1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
//===- ReadConst.cpp - Code to constants and constant pools ---------------===//
//
// This file implements functionality to deserialize constants and entire
// constant pools.
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
//===----------------------------------------------------------------------===//
#include "ReaderInternals.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/GlobalVariable.h"
#include <algorithm>
#include <iostream>
using std::make_pair;
using std::cerr;
const Type *BytecodeParser::parseTypeConstant(const uchar *&Buf,
const uchar *EndBuf) {
unsigned PrimType;
if (read_vbr(Buf, EndBuf, PrimType)) return failure<const Type*>(0);
const Type *Val = 0;
if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
return Val;
switch (PrimType) {
case Type::FunctionTyID: {
unsigned Typ;
if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
const Type *RetType = getType(Typ);
if (RetType == 0) return failure(Val);
unsigned NumParams;
if (read_vbr(Buf, EndBuf, NumParams)) return failure(Val);
std::vector<const Type*> Params;
while (NumParams--) {
if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
const Type *Ty = getType(Typ);
if (Ty == 0) return failure(Val);
Params.push_back(Ty);
}
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
if (isVarArg) Params.pop_back();
return FunctionType::get(RetType, Params, isVarArg);
}
case Type::ArrayTyID: {
unsigned ElTyp;
if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val);
const Type *ElementType = getType(ElTyp);
if (ElementType == 0) return failure(Val);
unsigned NumElements;
if (read_vbr(Buf, EndBuf, NumElements)) return failure(Val);
BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size="
<< NumElements << "\n");
return ArrayType::get(ElementType, NumElements);
}
case Type::StructTyID: {
unsigned Typ;
std::vector<const Type*> Elements;
if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
while (Typ) { // List is terminated by void/0 typeid
const Type *Ty = getType(Typ);
if (Ty == 0) return failure(Val);
Elements.push_back(Ty);
if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
}
return StructType::get(Elements);
}
case Type::PointerTyID: {
unsigned ElTyp;
if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val);
BCR_TRACE(5, "Pointer Type Constant #" << (ElTyp-14) << "\n");
const Type *ElementType = getType(ElTyp);
if (ElementType == 0) return failure(Val);
return PointerType::get(ElementType);
}
case Type::OpaqueTyID: {
return OpaqueType::get();
}
default:
cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize"
<< " primitive Type " << PrimType << "\n";
return failure(Val);
}
}
// refineAbstractType - The callback method is invoked when one of the
// elements of TypeValues becomes more concrete...
//
void BytecodeParser::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
if (OldType == NewType &&
OldType->isAbstract()) return; // Type is modified, but same
TypeValuesListTy::iterator I = find(MethodTypeValues.begin(),
MethodTypeValues.end(), OldType);
if (I == MethodTypeValues.end()) {
I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), OldType);
assert(I != ModuleTypeValues.end() &&
"Can't refine a type I don't know about!");
}
if (OldType == NewType) {
assert(!OldType->isAbstract());
I->removeUserFromConcrete();
} else {
*I = NewType; // Update to point to new, more refined type.
}
}
// parseTypeConstants - We have to use this wierd code to handle recursive
// types. We know that recursive types will only reference the current slab of
// values in the type plane, but they can forward reference types before they
// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
// this ugly problem, we pesimistically insert an opaque type for each type we
// are about to read. This means that forward references will resolve to
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
void debug_type_tables();
bool BytecodeParser::parseTypeConstants(const uchar *&Buf, const uchar *EndBuf,
TypeValuesListTy &Tab,
unsigned NumEntries) {
assert(Tab.size() == 0 && "should not have read type constants in before!");
// Insert a bunch of opaque types to be resolved later...
for (unsigned i = 0; i < NumEntries; ++i)
Tab.push_back(PATypeHandle<Type>(OpaqueType::get(), this));
// Loop through reading all of the types. Forward types will make use of the
// opaque types just inserted.
//
for (unsigned i = 0; i < NumEntries; ++i) {
const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
if (NewTy == 0) return failure(true);
BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
"' Replacing: " << OldTy << "\n");
// Don't insertValue the new type... instead we want to replace the opaque
// type with the new concrete value...
//
// Refine the abstract type to the new type. This causes all uses of the
// abstract type to use the newty. This also will cause the opaque type
// to be deleted...
//
((DerivedType*)Tab[i].get())->refineAbstractTypeTo(NewTy);
// This should have replace the old opaque type with the new type in the
// value table... or with a preexisting type that was already in the system
assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
}
BCR_TRACE(5, "Resulting types:\n");
for (unsigned i = 0; i < NumEntries; ++i) {
BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n");
}
debug_type_tables();
return false;
}
bool BytecodeParser::parseConstantValue(const uchar *&Buf, const uchar *EndBuf,
const Type *Ty, Constant *&V) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: {
unsigned Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (Val != 0 && Val != 1) return failure(true);
V = ConstantBool::get(Val == 1);
break;
}
case Type::UByteTyID: // Unsigned integer types...
case Type::UShortTyID:
case Type::UIntTyID: {
unsigned Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (!ConstantUInt::isValueValidForType(Ty, Val)) return failure(true);
V = ConstantUInt::get(Ty, Val);
break;
}
case Type::ULongTyID: {
uint64_t Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
V = ConstantUInt::get(Ty, Val);
break;
}
case Type::SByteTyID: // Unsigned integer types...
case Type::ShortTyID:
case Type::IntTyID: {
int Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (!ConstantSInt::isValueValidForType(Ty, Val)) return failure(true);
V = ConstantSInt::get(Ty, Val);
break;
}
case Type::LongTyID: {
int64_t Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
V = ConstantSInt::get(Ty, Val);
break;
}
case Type::FloatTyID: {
float F;
if (input_data(Buf, EndBuf, &F, &F+1)) return failure(true);
V = ConstantFP::get(Ty, F);
break;
}
case Type::DoubleTyID: {
double Val;
if (input_data(Buf, EndBuf, &Val, &Val+1)) return failure(true);
V = ConstantFP::get(Ty, Val);
break;
}
case Type::TypeTyID:
assert(0 && "Type constants should be handled seperately!!!");
abort();
case Type::ArrayTyID: {
const ArrayType *AT = cast<const ArrayType>(Ty);
unsigned NumElements = AT->getNumElements();
std::vector<Constant*> Elements;
while (NumElements--) { // Read all of the elements of the constant.
unsigned Slot;
if (read_vbr(Buf, EndBuf, Slot)) return failure(true);
Value *V = getValue(AT->getElementType(), Slot, false);
if (!V || !isa<Constant>(V)) return failure(true);
Elements.push_back(cast<Constant>(V));
}
V = ConstantArray::get(AT, Elements);
break;
}
case Type::StructTyID: {
const StructType *ST = cast<StructType>(Ty);
const StructType::ElementTypes &ET = ST->getElementTypes();
std::vector<Constant *> Elements;
for (unsigned i = 0; i < ET.size(); ++i) {
unsigned Slot;
if (read_vbr(Buf, EndBuf, Slot)) return failure(true);
Value *V = getValue(ET[i], Slot, false);
if (!V || !isa<Constant>(V))
return failure(true);
Elements.push_back(cast<Constant>(V));
}
V = ConstantStruct::get(ST, Elements);
break;
}
case Type::PointerTyID: {
const PointerType *PT = cast<const PointerType>(Ty);
unsigned SubClass;
if (read_vbr(Buf, EndBuf, SubClass)) return failure(true);
switch (SubClass) {
case 0: // ConstantPointerNull value...
V = ConstantPointerNull::get(PT);
break;
case 1: { // ConstantPointerRef value...
unsigned Slot;
if (read_vbr(Buf, EndBuf, Slot)) return failure(true);
BCR_TRACE(4, "CPPR: Type: '" << Ty << "' slot: " << Slot << "\n");
// Check to see if we have already read this global variable yet...
Value *Val = getValue(PT, Slot, false);
GlobalValue *GV;
if (Val) {
if (!(GV = dyn_cast<GlobalValue>(Val))) return failure(true);
BCR_TRACE(5, "Value Found in ValueTable!\n");
} else { // Nope... see if we have previously forward ref'd it
GlobalRefsType::iterator I = GlobalRefs.find(make_pair(PT, Slot));
if (I != GlobalRefs.end()) {
BCR_TRACE(5, "Previous forward ref found!\n");
GV = I->second;
} else {
BCR_TRACE(5, "Creating new forward ref variable!\n");
// Create a placeholder for the global variable reference...
GlobalVariable *GVar =
new GlobalVariable(PT->getElementType(), false, true);
// Keep track of the fact that we have a forward ref to recycle it
GlobalRefs.insert(make_pair(make_pair(PT, Slot), GVar));
// Must temporarily push this value into the module table...
TheModule->getGlobalList().push_back(GVar);
GV = GVar;
}
}
V = ConstantPointerRef::get(GV);
break;
}
default:
BCR_TRACE(5, "UNKNOWN Pointer Constant Type!\n");
return failure(true);
}
break;
}
default:
cerr << __FILE__ << ":" << __LINE__
<< ": Don't know how to deserialize constant value of type '"
<< Ty->getName() << "'\n";
return failure(true);
}
return false;
}
bool BytecodeParser::ParseConstantPool(const uchar *&Buf, const uchar *EndBuf,
ValueTable &Tab,
TypeValuesListTy &TypeTab) {
while (Buf < EndBuf) {
unsigned NumEntries, Typ;
if (read_vbr(Buf, EndBuf, NumEntries) ||
read_vbr(Buf, EndBuf, Typ)) return failure(true);
const Type *Ty = getType(Typ);
if (Ty == 0) return failure(true);
BCR_TRACE(3, "Type: '" << Ty << "' NumEntries: " << NumEntries << "\n");
if (Typ == Type::TypeTyID) {
if (parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries)) return true;
} else {
for (unsigned i = 0; i < NumEntries; ++i) {
Constant *I;
if (parseConstantValue(Buf, EndBuf, Ty, I)) return failure(true);
BCR_TRACE(4, "Read Constant: '" << I << "'\n");
if (insertValue(I, Tab) == -1) return failure(true);
}
}
}
if (Buf > EndBuf) return failure(true);
return false;
}
|