aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Bitcode/Writer/ValueEnumerator.cpp
blob: 75a8c6d6d301cb3026ae19f19810e776d07b3cb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ValueEnumerator class.
//
//===----------------------------------------------------------------------===//

#include "ValueEnumerator.h"
#include "llvm/Module.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ValueSymbolTable.h"
using namespace llvm;

/// ValueEnumerator - Enumerate module-level information.
ValueEnumerator::ValueEnumerator(const Module *M) {
  // Enumerate the global variables.
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    EnumerateValue(I);

  // Enumerate the functions.
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
    EnumerateValue(I);

  // Enumerate the global variable initializers.
  for (Module::const_global_iterator I = M->global_begin(),
         E = M->global_end(); I != E; ++I)
    if (I->hasInitializer())
      EnumerateValue(I->getInitializer());

  // FIXME: Implement the 'string constant' optimization.

  // Enumerate types used by the type symbol table.
  EnumerateTypeSymbolTable(M->getTypeSymbolTable());

  // Insert constants that are named at module level into the slot pool so that
  // the module symbol table can refer to them...
  EnumerateValueSymbolTable(M->getValueSymbolTable());
  
  // Enumerate types used by function bodies.
  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 
             OI != E; ++OI)
          EnumerateType((*OI)->getType());
        EnumerateType(I->getType());
      }
  }
    
  
  // FIXME: std::partition the type and value tables so that first-class types
  // come earlier than aggregates.
  
  // FIXME: Sort type/value tables by frequency.
}

/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
/// table.
void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
       TI != TE; ++TI)
    EnumerateType(TI->second);
}

/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
/// table into the values table.
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 
       VI != VE; ++VI)
    EnumerateValue(VI->getValue());
}

void ValueEnumerator::EnumerateValue(const Value *V) {
  assert(V->getType() != Type::VoidTy && "Can't insert void values!");
  
  // Check to see if it's already in!
  unsigned &ValueID = ValueMap[V];
  if (ValueID) {
    // Increment use count.
    Values[ValueID-1].second++;
    return;
  }
  
  // Add the value.
  Values.push_back(std::make_pair(V, 1U));
  ValueID = Values.size();

  if (const Constant *C = dyn_cast<Constant>(V)) {
    if (isa<GlobalValue>(C)) {
      // Initializers for globals are handled explicitly elsewhere.
    } else {
      // This makes sure that if a constant has uses (for example an array of
      // const ints), that they are inserted also.
      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
           I != E; ++I)
        EnumerateValue(*I);
    }
  }

  EnumerateType(V->getType());
}


void ValueEnumerator::EnumerateType(const Type *Ty) {
  unsigned &TypeID = TypeMap[Ty];
  
  if (TypeID) {
    // If we've already seen this type, just increase its occurrence count.
    Types[TypeID-1].second++;
    return;
  }
  
  // First time we saw this type, add it.
  Types.push_back(std::make_pair(Ty, 1U));
  TypeID = Types.size();
  
  // Enumerate subtypes.
  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
       I != E; ++I)
    EnumerateType(*I);
}



#if 0

void SlotCalculator::incorporateFunction(const Function *F) {
  SC_DEBUG("begin processFunction!\n");
  
  // Iterate over function arguments, adding them to the value table...
  for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
      I != E; ++I)
    CreateFunctionValueSlot(I);
  
  SC_DEBUG("Inserting Instructions:\n");
  
  // Add all of the instructions to the type planes...
  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
    CreateFunctionValueSlot(BB);
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
      if (I->getType() != Type::VoidTy)
        CreateFunctionValueSlot(I);
    }
  }
  
  SC_DEBUG("end processFunction!\n");
}

void SlotCalculator::purgeFunction() {
  SC_DEBUG("begin purgeFunction!\n");
  
  // Next, remove values from existing type planes
  for (DenseMap<unsigned,unsigned,
          ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(),
       E = ModuleLevel.end(); I != E; ++I) {
    unsigned PlaneNo = I->first;
    unsigned ModuleLev = I->second;
    
    // Pop all function-local values in this type-plane off of Table.
    TypePlane &Plane = getPlane(PlaneNo);
    assert(ModuleLev < Plane.size() && "module levels higher than elements?");
    for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) {
      NodeMap.erase(Plane.back());       // Erase from nodemap
      Plane.pop_back();                  // Shrink plane
    }
  }

  ModuleLevel.clear();

  // Finally, remove any type planes defined by the function...
  while (Table.size() > NumModuleTypes) {
    TypePlane &Plane = Table.back();
    SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
             << Plane.size() << "\n");
    for (unsigned i = 0, e = Plane.size(); i != e; ++i)
      NodeMap.erase(Plane[i]);   // Erase from nodemap
    
    Table.pop_back();                // Nuke the plane, we don't like it.
  }
  
  SC_DEBUG("end purgeFunction!\n");
}

inline static bool hasImplicitNull(const Type* Ty) {
  return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty);
}

void SlotCalculator::CreateFunctionValueSlot(const Value *V) {
  assert(!NodeMap.count(V) && "Function-local value can't be inserted!");
  
  const Type *Ty = V->getType();
  assert(Ty != Type::VoidTy && "Can't insert void values!");
  assert(!isa<Constant>(V) && "Not a function-local value!");
  
  unsigned TyPlane = getOrCreateTypeSlot(Ty);
  if (Table.size() <= TyPlane)    // Make sure we have the type plane allocated.
    Table.resize(TyPlane+1, TypePlane());
  
  // If this is the first value noticed of this type within this function,
  // remember the module level for this type plane in ModuleLevel.  This reminds
  // us to remove the values in purgeFunction and tells us how many to remove.
  if (TyPlane < NumModuleTypes)
    ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size()));
  
  // If this is the first value to get inserted into the type plane, make sure
  // to insert the implicit null value.
  if (Table[TyPlane].empty()) {
    // Label's and opaque types can't have a null value.
    if (hasImplicitNull(Ty)) {
      Value *ZeroInitializer = Constant::getNullValue(Ty);
      
      // If we are pushing zeroinit, it will be handled below.
      if (V != ZeroInitializer) {
        Table[TyPlane].push_back(ZeroInitializer);
        NodeMap[ZeroInitializer] = 0;
      }
    }
  }
  
  // Insert node into table and NodeMap...
  NodeMap[V] = Table[TyPlane].size();
  Table[TyPlane].push_back(V);
  
  SC_DEBUG("  Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
           NodeMap[V] << "\n");
}

#endif