1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
//===- ReadInst.cpp - Code to read an instruction from bytecode -----------===//
//
// This file defines the mechanism to read an instruction from a bytecode
// stream.
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
//===----------------------------------------------------------------------===//
#include "ReaderInternals.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
namespace {
struct RawInst { // The raw fields out of the bytecode stream...
unsigned NumOperands;
unsigned Opcode;
unsigned Type;
RawInst(const unsigned char *&Buf, const unsigned char *EndBuf,
std::vector<unsigned> &Args);
};
}
RawInst::RawInst(const unsigned char *&Buf, const unsigned char *EndBuf,
std::vector<unsigned> &Args) {
unsigned Op, Typ;
if (read(Buf, EndBuf, Op))
throw std::string("Error reading from buffer.");
// bits Instruction format: Common to all formats
// --------------------------
// 01-00: Opcode type, fixed to 1.
// 07-02: Opcode
Opcode = (Op >> 2) & 63;
Args.resize((Op >> 0) & 03);
switch (Args.size()) {
case 1:
// bits Instruction format:
// --------------------------
// 19-08: Resulting type plane
// 31-20: Operand #1 (if set to (2^12-1), then zero operands)
//
Type = (Op >> 8) & 4095;
Args[0] = (Op >> 20) & 4095;
if (Args[0] == 4095) // Handle special encoding for 0 operands...
Args.resize(0);
break;
case 2:
// bits Instruction format:
// --------------------------
// 15-08: Resulting type plane
// 23-16: Operand #1
// 31-24: Operand #2
//
Type = (Op >> 8) & 255;
Args[0] = (Op >> 16) & 255;
Args[1] = (Op >> 24) & 255;
break;
case 3:
// bits Instruction format:
// --------------------------
// 13-08: Resulting type plane
// 19-14: Operand #1
// 25-20: Operand #2
// 31-26: Operand #3
//
Type = (Op >> 8) & 63;
Args[0] = (Op >> 14) & 63;
Args[1] = (Op >> 20) & 63;
Args[2] = (Op >> 26) & 63;
break;
case 0:
Buf -= 4; // Hrm, try this again...
if (read_vbr(Buf, EndBuf, Opcode))
throw std::string("Error reading from buffer.");
Opcode >>= 2;
if (read_vbr(Buf, EndBuf, Type))
throw std::string("Error reading from buffer.");
unsigned NumOperands;
if (read_vbr(Buf, EndBuf, NumOperands))
throw std::string("Error reading from buffer.");
Args.resize(NumOperands);
if (NumOperands == 0)
throw std::string("Zero-argument instruction found; this is invalid.");
for (unsigned i = 0; i != NumOperands; ++i)
if (read_vbr(Buf, EndBuf, Args[i]))
throw std::string("Error reading from buffer");
if (align32(Buf, EndBuf))
throw std::string("Unaligned bytecode buffer.");
break;
}
}
Instruction *BytecodeParser::ParseInstruction(const unsigned char *&Buf,
const unsigned char *EndBuf,
std::vector<unsigned> &Args) {
Args.clear();
RawInst RI(Buf, EndBuf, Args);
const Type *InstTy = getType(RI.Type);
if (RI.Opcode >= Instruction::BinaryOpsBegin &&
RI.Opcode < Instruction::BinaryOpsEnd && Args.size() == 2)
return BinaryOperator::create((Instruction::BinaryOps)RI.Opcode,
getValue(RI.Type, Args[0]),
getValue(RI.Type, Args[1]));
switch (RI.Opcode) {
case Instruction::VarArg:
return new VarArgInst(getValue(RI.Type, Args[0]), getType(Args[1]));
case Instruction::Cast:
return new CastInst(getValue(RI.Type, Args[0]), getType(Args[1]));
case Instruction::PHINode: {
if (Args.size() == 0 || (Args.size() & 1))
throw std::string("Invalid phi node encountered!\n");
PHINode *PN = new PHINode(InstTy);
PN->op_reserve(Args.size());
for (unsigned i = 0, e = Args.size(); i != e; i += 2)
PN->addIncoming(getValue(RI.Type, Args[i]), getBasicBlock(Args[i+1]));
return PN;
}
case Instruction::Shl:
case Instruction::Shr:
return new ShiftInst((Instruction::OtherOps)RI.Opcode,
getValue(RI.Type, Args[0]),
getValue(Type::UByteTyID, Args[1]));
case Instruction::Ret:
if (Args.size() == 0)
return new ReturnInst();
else if (Args.size() == 1)
return new ReturnInst(getValue(RI.Type, Args[0]));
break;
case Instruction::Br:
if (Args.size() == 1)
return new BranchInst(getBasicBlock(Args[0]));
else if (Args.size() == 3)
return new BranchInst(getBasicBlock(Args[0]), getBasicBlock(Args[1]),
getValue(Type::BoolTyID , Args[2]));
throw std::string("Invalid number of operands for a 'br' instruction!");
case Instruction::Switch: {
if (Args.size() & 1)
throw std::string("Switch statement with odd number of arguments!");
SwitchInst *I = new SwitchInst(getValue(RI.Type, Args[0]),
getBasicBlock(Args[1]));
for (unsigned i = 2, e = Args.size(); i != e; i += 2)
I->addCase(cast<Constant>(getValue(RI.Type, Args[i])),
getBasicBlock(Args[i+1]));
return I;
}
case Instruction::Call: {
if (Args.size() == 0)
throw std::string("Invalid call instruction encountered!");
Value *F = getValue(RI.Type, Args[0]);
// Check to make sure we have a pointer to function type
const PointerType *PTy = dyn_cast<PointerType>(F->getType());
if (PTy == 0) throw std::string("Call to non function pointer value!");
const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
if (FTy == 0) throw std::string("Call to non function pointer value!");
std::vector<Value *> Params;
const FunctionType::ParamTypes &PL = FTy->getParamTypes();
if (!FTy->isVarArg()) {
FunctionType::ParamTypes::const_iterator It = PL.begin();
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
if (It == PL.end()) throw std::string("Invalid call instruction!");
Params.push_back(getValue(*It++, Args[i]));
}
if (It != PL.end()) throw std::string("Invalid call instruction!");
} else {
// FIXME: Args[1] is currently just a dummy padding field!
if (Args.size() & 1) // Must be pairs of type/value
throw std::string("Invalid call instruction!");
for (unsigned i = 2, e = Args.size(); i != e; i += 2)
Params.push_back(getValue(Args[i], Args[i+1]));
}
return new CallInst(F, Params);
}
case Instruction::Invoke: {
if (Args.size() < 3) throw std::string("Invalid invoke instruction!");
Value *F = getValue(RI.Type, Args[0]);
// Check to make sure we have a pointer to function type
const PointerType *PTy = dyn_cast<PointerType>(F->getType());
if (PTy == 0) throw std::string("Invoke to non function pointer value!");
const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
if (FTy == 0) throw std::string("Invoke to non function pointer value!");
std::vector<Value *> Params;
BasicBlock *Normal, *Except;
const FunctionType::ParamTypes &PL = FTy->getParamTypes();
if (!FTy->isVarArg()) {
Normal = getBasicBlock(Args[1]);
Except = getBasicBlock(Args[2]);
FunctionType::ParamTypes::const_iterator It = PL.begin();
for (unsigned i = 3, e = Args.size(); i != e; ++i) {
if (It == PL.end()) throw std::string("Invalid invoke instruction!");
Params.push_back(getValue(*It++, Args[i]));
}
if (It != PL.end()) throw std::string("Invalid invoke instruction!");
} else {
// FIXME: Args[1] is a dummy padding field
if (Args.size() < 6) throw std::string("Invalid invoke instruction!");
if (Args[2] != Type::LabelTyID || Args[4] != Type::LabelTyID)
throw std::string("Invalid invoke instruction!");
Normal = getBasicBlock(Args[3]);
Except = getBasicBlock(Args[5]);
if (Args.size() & 1) // Must be pairs of type/value
throw std::string("Invalid invoke instruction!");
for (unsigned i = 6; i < Args.size(); i += 2)
Params.push_back(getValue(Args[i], Args[i+1]));
}
return new InvokeInst(F, Normal, Except, Params);
}
case Instruction::Malloc:
if (Args.size() > 2) throw std::string("Invalid malloc instruction!");
if (!isa<PointerType>(InstTy))
throw std::string("Invalid malloc instruction!");
return new MallocInst(cast<PointerType>(InstTy)->getElementType(),
Args.size() ? getValue(Type::UIntTyID,
Args[0]) : 0);
case Instruction::Alloca:
if (Args.size() > 2) throw std::string("Invalid alloca instruction!");
if (!isa<PointerType>(InstTy))
throw std::string("Invalid alloca instruction!");
return new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
Args.size() ? getValue(Type::UIntTyID,
Args[0]) : 0);
case Instruction::Free:
if (!isa<PointerType>(InstTy))
throw std::string("Invalid free instruction!");
return new FreeInst(getValue(RI.Type, Args[0]));
case Instruction::GetElementPtr: {
if (Args.size() == 0 || !isa<PointerType>(InstTy))
throw std::string("Invalid getelementptr instruction!");
std::vector<Value*> Idx;
const Type *NextTy = InstTy;
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
if (!TopTy) throw std::string("Invalid getelementptr instruction!");
Idx.push_back(getValue(TopTy->getIndexType(), Args[i]));
NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
}
return new GetElementPtrInst(getValue(RI.Type, Args[0]), Idx);
}
case 62: // volatile load
case Instruction::Load:
if (Args.size() != 1 || !isa<PointerType>(InstTy))
throw std::string("Invalid load instruction!");
return new LoadInst(getValue(RI.Type, Args[0]), "", RI.Opcode == 62);
case 63: // volatile store
case Instruction::Store: {
if (!isa<PointerType>(InstTy) || Args.size() != 2)
throw std::string("Invalid store instruction!");
Value *Ptr = getValue(RI.Type, Args[1]);
const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
return new StoreInst(getValue(ValTy, Args[0]), Ptr, RI.Opcode == 63);
}
case Instruction::Unwind:
if (Args.size() != 0) throw std::string("Invalid unwind instruction!");
return new UnwindInst();
} // end switch(RI.Opcode)
std::cerr << "Unrecognized instruction! " << RI.Opcode
<< " ADDR = 0x" << (void*)Buf << "\n";
throw std::string("Unrecognized instruction!");
}
|