");

    $$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
    if ($$ == 0)
      ThrowException("Could not create a xor instruction!");
  }
  | ShiftOps ResolvedVal ',' ResolvedVal {
    if ($4->getType() != Type::UByteTy)
      ThrowException("Shift amount must be ubyte!");
    if (!$2->getType()->isInteger())
      ThrowException("Shift constant expression requires integer operand!");
    $$ = new ShiftInst($1, $2, $4);
  }
  | CAST ResolvedVal TO Types {
    if (!$4->get()->isFirstClassType())
      ThrowException("cast instruction to a non-primitive type: '" +
                     $4->get()->getDescription() + "'!");
    $$ = new CastInst($2, *$4);
    delete $4;
  }
  | VA_ARG ResolvedVal ',' Types {
    // FIXME: This is emulation code for an obsolete syntax.  This should be
    // removed at some point.
    if (!ObsoleteVarArgs) {
      std::cerr << "WARNING: this file uses obsolete features.  "
                << "Assemble and disassemble to update it.\n";
      ObsoleteVarArgs = true;
    }

    // First, load the valist...
    Instruction *CurVAList = new LoadInst($2, "");
    CurBB->getInstList().push_back(CurVAList);

    // Emit the vaarg instruction.
    $$ = new VAArgInst(CurVAList, *$4);
    
    // Now we must advance the pointer and update it in memory.
    Instruction *TheVANext = new VANextInst(CurVAList, *$4);
    CurBB->getInstList().push_back(TheVANext);

    CurBB->getInstList().push_back(new StoreInst(TheVANext, $2));
    delete $4;
  }
  | VAARG ResolvedVal ',' Types {
    $$ = new VAArgInst($2, *$4);
    delete $4;
  }
  | VANEXT ResolvedVal ',' Types {
    $$ = new VANextInst($2, *$4);
    delete $4;
  }
  | PHI_TOK PHIList {
    const Type *Ty = $2->front().first->getType();
    if (!Ty->isFirstClassType())
      ThrowException("PHI node operands must be of first class type!");
    $$ = new PHINode(Ty);
    $$->op_reserve($2->size()*2);
    while ($2->begin() != $2->end()) {
      if ($2->front().first->getType() != Ty) 
	ThrowException("All elements of a PHI node must be of the same type!");
      cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
      $2->pop_front();
    }
    delete $2;  // Free the list...
  } 
  | CALL TypesV ValueRef '(' ValueRefListE ')' {
    const PointerType *PFTy;
    const FunctionType *Ty;

    if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
      // Pull out the types of all of the arguments...
      std::vector<const Type*> ParamTypes;
      if ($5) {
        for (std::vector<Value*>::iterator I = $5->begin(), E = $5->end();
             I != E; ++I)
          ParamTypes.push_back((*I)->getType());
      }

      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
      if (isVarArg) ParamTypes.pop_back();

      Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
      PFTy = PointerType::get(Ty);
    }

    Value *V = getVal(PFTy, $3);   // Get the function we're calling...

    // Create the call node...
    if (!$5) {                                   // Has no arguments?
      // Make sure no arguments is a good thing!
      if (Ty->getNumParams() != 0)
        ThrowException("No arguments passed to a function that "
                       "expects arguments!");

      $$ = new CallInst(V, std::vector<Value*>());
    } else {                                     // Has arguments?
      // Loop through FunctionType's arguments and ensure they are specified
      // correctly!
      //
      FunctionType::param_iterator I = Ty->param_begin();
      FunctionType::param_iterator E = Ty->param_end();
      std::vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();

      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
	if ((*ArgI)->getType() != *I)
	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
			 (*I)->getDescription() + "'!");

      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
	ThrowException("Invalid number of parameters detected!");

      $$ = new CallInst(V, *$5);
    }
    delete $2;
    delete $5;
  }
  | MemoryInst {
    $$ = $1;
  };


// IndexList - List of indices for GEP based instructions...
IndexList : ',' ValueRefList { 
    $$ = $2; 
  } | /* empty */ { 
    $$ = new std::vector<Value*>(); 
  };

OptVolatile : VOLATILE {
    $$ = true;
  }
  | /* empty */ {
    $$ = false;
  };


MemoryInst : MALLOC Types {
    $$ = new MallocInst(*$2);
    delete $2;
  }
  | MALLOC Types ',' UINT ValueRef {
    $$ = new MallocInst(*$2, getVal($4, $5));
    delete $2;
  }
  | ALLOCA Types {
    $$ = new AllocaInst(*$2);
    delete $2;
  }
  | ALLOCA Types ',' UINT ValueRef {
    $$ = new AllocaInst(*$2, getVal($4, $5));
    delete $2;
  }
  | FREE ResolvedVal {
    if (!isa<PointerType>($2->getType()))
      ThrowException("Trying to free nonpointer type " + 
                     $2->getType()->getDescription() + "!");
    $$ = new FreeInst($2);
  }

  | OptVolatile LOAD Types ValueRef {
    if (!isa<PointerType>($3->get()))
      ThrowException("Can't load from nonpointer type: " +
		     (*$3)->getDescription());
    $$ = new LoadInst(getVal(*$3, $4), "", $1);
    delete $3;
  }
  | OptVolatile STORE ResolvedVal ',' Types ValueRef {
    const PointerType *PT = dyn_cast<PointerType>($5->get());
    if (!PT)
      ThrowException("Can't store to a nonpointer type: " +
                     (*$5)->getDescription());
    const Type *ElTy = PT->getElementType();
    if (ElTy != $3->getType())
      ThrowException("Can't store '" + $3->getType()->getDescription() +
                     "' into space of type '" + ElTy->getDescription() + "'!");

    $$ = new StoreInst($3, getVal(*$5, $6), $1);
    delete $5;
  }
  | GETELEMENTPTR Types ValueRef IndexList {
    if (!isa<PointerType>($2->get()))
      ThrowException("getelementptr insn requires pointer operand!");
    if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
      ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!");
    $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
    delete $2; delete $4;
  };


%%
int yyerror(const char *ErrorMsg) {
  std::string where 
    = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
                  + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
  std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading ";
  if (yychar == YYEMPTY)
    errMsg += "end-of-file.";
  else
    errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'";
  ThrowException(errMsg);
  return 0;
}