aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Bytecode/Reader/Reader.cpp
blob: 165e085cf4c71ad059a5cb742ac8a226e6d6b1f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
//===- Reader.cpp - Code to read bytecode files ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Reader.h
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
// TODO: Allow passing in an option to ignore the symbol table
//
//===----------------------------------------------------------------------===//

#include "Reader.h"
#include "llvm/Bytecode/BytecodeHandler.h"
#include "llvm/BasicBlock.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/SymbolTable.h"
#include "llvm/Bytecode/Format.h"
#include "llvm/Config/alloca.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/Compressor.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/StringExtras.h"
#include <sstream>
#include <algorithm>
using namespace llvm;

namespace {
  /// @brief A class for maintaining the slot number definition
  /// as a placeholder for the actual definition for forward constants defs.
  class ConstantPlaceHolder : public ConstantExpr {
    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
  public:
    Use Op;
    ConstantPlaceHolder(const Type *Ty)
      : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
        Op(UndefValue::get(Type::IntTy), this) {
    }
  };
}

// Provide some details on error
inline void BytecodeReader::error(std::string err) {
  err +=  " (Vers=" ;
  err += itostr(RevisionNum) ;
  err += ", Pos=" ;
  err += itostr(At-MemStart);
  err += ")";
  throw err;
}

//===----------------------------------------------------------------------===//
// Bytecode Reading Methods
//===----------------------------------------------------------------------===//

/// Determine if the current block being read contains any more data.
inline bool BytecodeReader::moreInBlock() {
  return At < BlockEnd;
}

/// Throw an error if we've read past the end of the current block
inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
  if (At > BlockEnd)
    error(std::string("Attempt to read past the end of ") + block_name +
          " block.");
}

/// Align the buffer position to a 32 bit boundary
inline void BytecodeReader::align32() {
  if (hasAlignment) {
    BufPtr Save = At;
    At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
    if (At > Save)
      if (Handler) Handler->handleAlignment(At - Save);
    if (At > BlockEnd)
      error("Ran out of data while aligning!");
  }
}

/// Read a whole unsigned integer
inline unsigned BytecodeReader::read_uint() {
  if (At+4 > BlockEnd)
    error("Ran out of data reading uint!");
  At += 4;
  return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
}

/// Read a variable-bit-rate encoded unsigned integer
inline unsigned BytecodeReader::read_vbr_uint() {
  unsigned Shift = 0;
  unsigned Result = 0;
  BufPtr Save = At;

  do {
    if (At == BlockEnd)
      error("Ran out of data reading vbr_uint!");
    Result |= (unsigned)((*At++) & 0x7F) << Shift;
    Shift += 7;
  } while (At[-1] & 0x80);
  if (Handler) Handler->handleVBR32(At-Save);
  return Result;
}

/// Read a variable-bit-rate encoded unsigned 64-bit integer.
inline uint64_t BytecodeReader::read_vbr_uint64() {
  unsigned Shift = 0;
  uint64_t Result = 0;
  BufPtr Save = At;

  do {
    if (At == BlockEnd)
      error("Ran out of data reading vbr_uint64!");
    Result |= (uint64_t)((*At++) & 0x7F) << Shift;
    Shift += 7;
  } while (At[-1] & 0x80);
  if (Handler) Handler->handleVBR64(At-Save);
  return Result;
}

/// Read a variable-bit-rate encoded signed 64-bit integer.
inline int64_t BytecodeReader::read_vbr_int64() {
  uint64_t R = read_vbr_uint64();
  if (R & 1) {
    if (R != 1)
      return -(int64_t)(R >> 1);
    else   // There is no such thing as -0 with integers.  "-0" really means
           // 0x8000000000000000.
      return 1LL << 63;
  } else
    return  (int64_t)(R >> 1);
}

/// Read a pascal-style string (length followed by text)
inline std::string BytecodeReader::read_str() {
  unsigned Size = read_vbr_uint();
  const unsigned char *OldAt = At;
  At += Size;
  if (At > BlockEnd)             // Size invalid?
    error("Ran out of data reading a string!");
  return std::string((char*)OldAt, Size);
}

/// Read an arbitrary block of data
inline void BytecodeReader::read_data(void *Ptr, void *End) {
  unsigned char *Start = (unsigned char *)Ptr;
  unsigned Amount = (unsigned char *)End - Start;
  if (At+Amount > BlockEnd)
    error("Ran out of data!");
  std::copy(At, At+Amount, Start);
  At += Amount;
}

/// Read a float value in little-endian order
inline void BytecodeReader::read_float(float& FloatVal) {
  /// FIXME: This isn't optimal, it has size problems on some platforms
  /// where FP is not IEEE.
  FloatVal = BitsToFloat(At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24));
  At+=sizeof(uint32_t);
}

/// Read a double value in little-endian order
inline void BytecodeReader::read_double(double& DoubleVal) {
  /// FIXME: This isn't optimal, it has size problems on some platforms
  /// where FP is not IEEE.
  DoubleVal = BitsToDouble((uint64_t(At[0]) <<  0) | (uint64_t(At[1]) << 8) |
                           (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
                           (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
                           (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56));
  At+=sizeof(uint64_t);
}

/// Read a block header and obtain its type and size
inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
  if ( hasLongBlockHeaders ) {
    Type = read_uint();
    Size = read_uint();
    switch (Type) {
    case BytecodeFormat::Reserved_DoNotUse :
      error("Reserved_DoNotUse used as Module Type?");
      Type = BytecodeFormat::ModuleBlockID; break;
    case BytecodeFormat::Module:
      Type = BytecodeFormat::ModuleBlockID; break;
    case BytecodeFormat::Function:
      Type = BytecodeFormat::FunctionBlockID; break;
    case BytecodeFormat::ConstantPool:
      Type = BytecodeFormat::ConstantPoolBlockID; break;
    case BytecodeFormat::SymbolTable:
      Type = BytecodeFormat::SymbolTableBlockID; break;
    case BytecodeFormat::ModuleGlobalInfo:
      Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
    case BytecodeFormat::GlobalTypePlane:
      Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
    case BytecodeFormat::InstructionList:
      Type = BytecodeFormat::InstructionListBlockID; break;
    case BytecodeFormat::CompactionTable:
      Type = BytecodeFormat::CompactionTableBlockID; break;
    case BytecodeFormat::BasicBlock:
      /// This block type isn't used after version 1.1. However, we have to
      /// still allow the value in case this is an old bc format file.
      /// We just let its value creep thru.
      break;
    default:
      error("Invalid block id found: " + utostr(Type));
      break;
    }
  } else {
    Size = read_uint();
    Type = Size & 0x1F; // mask low order five bits
    Size >>= 5; // get rid of five low order bits, leaving high 27
  }
  BlockStart = At;
  if (At + Size > BlockEnd)
    error("Attempt to size a block past end of memory");
  BlockEnd = At + Size;
  if (Handler) Handler->handleBlock(Type, BlockStart, Size);
}


/// In LLVM 1.2 and before, Types were derived from Value and so they were
/// written as part of the type planes along with any other Value. In LLVM
/// 1.3 this changed so that Type does not derive from Value. Consequently,
/// the BytecodeReader's containers for Values can't contain Types because
/// there's no inheritance relationship. This means that the "Type Type"
/// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
/// whenever a bytecode construct must have both types and values together,
/// the types are always read/written first and then the Values. Furthermore
/// since Type::TypeTyID no longer exists, its value (12) now corresponds to
/// Type::LabelTyID. In order to overcome this we must "sanitize" all the
/// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
/// For LLVM 1.2 and before, this function will decrement the type id by
/// one to account for the missing Type::TypeTyID enumerator if the value is
/// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
/// function returns true, otherwise false. This helps detect situations
/// where the pre 1.3 bytecode is indicating that what follows is a type.
/// @returns true iff type id corresponds to pre 1.3 "type type"
inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
  if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
    if (TypeId == Type::LabelTyID) {
      TypeId = Type::VoidTyID; // sanitize it
      return true; // indicate we got TypeTyID in pre 1.3 bytecode
    } else if (TypeId > Type::LabelTyID)
      --TypeId; // shift all planes down because type type plane is missing
  }
  return false;
}

/// Reads a vbr uint to read in a type id and does the necessary
/// conversion on it by calling sanitizeTypeId.
/// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
/// @see sanitizeTypeId
inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
  TypeId = read_vbr_uint();
  if ( !has32BitTypes )
    if ( TypeId == 0x00FFFFFF )
      TypeId = read_vbr_uint();
  return sanitizeTypeId(TypeId);
}

//===----------------------------------------------------------------------===//
// IR Lookup Methods
//===----------------------------------------------------------------------===//

/// Determine if a type id has an implicit null value
inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
  if (!hasExplicitPrimitiveZeros)
    return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
  return TyID >= Type::FirstDerivedTyID;
}

/// Obtain a type given a typeid and account for things like compaction tables,
/// function level vs module level, and the offsetting for the primitive types.
const Type *BytecodeReader::getType(unsigned ID) {
  if (ID < Type::FirstDerivedTyID)
    if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
      return T;   // Asked for a primitive type...

  // Otherwise, derived types need offset...
  ID -= Type::FirstDerivedTyID;

  if (!CompactionTypes.empty()) {
    if (ID >= CompactionTypes.size())
      error("Type ID out of range for compaction table!");
    return CompactionTypes[ID].first;
  }

  // Is it a module-level type?
  if (ID < ModuleTypes.size())
    return ModuleTypes[ID].get();

  // Nope, is it a function-level type?
  ID -= ModuleTypes.size();
  if (ID < FunctionTypes.size())
    return FunctionTypes[ID].get();

  error("Illegal type reference!");
  return Type::VoidTy;
}

/// Get a sanitized type id. This just makes sure that the \p ID
/// is both sanitized and not the "type type" of pre-1.3 bytecode.
/// @see sanitizeTypeId
inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
  if (sanitizeTypeId(ID))
    error("Invalid type id encountered");
  return getType(ID);
}

/// This method just saves some coding. It uses read_typeid to read
/// in a sanitized type id, errors that its not the type type, and
/// then calls getType to return the type value.
inline const Type* BytecodeReader::readSanitizedType() {
  unsigned ID;
  if (read_typeid(ID))
    error("Invalid type id encountered");
  return getType(ID);
}

/// Get the slot number associated with a type accounting for primitive
/// types, compaction tables, and function level vs module level.
unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
  if (Ty->isPrimitiveType())
    return Ty->getTypeID();

  // Scan the compaction table for the type if needed.
  if (!CompactionTypes.empty()) {
    for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
      if (CompactionTypes[i].first == Ty)
        return Type::FirstDerivedTyID + i;

    error("Couldn't find type specified in compaction table!");
  }

  // Check the function level types first...
  TypeListTy::iterator I = std::find(FunctionTypes.begin(),
                                     FunctionTypes.end(), Ty);

  if (I != FunctionTypes.end())
    return Type::FirstDerivedTyID + ModuleTypes.size() +
           (&*I - &FunctionTypes[0]);

  // If we don't have our cache yet, build it now.
  if (ModuleTypeIDCache.empty()) {
    unsigned N = 0;
    ModuleTypeIDCache.reserve(ModuleTypes.size());
    for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
         I != E; ++I, ++N)
      ModuleTypeIDCache.push_back(std::make_pair(*I, N));
    
    std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
  }
  
  // Binary search the cache for the entry.
  std::vector<std::pair<const Type*, unsigned> >::iterator IT =
    std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
                     std::make_pair(Ty, 0U));
  if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
    error("Didn't find type in ModuleTypes.");
    
  return Type::FirstDerivedTyID + IT->second;
}

/// This is just like getType, but when a compaction table is in use, it is
/// ignored.  It also ignores function level types.
/// @see getType
const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
  if (Slot < Type::FirstDerivedTyID) {
    const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
    if (!Ty)
      error("Not a primitive type ID?");
    return Ty;
  }
  Slot -= Type::FirstDerivedTyID;
  if (Slot >= ModuleTypes.size())
    error("Illegal compaction table type reference!");
  return ModuleTypes[Slot];
}

/// This is just like getTypeSlot, but when a compaction table is in use, it
/// is ignored. It also ignores function level types.
unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
  if (Ty->isPrimitiveType())
    return Ty->getTypeID();
  
  // If we don't have our cache yet, build it now.
  if (ModuleTypeIDCache.empty()) {
    unsigned N = 0;
    ModuleTypeIDCache.reserve(ModuleTypes.size());
    for (TypeListTy::iterator I = ModuleTypes.begin(), E = ModuleTypes.end();
         I != E; ++I, ++N)
      ModuleTypeIDCache.push_back(std::make_pair(*I, N));
    
    std::sort(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end());
  }
  
  // Binary search the cache for the entry.
  std::vector<std::pair<const Type*, unsigned> >::iterator IT =
    std::lower_bound(ModuleTypeIDCache.begin(), ModuleTypeIDCache.end(),
                     std::make_pair(Ty, 0U));
  if (IT == ModuleTypeIDCache.end() || IT->first != Ty)
    error("Didn't find type in ModuleTypes.");
  
  return Type::FirstDerivedTyID + IT->second;
}

/// Retrieve a value of a given type and slot number, possibly creating
/// it if it doesn't already exist.
Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
  assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
  unsigned Num = oNum;

  // If there is a compaction table active, it defines the low-level numbers.
  // If not, the module values define the low-level numbers.
  if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
    if (Num < CompactionValues[type].size())
      return CompactionValues[type][Num];
    Num -= CompactionValues[type].size();
  } else {
    // By default, the global type id is the type id passed in
    unsigned GlobalTyID = type;

    // If the type plane was compactified, figure out the global type ID by
    // adding the derived type ids and the distance.
    if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID)
      GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second;

    if (hasImplicitNull(GlobalTyID)) {
      const Type *Ty = getType(type);
      if (!isa<OpaqueType>(Ty)) {
        if (Num == 0)
          return Constant::getNullValue(Ty);
        --Num;
      }
    }

    if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
      if (Num < ModuleValues[GlobalTyID]->size())
        return ModuleValues[GlobalTyID]->getOperand(Num);
      Num -= ModuleValues[GlobalTyID]->size();
    }
  }

  if (FunctionValues.size() > type &&
      FunctionValues[type] &&
      Num < FunctionValues[type]->size())
    return FunctionValues[type]->getOperand(Num);

  if (!Create) return 0;  // Do not create a placeholder?

  // Did we already create a place holder?
  std::pair<unsigned,unsigned> KeyValue(type, oNum);
  ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
  if (I != ForwardReferences.end() && I->first == KeyValue)
    return I->second;   // We have already created this placeholder

  // If the type exists (it should)
  if (const Type* Ty = getType(type)) {
    // Create the place holder
    Value *Val = new Argument(Ty);
    ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
    return Val;
  }
  throw "Can't create placeholder for value of type slot #" + utostr(type);
}

/// This is just like getValue, but when a compaction table is in use, it
/// is ignored.  Also, no forward references or other fancy features are
/// supported.
Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
  if (SlotNo == 0)
    return Constant::getNullValue(getType(TyID));

  if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) {
    TyID -= Type::FirstDerivedTyID;
    if (TyID >= CompactionTypes.size())
      error("Type ID out of range for compaction table!");
    TyID = CompactionTypes[TyID].second;
  }

  --SlotNo;

  if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
      SlotNo >= ModuleValues[TyID]->size()) {
    if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
      error("Corrupt compaction table entry!"
            + utostr(TyID) + ", " + utostr(SlotNo) + ": "
            + utostr(ModuleValues.size()));
    else
      error("Corrupt compaction table entry!"
            + utostr(TyID) + ", " + utostr(SlotNo) + ": "
            + utostr(ModuleValues.size()) + ", "
            + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
            + ", "
            + utostr(ModuleValues[TyID]->size()));
  }
  return ModuleValues[TyID]->getOperand(SlotNo);
}

/// Just like getValue, except that it returns a null pointer
/// only on error.  It always returns a constant (meaning that if the value is
/// defined, but is not a constant, that is an error).  If the specified
/// constant hasn't been parsed yet, a placeholder is defined and used.
/// Later, after the real value is parsed, the placeholder is eliminated.
Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
  if (Value *V = getValue(TypeSlot, Slot, false))
    if (Constant *C = dyn_cast<Constant>(V))
      return C;   // If we already have the value parsed, just return it
    else
      error("Value for slot " + utostr(Slot) +
            " is expected to be a constant!");

  std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
  ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);

  if (I != ConstantFwdRefs.end() && I->first == Key) {
    return I->second;
  } else {
    // Create a placeholder for the constant reference and
    // keep track of the fact that we have a forward ref to recycle it
    Constant *C = new ConstantPlaceHolder(getType(TypeSlot));

    // Keep track of the fact that we have a forward ref to recycle it
    ConstantFwdRefs.insert(I, std::make_pair(Key, C));
    return C;
  }
}

//===----------------------------------------------------------------------===//
// IR Construction Methods
//===----------------------------------------------------------------------===//

/// As values are created, they are inserted into the appropriate place
/// with this method. The ValueTable argument must be one of ModuleValues
/// or FunctionValues data members of this class.
unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
                                      ValueTable &ValueTab) {
  assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
          !hasImplicitNull(type) &&
         "Cannot read null values from bytecode!");

  if (ValueTab.size() <= type)
    ValueTab.resize(type+1);

  if (!ValueTab[type]) ValueTab[type] = new ValueList();

  ValueTab[type]->push_back(Val);

  bool HasOffset = hasImplicitNull(type) && !isa<OpaqueType>(Val->getType());
  return ValueTab[type]->size()-1 + HasOffset;
}

/// Insert the arguments of a function as new values in the reader.
void BytecodeReader::insertArguments(Function* F) {
  const FunctionType *FT = F->getFunctionType();
  Function::arg_iterator AI = F->arg_begin();
  for (FunctionType::param_iterator It = FT->param_begin();
       It != FT->param_end(); ++It, ++AI)
    insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
}

//===----------------------------------------------------------------------===//
// Bytecode Parsing Methods
//===----------------------------------------------------------------------===//

/// This method parses a single instruction. The instruction is
/// inserted at the end of the \p BB provided. The arguments of
/// the instruction are provided in the \p Oprnds vector.
void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
                                      BasicBlock* BB) {
  BufPtr SaveAt = At;

  // Clear instruction data
  Oprnds.clear();
  unsigned iType = 0;
  unsigned Opcode = 0;
  unsigned Op = read_uint();

  // bits   Instruction format:        Common to all formats
  // --------------------------
  // 01-00: Opcode type, fixed to 1.
  // 07-02: Opcode
  Opcode    = (Op >> 2) & 63;
  Oprnds.resize((Op >> 0) & 03);

  // Extract the operands
  switch (Oprnds.size()) {
  case 1:
    // bits   Instruction format:
    // --------------------------
    // 19-08: Resulting type plane
    // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
    //
    iType   = (Op >>  8) & 4095;
    Oprnds[0] = (Op >> 20) & 4095;
    if (Oprnds[0] == 4095)    // Handle special encoding for 0 operands...
      Oprnds.resize(0);
    break;
  case 2:
    // bits   Instruction format:
    // --------------------------
    // 15-08: Resulting type plane
    // 23-16: Operand #1
    // 31-24: Operand #2
    //
    iType   = (Op >>  8) & 255;
    Oprnds[0] = (Op >> 16) & 255;
    Oprnds[1] = (Op >> 24) & 255;
    break;
  case 3:
    // bits   Instruction format:
    // --------------------------
    // 13-08: Resulting type plane
    // 19-14: Operand #1
    // 25-20: Operand #2
    // 31-26: Operand #3
    //
    iType   = (Op >>  8) & 63;
    Oprnds[0] = (Op >> 14) & 63;
    Oprnds[1] = (Op >> 20) & 63;
    Oprnds[2] = (Op >> 26) & 63;
    break;
  case 0:
    At -= 4;  // Hrm, try this again...
    Opcode = read_vbr_uint();
    Opcode >>= 2;
    iType = read_vbr_uint();

    unsigned NumOprnds = read_vbr_uint();
    Oprnds.resize(NumOprnds);

    if (NumOprnds == 0)
      error("Zero-argument instruction found; this is invalid.");

    for (unsigned i = 0; i != NumOprnds; ++i)
      Oprnds[i] = read_vbr_uint();
    align32();
    break;
  }

  const Type *InstTy = getSanitizedType(iType);

  // We have enough info to inform the handler now.
  if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);

  // Declare the resulting instruction we'll build.
  Instruction *Result = 0;

  // If this is a bytecode format that did not include the unreachable
  // instruction, bump up all opcodes numbers to make space.
  if (hasNoUnreachableInst) {
    if (Opcode >= Instruction::Unreachable &&
        Opcode < 62) {
      ++Opcode;
    }
  }

  // Handle binary operators
  if (Opcode >= Instruction::BinaryOpsBegin &&
      Opcode <  Instruction::BinaryOpsEnd  && Oprnds.size() == 2)
    Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
                                    getValue(iType, Oprnds[0]),
                                    getValue(iType, Oprnds[1]));

  switch (Opcode) {
  default:
    if (Result == 0)
      error("Illegal instruction read!");
    break;
  case Instruction::VAArg:
    Result = new VAArgInst(getValue(iType, Oprnds[0]),
                           getSanitizedType(Oprnds[1]));
    break;
  case 32: { //VANext_old
    const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
    Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy,
                                                  (Type *)0);

    //b = vanext a, t ->
    //foo = alloca 1 of t
    //bar = vacopy a
    //store bar -> foo
    //tmp = vaarg foo, t
    //b = load foo
    AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
    BB->getInstList().push_back(foo);
    CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
    BB->getInstList().push_back(bar);
    BB->getInstList().push_back(new StoreInst(bar, foo));
    Instruction* tmp = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
    BB->getInstList().push_back(tmp);
    Result = new LoadInst(foo);
    break;
  }
  case 33: { //VAArg_old
    const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
    Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy,
                                                  (Type *)0);

    //b = vaarg a, t ->
    //foo = alloca 1 of t
    //bar = vacopy a
    //store bar -> foo
    //b = vaarg foo, t
    AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
    BB->getInstList().push_back(foo);
    CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
    BB->getInstList().push_back(bar);
    BB->getInstList().push_back(new StoreInst(bar, foo));
    Result = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
    break;
  }
  case Instruction::Cast:
    Result = new CastInst(getValue(iType, Oprnds[0]),
                          getSanitizedType(Oprnds[1]));
    break;
  case Instruction::Select:
    Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
                            getValue(iType, Oprnds[1]),
                            getValue(iType, Oprnds[2]));
    break;
  case Instruction::PHI: {
    if (Oprnds.size() == 0 || (Oprnds.size() & 1))
      error("Invalid phi node encountered!");

    PHINode *PN = new PHINode(InstTy);
    PN->reserveOperandSpace(Oprnds.size());
    for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
      PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
    Result = PN;
    break;
  }

  case Instruction::Shl:
  case Instruction::Shr:
    Result = new ShiftInst((Instruction::OtherOps)Opcode,
                           getValue(iType, Oprnds[0]),
                           getValue(Type::UByteTyID, Oprnds[1]));
    break;
  case Instruction::Ret:
    if (Oprnds.size() == 0)
      Result = new ReturnInst();
    else if (Oprnds.size() == 1)
      Result = new ReturnInst(getValue(iType, Oprnds[0]));
    else
      error("Unrecognized instruction!");
    break;

  case Instruction::Br:
    if (Oprnds.size() == 1)
      Result = new BranchInst(getBasicBlock(Oprnds[0]));
    else if (Oprnds.size() == 3)
      Result = new BranchInst(getBasicBlock(Oprnds[0]),
          getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
    else
      error("Invalid number of operands for a 'br' instruction!");
    break;
  case Instruction::Switch: {
    if (Oprnds.size() & 1)
      error("Switch statement with odd number of arguments!");

    SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
                                   getBasicBlock(Oprnds[1]),
                                   Oprnds.size()/2-1);
    for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
      I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])),
                 getBasicBlock(Oprnds[i+1]));
    Result = I;
    break;
  }

  case 58:                   // Call with extra operand for calling conv
  case 59:                   // tail call, Fast CC
  case 60:                   // normal call, Fast CC
  case 61:                   // tail call, C Calling Conv
  case Instruction::Call: {  // Normal Call, C Calling Convention
    if (Oprnds.size() == 0)
      error("Invalid call instruction encountered!");

    Value *F = getValue(iType, Oprnds[0]);

    unsigned CallingConv = CallingConv::C;
    bool isTailCall = false;

    if (Opcode == 61 || Opcode == 59)
      isTailCall = true;

    // Check to make sure we have a pointer to function type
    const PointerType *PTy = dyn_cast<PointerType>(F->getType());
    if (PTy == 0) error("Call to non function pointer value!");
    const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
    if (FTy == 0) error("Call to non function pointer value!");

    std::vector<Value *> Params;
    if (!FTy->isVarArg()) {
      FunctionType::param_iterator It = FTy->param_begin();

      if (Opcode == 58) {
        isTailCall = Oprnds.back() & 1;
        CallingConv = Oprnds.back() >> 1;
        Oprnds.pop_back();
      } else if (Opcode == 59 || Opcode == 60)
        CallingConv = CallingConv::Fast;

      for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
        if (It == FTy->param_end())
          error("Invalid call instruction!");
        Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
      }
      if (It != FTy->param_end())
        error("Invalid call instruction!");
    } else {
      Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);

      unsigned FirstVariableOperand;
      if (Oprnds.size() < FTy->getNumParams())
        error("Call instruction missing operands!");

      // Read all of the fixed arguments
      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
        Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));

      FirstVariableOperand = FTy->getNumParams();

      if ((Oprnds.size()-FirstVariableOperand) & 1)
        error("Invalid call instruction!");   // Must be pairs of type/value

      for (unsigned i = FirstVariableOperand, e = Oprnds.size();
           i != e; i += 2)
        Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
    }

    Result = new CallInst(F, Params);
    if (isTailCall) cast<CallInst>(Result)->setTailCall();
    if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv);
    break;
  }
  case 56:                     // Invoke with encoded CC
  case 57:                     // Invoke Fast CC
  case Instruction::Invoke: {  // Invoke C CC
    if (Oprnds.size() < 3)
      error("Invalid invoke instruction!");
    Value *F = getValue(iType, Oprnds[0]);

    // Check to make sure we have a pointer to function type
    const PointerType *PTy = dyn_cast<PointerType>(F->getType());
    if (PTy == 0)
      error("Invoke to non function pointer value!");
    const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
    if (FTy == 0)
      error("Invoke to non function pointer value!");

    std::vector<Value *> Params;
    BasicBlock *Normal, *Except;
    unsigned CallingConv = CallingConv::C;

    if (Opcode == 57)
      CallingConv = CallingConv::Fast;
    else if (Opcode == 56) {
      CallingConv = Oprnds.back();
      Oprnds.pop_back();
    }

    if (!FTy->isVarArg()) {
      Normal = getBasicBlock(Oprnds[1]);
      Except = getBasicBlock(Oprnds[2]);

      FunctionType::param_iterator It = FTy->param_begin();
      for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
        if (It == FTy->param_end())
          error("Invalid invoke instruction!");
        Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
      }
      if (It != FTy->param_end())
        error("Invalid invoke instruction!");
    } else {
      Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);

      Normal = getBasicBlock(Oprnds[0]);
      Except = getBasicBlock(Oprnds[1]);

      unsigned FirstVariableArgument = FTy->getNumParams()+2;
      for (unsigned i = 2; i != FirstVariableArgument; ++i)
        Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
                                  Oprnds[i]));

      if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
        error("Invalid invoke instruction!");

      for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
        Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
    }

    Result = new InvokeInst(F, Normal, Except, Params);
    if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
    break;
  }
  case Instruction::Malloc: {
    unsigned Align = 0;
    if (Oprnds.size() == 2)
      Align = (1 << Oprnds[1]) >> 1;
    else if (Oprnds.size() > 2)
      error("Invalid malloc instruction!");
    if (!isa<PointerType>(InstTy))
      error("Invalid malloc instruction!");

    Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
                            getValue(Type::UIntTyID, Oprnds[0]), Align);
    break;
  }

  case Instruction::Alloca: {
    unsigned Align = 0;
    if (Oprnds.size() == 2)
      Align = (1 << Oprnds[1]) >> 1;
    else if (Oprnds.size() > 2)
      error("Invalid alloca instruction!");
    if (!isa<PointerType>(InstTy))
      error("Invalid alloca instruction!");

    Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
                            getValue(Type::UIntTyID, Oprnds[0]), Align);
    break;
  }
  case Instruction::Free:
    if (!isa<PointerType>(InstTy))
      error("Invalid free instruction!");
    Result = new FreeInst(getValue(iType, Oprnds[0]));
    break;
  case Instruction::GetElementPtr: {
    if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
      error("Invalid getelementptr instruction!");

    std::vector<Value*> Idx;

    const Type *NextTy = InstTy;
    for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
      const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
      if (!TopTy)
        error("Invalid getelementptr instruction!");

      unsigned ValIdx = Oprnds[i];
      unsigned IdxTy = 0;
      if (!hasRestrictedGEPTypes) {
        // Struct indices are always uints, sequential type indices can be any
        // of the 32 or 64-bit integer types.  The actual choice of type is
        // encoded in the low two bits of the slot number.
        if (isa<StructType>(TopTy))
          IdxTy = Type::UIntTyID;
        else {
          switch (ValIdx & 3) {
          default:
          case 0: IdxTy = Type::UIntTyID; break;
          case 1: IdxTy = Type::IntTyID; break;
          case 2: IdxTy = Type::ULongTyID; break;
          case 3: IdxTy = Type::LongTyID; break;
          }
          ValIdx >>= 2;
        }
      } else {
        IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
      }

      Idx.push_back(getValue(IdxTy, ValIdx));

      // Convert ubyte struct indices into uint struct indices.
      if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
        if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
          Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);

      NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
    }

    Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
    break;
  }

  case 62:   // volatile load
  case Instruction::Load:
    if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
      error("Invalid load instruction!");
    Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
    break;

  case 63:   // volatile store
  case Instruction::Store: {
    if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
      error("Invalid store instruction!");

    Value *Ptr = getValue(iType, Oprnds[1]);
    const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
    Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
                           Opcode == 63);
    break;
  }
  case Instruction::Unwind:
    if (Oprnds.size() != 0) error("Invalid unwind instruction!");
    Result = new UnwindInst();
    break;
  case Instruction::Unreachable:
    if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
    Result = new UnreachableInst();
    break;
  }  // end switch(Opcode)

  unsigned TypeSlot;
  if (Result->getType() == InstTy)
    TypeSlot = iType;
  else
    TypeSlot = getTypeSlot(Result->getType());

  insertValue(Result, TypeSlot, FunctionValues);
  BB->getInstList().push_back(Result);
}

/// Get a particular numbered basic block, which might be a forward reference.
/// This works together with ParseBasicBlock to handle these forward references
/// in a clean manner.  This function is used when constructing phi, br, switch,
/// and other instructions that reference basic blocks. Blocks are numbered
/// sequentially as they appear in the function.
BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
  // Make sure there is room in the table...
  if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);

  // First check to see if this is a backwards reference, i.e., ParseBasicBlock
  // has already created this block, or if the forward reference has already
  // been created.
  if (ParsedBasicBlocks[ID])
    return ParsedBasicBlocks[ID];

  // Otherwise, the basic block has not yet been created.  Do so and add it to
  // the ParsedBasicBlocks list.
  return ParsedBasicBlocks[ID] = new BasicBlock();
}

/// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
/// This method reads in one of the basicblock packets. This method is not used
/// for bytecode files after LLVM 1.0
/// @returns The basic block constructed.
BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
  if (Handler) Handler->handleBasicBlockBegin(BlockNo);

  BasicBlock *BB = 0;

  if (ParsedBasicBlocks.size() == BlockNo)
    ParsedBasicBlocks.push_back(BB = new BasicBlock());
  else if (ParsedBasicBlocks[BlockNo] == 0)
    BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
  else
    BB = ParsedBasicBlocks[BlockNo];

  std::vector<unsigned> Operands;
  while (moreInBlock())
    ParseInstruction(Operands, BB);

  if (Handler) Handler->handleBasicBlockEnd(BlockNo);
  return BB;
}

/// Parse all of the BasicBlock's & Instruction's in the body of a function.
/// In post 1.0 bytecode files, we no longer emit basic block individually,
/// in order to avoid per-basic-block overhead.
/// @returns Rhe number of basic blocks encountered.
unsigned BytecodeReader::ParseInstructionList(Function* F) {
  unsigned BlockNo = 0;
  std::vector<unsigned> Args;

  while (moreInBlock()) {
    if (Handler) Handler->handleBasicBlockBegin(BlockNo);
    BasicBlock *BB;
    if (ParsedBasicBlocks.size() == BlockNo)
      ParsedBasicBlocks.push_back(BB = new BasicBlock());
    else if (ParsedBasicBlocks[BlockNo] == 0)
      BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
    else
      BB = ParsedBasicBlocks[BlockNo];
    ++BlockNo;
    F->getBasicBlockList().push_back(BB);

    // Read instructions into this basic block until we get to a terminator
    while (moreInBlock() && !BB->getTerminator())
      ParseInstruction(Args, BB);

    if (!BB->getTerminator())
      error("Non-terminated basic block found!");

    if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
  }

  return BlockNo;
}

/// Parse a symbol table. This works for both module level and function
/// level symbol tables.  For function level symbol tables, the CurrentFunction
/// parameter must be non-zero and the ST parameter must correspond to
/// CurrentFunction's symbol table. For Module level symbol tables, the
/// CurrentFunction argument must be zero.
void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
                                      SymbolTable *ST) {
  if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);

  // Allow efficient basic block lookup by number.
  std::vector<BasicBlock*> BBMap;
  if (CurrentFunction)
    for (Function::iterator I = CurrentFunction->begin(),
           E = CurrentFunction->end(); I != E; ++I)
      BBMap.push_back(I);

  /// In LLVM 1.3 we write types separately from values so
  /// The types are always first in the symbol table. This is
  /// because Type no longer derives from Value.
  if (!hasTypeDerivedFromValue) {
    // Symtab block header: [num entries]
    unsigned NumEntries = read_vbr_uint();
    for (unsigned i = 0; i < NumEntries; ++i) {
      // Symtab entry: [def slot #][name]
      unsigned slot = read_vbr_uint();
      std::string Name = read_str();
      const Type* T = getType(slot);
      ST->insert(Name, T);
    }
  }

  while (moreInBlock()) {
    // Symtab block header: [num entries][type id number]
    unsigned NumEntries = read_vbr_uint();
    unsigned Typ = 0;
    bool isTypeType = read_typeid(Typ);
    const Type *Ty = getType(Typ);

    for (unsigned i = 0; i != NumEntries; ++i) {
      // Symtab entry: [def slot #][name]
      unsigned slot = read_vbr_uint();
      std::string Name = read_str();

      // if we're reading a pre 1.3 bytecode file and the type plane
      // is the "type type", handle it here
      if (isTypeType) {
        const Type* T = getType(slot);
        if (T == 0)
          error("Failed type look-up for name '" + Name + "'");
        ST->insert(Name, T);
        continue; // code below must be short circuited
      } else {
        Value *V = 0;
        if (Typ == Type::LabelTyID) {
          if (slot < BBMap.size())
            V = BBMap[slot];
        } else {
          V = getValue(Typ, slot, false); // Find mapping...
        }
        if (V == 0)
          error("Failed value look-up for name '" + Name + "'");
        V->setName(Name);
      }
    }
  }
  checkPastBlockEnd("Symbol Table");
  if (Handler) Handler->handleSymbolTableEnd();
}

/// Read in the types portion of a compaction table.
void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
  for (unsigned i = 0; i != NumEntries; ++i) {
    unsigned TypeSlot = 0;
    if (read_typeid(TypeSlot))
      error("Invalid type in compaction table: type type");
    const Type *Typ = getGlobalTableType(TypeSlot);
    CompactionTypes.push_back(std::make_pair(Typ, TypeSlot));
    if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
  }
}

/// Parse a compaction table.
void BytecodeReader::ParseCompactionTable() {

  // Notify handler that we're beginning a compaction table.
  if (Handler) Handler->handleCompactionTableBegin();

  // In LLVM 1.3 Type no longer derives from Value. So,
  // we always write them first in the compaction table
  // because they can't occupy a "type plane" where the
  // Values reside.
  if (! hasTypeDerivedFromValue) {
    unsigned NumEntries = read_vbr_uint();
    ParseCompactionTypes(NumEntries);
  }

  // Compaction tables live in separate blocks so we have to loop
  // until we've read the whole thing.
  while (moreInBlock()) {
    // Read the number of Value* entries in the compaction table
    unsigned NumEntries = read_vbr_uint();
    unsigned Ty = 0;
    unsigned isTypeType = false;

    // Decode the type from value read in. Most compaction table
    // planes will have one or two entries in them. If that's the
    // case then the length is encoded in the bottom two bits and
    // the higher bits encode the type. This saves another VBR value.
    if ((NumEntries & 3) == 3) {
      // In this case, both low-order bits are set (value 3). This
      // is a signal that the typeid follows.
      NumEntries >>= 2;
      isTypeType = read_typeid(Ty);
    } else {
      // In this case, the low-order bits specify the number of entries
      // and the high order bits specify the type.
      Ty = NumEntries >> 2;
      isTypeType = sanitizeTypeId(Ty);
      NumEntries &= 3;
    }

    // if we're reading a pre 1.3 bytecode file and the type plane
    // is the "type type", handle it here
    if (isTypeType) {
      ParseCompactionTypes(NumEntries);
    } else {
      // Make sure we have enough room for the plane.
      if (Ty >= CompactionValues.size())
        CompactionValues.resize(Ty+1);

      // Make sure the plane is empty or we have some kind of error.
      if (!CompactionValues[Ty].empty())
        error("Compaction table plane contains multiple entries!");

      // Notify handler about the plane.
      if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);

      // Push the implicit zero.
      CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty)));

      // Read in each of the entries, put them in the compaction table
      // and notify the handler that we have a new compaction table value.
      for (unsigned i = 0; i != NumEntries; ++i) {
        unsigned ValSlot = read_vbr_uint();
        Value *V = getGlobalTableValue(Ty, ValSlot);
        CompactionValues[Ty].push_back(V);
        if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot);
      }
    }
  }
  // Notify handler that the compaction table is done.
  if (Handler) Handler->handleCompactionTableEnd();
}

// Parse a single type. The typeid is read in first. If its a primitive type
// then nothing else needs to be read, we know how to instantiate it. If its
// a derived type, then additional data is read to fill out the type
// definition.
const Type *BytecodeReader::ParseType() {
  unsigned PrimType = 0;
  if (read_typeid(PrimType))
    error("Invalid type (type type) in type constants!");

  const Type *Result = 0;
  if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
    return Result;

  switch (PrimType) {
  case Type::FunctionTyID: {
    const Type *RetType = readSanitizedType();

    unsigned NumParams = read_vbr_uint();

    std::vector<const Type*> Params;
    while (NumParams--)
      Params.push_back(readSanitizedType());

    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
    if (isVarArg) Params.pop_back();

    Result = FunctionType::get(RetType, Params, isVarArg);
    break;
  }
  case Type::ArrayTyID: {
    const Type *ElementType = readSanitizedType();
    unsigned NumElements = read_vbr_uint();
    Result =  ArrayType::get(ElementType, NumElements);
    break;
  }
  case Type::PackedTyID: {
    const Type *ElementType = readSanitizedType();
    unsigned NumElements = read_vbr_uint();
    Result =  PackedType::get(ElementType, NumElements);
    break;
  }
  case Type::StructTyID: {
    std::vector<const Type*> Elements;
    unsigned Typ = 0;
    if (read_typeid(Typ))
      error("Invalid element type (type type) for structure!");

    while (Typ) {         // List is terminated by void/0 typeid
      Elements.push_back(getType(Typ));
      if (read_typeid(Typ))
        error("Invalid element type (type type) for structure!");
    }

    Result = StructType::get(Elements);
    break;
  }
  case Type::PointerTyID: {
    Result = PointerType::get(readSanitizedType());
    break;
  }

  case Type::OpaqueTyID: {
    Result = OpaqueType::get();
    break;
  }

  default:
    error("Don't know how to deserialize primitive type " + utostr(PrimType));
    break;
  }
  if (Handler) Handler->handleType(Result);
  return Result;
}

// ParseTypes - We have to use this weird code to handle recursive
// types.  We know that recursive types will only reference the current slab of
// values in the type plane, but they can forward reference types before they
// have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might
// be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix
// this ugly problem, we pessimistically insert an opaque type for each type we
// are about to read.  This means that forward references will resolve to
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
  assert(Tab.size() == 0 && "should not have read type constants in before!");

  // Insert a bunch of opaque types to be resolved later...
  Tab.reserve(NumEntries);
  for (unsigned i = 0; i != NumEntries; ++i)
    Tab.push_back(OpaqueType::get());

  if (Handler)
    Handler->handleTypeList(NumEntries);

  // If we are about to resolve types, make sure the type cache is clear.
  if (NumEntries)
    ModuleTypeIDCache.clear();
  
  // Loop through reading all of the types.  Forward types will make use of the
  // opaque types just inserted.
  //
  for (unsigned i = 0; i != NumEntries; ++i) {
    const Type* NewTy = ParseType();
    const Type* OldTy = Tab[i].get();
    if (NewTy == 0)
      error("Couldn't parse type!");

    // Don't directly push the new type on the Tab. Instead we want to replace
    // the opaque type we previously inserted with the new concrete value. This
    // approach helps with forward references to types. The refinement from the
    // abstract (opaque) type to the new type causes all uses of the abstract
    // type to use the concrete type (NewTy). This will also cause the opaque
    // type to be deleted.
    cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);

    // This should have replaced the old opaque type with the new type in the
    // value table... or with a preexisting type that was already in the system.
    // Let's just make sure it did.
    assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
  }
}

/// Parse a single constant value
Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
  // We must check for a ConstantExpr before switching by type because
  // a ConstantExpr can be of any type, and has no explicit value.
  //
  // 0 if not expr; numArgs if is expr
  unsigned isExprNumArgs = read_vbr_uint();

  if (isExprNumArgs) {
    // 'undef' is encoded with 'exprnumargs' == 1.
    if (!hasNoUndefValue)
      if (--isExprNumArgs == 0)
        return UndefValue::get(getType(TypeID));

    // FIXME: Encoding of constant exprs could be much more compact!
    std::vector<Constant*> ArgVec;
    ArgVec.reserve(isExprNumArgs);
    unsigned Opcode = read_vbr_uint();

    // Bytecode files before LLVM 1.4 need have a missing terminator inst.
    if (hasNoUnreachableInst) Opcode++;

    // Read the slot number and types of each of the arguments
    for (unsigned i = 0; i != isExprNumArgs; ++i) {
      unsigned ArgValSlot = read_vbr_uint();
      unsigned ArgTypeSlot = 0;
      if (read_typeid(ArgTypeSlot))
        error("Invalid argument type (type type) for constant value");

      // Get the arg value from its slot if it exists, otherwise a placeholder
      ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
    }

    // Construct a ConstantExpr of the appropriate kind
    if (isExprNumArgs == 1) {           // All one-operand expressions
      if (Opcode != Instruction::Cast)
        error("Only cast instruction has one argument for ConstantExpr");

      Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
      if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
      return Result;
    } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
      std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());

      if (hasRestrictedGEPTypes) {
        const Type *BaseTy = ArgVec[0]->getType();
        generic_gep_type_iterator<std::vector<Constant*>::iterator>
          GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
          E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
        for (unsigned i = 0; GTI != E; ++GTI, ++i)
          if (isa<StructType>(*GTI)) {
            if (IdxList[i]->getType() != Type::UByteTy)
              error("Invalid index for getelementptr!");
            IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
          }
      }

      Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
      if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
      return Result;
    } else if (Opcode == Instruction::Select) {
      if (ArgVec.size() != 3)
        error("Select instruction must have three arguments.");
      Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
                                                 ArgVec[2]);
      if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
      return Result;
    } else {                            // All other 2-operand expressions
      Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
      if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
      return Result;
    }
  }

  // Ok, not an ConstantExpr.  We now know how to read the given type...
  const Type *Ty = getType(TypeID);
  switch (Ty->getTypeID()) {
  case Type::BoolTyID: {
    unsigned Val = read_vbr_uint();
    if (Val != 0 && Val != 1)
      error("Invalid boolean value read.");
    Constant* Result = ConstantBool::get(Val == 1);
    if (Handler) Handler->handleConstantValue(Result);
    return Result;
  }

  case Type::UByteTyID:   // Unsigned integer types...
  case Type::UShortTyID:
  case Type::UIntTyID: {
    unsigned Val = read_vbr_uint();
    if (!ConstantUInt::isValueValidForType(Ty, Val))
      error("Invalid unsigned byte/short/int read.");
    Constant* Result =  ConstantUInt::get(Ty, Val);
    if (Handler) Handler->handleConstantValue(Result);
    return Result;
  }

  case Type::ULongTyID: {
    Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64());
    if (Handler) Handler->handleConstantValue(Result);
    return Result;
  }

  case Type::SByteTyID:   // Signed integer types...
  case Type::ShortTyID:
  case Type::IntTyID: {
  case Type::LongTyID:
    int64_t Val = read_vbr_int64();
    if (!ConstantSInt::isValueValidForType(Ty, Val))
      error("Invalid signed byte/short/int/long read.");
    Constant* Result = ConstantSInt::get(Ty, Val);
    if (Handler) Handler->handleConstantValue(Result);
    return Result;
  }

  case Type::FloatTyID: {
    float Val;
    read_float(Val);
    Constant* Result = ConstantFP::get(Ty, Val);
    if (Handler) Handler->handleConstantValue(Result);
    return Result;
  }

  case Type::DoubleTyID: {
    double Val;
    read_double(Val);
    Constant* Result = ConstantFP::get(Ty, Val);
    if (Handler) Handler->handleConstantValue(Result);
    return Result;
  }

  case Type::ArrayTyID: {
    const ArrayType *AT = cast<ArrayType>(Ty);
    unsigned NumElements = AT->getNumElements();
    unsigned TypeSlot = getTypeSlot(AT->getElementType());
    std::vector<Constant*> Elements;
    Elements.reserve(NumElements);
    while (NumElements--)     // Read all of the elements of the constant.
      Elements.push_back(getConstantValue(TypeSlot,
                                          read_vbr_uint()));
    Constant* Result = ConstantArray::get(AT, Elements);
    if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
    return Result;
  }

  case Type::StructTyID: {
    const StructType *ST = cast<StructType>(Ty);

    std::vector<Constant *> Elements;
    Elements.reserve(ST->getNumElements());
    for (unsigned i = 0; i != ST->getNumElements(); ++i)
      Elements.push_back(getConstantValue(ST->getElementType(i),
                                          read_vbr_uint()));

    Constant* Result = ConstantStruct::get(ST, Elements);
    if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
    return Result;
  }

  case Type::PackedTyID: {
    const PackedType *PT = cast<PackedType>(Ty);
    unsigned NumElements = PT->getNumElements();
    unsigned TypeSlot = getTypeSlot(PT->getElementType());
    std::vector<Constant*> Elements;
    Elements.reserve(NumElements);
    while (NumElements--)     // Read all of the elements of the constant.
      Elements.push_back(getConstantValue(TypeSlot,
                                          read_vbr_uint()));
    Constant* Result = ConstantPacked::get(PT, Elements);
    if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result);
    return Result;
  }

  case Type::PointerTyID: {  // ConstantPointerRef value (backwards compat).
    const PointerType *PT = cast<PointerType>(Ty);
    unsigned Slot = read_vbr_uint();

    // Check to see if we have already read this global variable...
    Value *Val = getValue(TypeID, Slot, false);
    if (Val) {
      GlobalValue *GV = dyn_cast<GlobalValue>(Val);
      if (!GV) error("GlobalValue not in ValueTable!");
      if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
      return GV;
    } else {
      error("Forward references are not allowed here.");
    }
  }

  default:
    error("Don't know how to deserialize constant value of type '" +
                      Ty->getDescription());
    break;
  }
  return 0;
}

/// Resolve references for constants. This function resolves the forward
/// referenced constants in the ConstantFwdRefs map. It uses the
/// replaceAllUsesWith method of Value class to substitute the placeholder
/// instance with the actual instance.
void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
                                                 unsigned Slot) {
  ConstantRefsType::iterator I =
    ConstantFwdRefs.find(std::make_pair(Typ, Slot));
  if (I == ConstantFwdRefs.end()) return;   // Never forward referenced?

  Value *PH = I->second;   // Get the placeholder...
  PH->replaceAllUsesWith(NewV);
  delete PH;                               // Delete the old placeholder
  ConstantFwdRefs.erase(I);                // Remove the map entry for it
}

/// Parse the constant strings section.
void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
  for (; NumEntries; --NumEntries) {
    unsigned Typ = 0;
    if (read_typeid(Typ))
      error("Invalid type (type type) for string constant");
    const Type *Ty = getType(Typ);
    if (!isa<ArrayType>(Ty))
      error("String constant data invalid!");

    const ArrayType *ATy = cast<ArrayType>(Ty);
    if (ATy->getElementType() != Type::SByteTy &&
        ATy->getElementType() != Type::UByteTy)
      error("String constant data invalid!");

    // Read character data.  The type tells us how long the string is.
    char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
    read_data(Data, Data+ATy->getNumElements());

    std::vector<Constant*> Elements(ATy->getNumElements());
    if (ATy->getElementType() == Type::SByteTy)
      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
        Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
    else
      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
        Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);

    // Create the constant, inserting it as needed.
    Constant *C = ConstantArray::get(ATy, Elements);
    unsigned Slot = insertValue(C, Typ, Tab);
    ResolveReferencesToConstant(C, Typ, Slot);
    if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
  }
}

/// Parse the constant pool.
void BytecodeReader::ParseConstantPool(ValueTable &Tab,
                                       TypeListTy &TypeTab,
                                       bool isFunction) {
  if (Handler) Handler->handleGlobalConstantsBegin();

  /// In LLVM 1.3 Type does not derive from Value so the types
  /// do not occupy a plane. Consequently, we read the types
  /// first in the constant pool.
  if (isFunction && !hasTypeDerivedFromValue) {
    unsigned NumEntries = read_vbr_uint();
    ParseTypes(TypeTab, NumEntries);
  }

  while (moreInBlock()) {
    unsigned NumEntries = read_vbr_uint();
    unsigned Typ = 0;
    bool isTypeType = read_typeid(Typ);

    /// In LLVM 1.2 and before, Types were written to the
    /// bytecode file in the "Type Type" plane (#12).
    /// In 1.3 plane 12 is now the label plane.  Handle this here.
    if (isTypeType) {
      ParseTypes(TypeTab, NumEntries);
    } else if (Typ == Type::VoidTyID) {
      /// Use of Type::VoidTyID is a misnomer. It actually means
      /// that the following plane is constant strings
      assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
      ParseStringConstants(NumEntries, Tab);
    } else {
      for (unsigned i = 0; i < NumEntries; ++i) {
        Constant *C = ParseConstantValue(Typ);
        assert(C && "ParseConstantValue returned NULL!");
        unsigned Slot = insertValue(C, Typ, Tab);

        // If we are reading a function constant table, make sure that we adjust
        // the slot number to be the real global constant number.
        //
        if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
            ModuleValues[Typ])
          Slot += ModuleValues[Typ]->size();
        ResolveReferencesToConstant(C, Typ, Slot);
      }
    }
  }

  // After we have finished parsing the constant pool, we had better not have
  // any dangling references left.
  if (!ConstantFwdRefs.empty()) {
    ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
    Constant* missingConst = I->second;
    error(utostr(ConstantFwdRefs.size()) +
          " unresolved constant reference exist. First one is '" +
          missingConst->getName() + "' of type '" +
          missingConst->getType()->getDescription() + "'.");
  }

  checkPastBlockEnd("Constant Pool");
  if (Handler) Handler->handleGlobalConstantsEnd();
}

/// Parse the contents of a function. Note that this function can be
/// called lazily by materializeFunction
/// @see materializeFunction
void BytecodeReader::ParseFunctionBody(Function* F) {

  unsigned FuncSize = BlockEnd - At;
  GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;

  unsigned LinkageType = read_vbr_uint();
  switch (LinkageType) {
  case 0: Linkage = GlobalValue::ExternalLinkage; break;
  case 1: Linkage = GlobalValue::WeakLinkage; break;
  case 2: Linkage = GlobalValue::AppendingLinkage; break;
  case 3: Linkage = GlobalValue::InternalLinkage; break;
  case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
  default:
    error("Invalid linkage type for Function.");
    Linkage = GlobalValue::InternalLinkage;
    break;
  }

  F->setLinkage(Linkage);
  if (Handler) Handler->handleFunctionBegin(F,FuncSize);

  // Keep track of how many basic blocks we have read in...
  unsigned BlockNum = 0;
  bool InsertedArguments = false;

  BufPtr MyEnd = BlockEnd;
  while (At < MyEnd) {
    unsigned Type, Size;
    BufPtr OldAt = At;
    read_block(Type, Size);

    switch (Type) {
    case BytecodeFormat::ConstantPoolBlockID:
      if (!InsertedArguments) {
        // Insert arguments into the value table before we parse the first basic
        // block in the function, but after we potentially read in the
        // compaction table.
        insertArguments(F);
        InsertedArguments = true;
      }

      ParseConstantPool(FunctionValues, FunctionTypes, true);
      break;

    case BytecodeFormat::CompactionTableBlockID:
      ParseCompactionTable();
      break;

    case BytecodeFormat::BasicBlock: {
      if (!InsertedArguments) {
        // Insert arguments into the value table before we parse the first basic
        // block in the function, but after we potentially read in the
        // compaction table.
        insertArguments(F);
        InsertedArguments = true;
      }

      BasicBlock *BB = ParseBasicBlock(BlockNum++);
      F->getBasicBlockList().push_back(BB);
      break;
    }

    case BytecodeFormat::InstructionListBlockID: {
      // Insert arguments into the value table before we parse the instruction
      // list for the function, but after we potentially read in the compaction
      // table.
      if (!InsertedArguments) {
        insertArguments(F);
        InsertedArguments = true;
      }

      if (BlockNum)
        error("Already parsed basic blocks!");
      BlockNum = ParseInstructionList(F);
      break;
    }

    case BytecodeFormat::SymbolTableBlockID:
      ParseSymbolTable(F, &F->getSymbolTable());
      break;

    default:
      At += Size;
      if (OldAt > At)
        error("Wrapped around reading bytecode.");
      break;
    }
    BlockEnd = MyEnd;

    // Malformed bc file if read past end of block.
    align32();
  }

  // Make sure there were no references to non-existant basic blocks.
  if (BlockNum != ParsedBasicBlocks.size())
    error("Illegal basic block operand reference");

  ParsedBasicBlocks.clear();

  // Resolve forward references.  Replace any uses of a forward reference value
  // with the real value.
  while (!ForwardReferences.empty()) {
    std::map<std::pair<unsigned,unsigned>, Value*>::iterator
      I = ForwardReferences.begin();
    Value *V = getValue(I->first.first, I->first.second, false);
    Value *PlaceHolder = I->second;
    PlaceHolder->replaceAllUsesWith(V);
    ForwardReferences.erase(I);
    delete PlaceHolder;
  }

  // Clear out function-level types...
  FunctionTypes.clear();
  CompactionTypes.clear();
  CompactionValues.clear();
  freeTable(FunctionValues);

  if (Handler) Handler->handleFunctionEnd(F);
}

/// This function parses LLVM functions lazily. It obtains the type of the
/// function and records where the body of the function is in the bytecode
/// buffer. The caller can then use the ParseNextFunction and
/// ParseAllFunctionBodies to get handler events for the functions.
void BytecodeReader::ParseFunctionLazily() {
  if (FunctionSignatureList.empty())
    error("FunctionSignatureList empty!");

  Function *Func = FunctionSignatureList.back();
  FunctionSignatureList.pop_back();

  // Save the information for future reading of the function
  LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);

  // This function has a body but it's not loaded so it appears `External'.
  // Mark it as a `Ghost' instead to notify the users that it has a body.
  Func->setLinkage(GlobalValue::GhostLinkage);

  // Pretend we've `parsed' this function
  At = BlockEnd;
}

/// The ParserFunction method lazily parses one function. Use this method to
/// casue the parser to parse a specific function in the module. Note that
/// this will remove the function from what is to be included by
/// ParseAllFunctionBodies.
/// @see ParseAllFunctionBodies
/// @see ParseBytecode
void BytecodeReader::ParseFunction(Function* Func) {
  // Find {start, end} pointers and slot in the map. If not there, we're done.
  LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);

  // Make sure we found it
  if (Fi == LazyFunctionLoadMap.end()) {
    error("Unrecognized function of type " + Func->getType()->getDescription());
    return;
  }

  BlockStart = At = Fi->second.Buf;
  BlockEnd = Fi->second.EndBuf;
  assert(Fi->first == Func && "Found wrong function?");

  LazyFunctionLoadMap.erase(Fi);

  this->ParseFunctionBody(Func);
}

/// The ParseAllFunctionBodies method parses through all the previously
/// unparsed functions in the bytecode file. If you want to completely parse
/// a bytecode file, this method should be called after Parsebytecode because
/// Parsebytecode only records the locations in the bytecode file of where
/// the function definitions are located. This function uses that information
/// to materialize the functions.
/// @see ParseBytecode
void BytecodeReader::ParseAllFunctionBodies() {
  LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
  LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();

  while (Fi != Fe) {
    Function* Func = Fi->first;
    BlockStart = At = Fi->second.Buf;
    BlockEnd = Fi->second.EndBuf;
    ParseFunctionBody(Func);
    ++Fi;
  }
  LazyFunctionLoadMap.clear();
}

/// Parse the global type list
void BytecodeReader::ParseGlobalTypes() {
  // Read the number of types
  unsigned NumEntries = read_vbr_uint();

  // Ignore the type plane identifier for types if the bc file is pre 1.3
  if (hasTypeDerivedFromValue)
    read_vbr_uint();

  ParseTypes(ModuleTypes, NumEntries);
}

/// Parse the Global info (types, global vars, constants)
void BytecodeReader::ParseModuleGlobalInfo() {

  if (Handler) Handler->handleModuleGlobalsBegin();

  // Read global variables...
  unsigned VarType = read_vbr_uint();
  while (VarType != Type::VoidTyID) { // List is terminated by Void
    // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
    // Linkage, bit4+ = slot#
    unsigned SlotNo = VarType >> 5;
    if (sanitizeTypeId(SlotNo))
      error("Invalid type (type type) for global var!");
    unsigned LinkageID = (VarType >> 2) & 7;
    bool isConstant = VarType & 1;
    bool hasInitializer = (VarType & 2) != 0;
    unsigned Alignment = 0;
    
    // An extension word is present when linkage = 3 (internal) and hasinit = 0.
    if (LinkageID == 3 && !hasInitializer) {
      unsigned ExtWord = read_vbr_uint();
      // The extension word has this format: bit 0 = has initializer, bit 1-3 =
      // linkage, bit 4-8 = alignment (log2), bits 10+ = future use.
      hasInitializer = ExtWord & 1;
      LinkageID = (ExtWord >> 1) & 7;
      Alignment = (1 << ((ExtWord >> 4) & 31)) >> 1;
    }

    GlobalValue::LinkageTypes Linkage;
    switch (LinkageID) {
    case 0: Linkage = GlobalValue::ExternalLinkage;  break;
    case 1: Linkage = GlobalValue::WeakLinkage;      break;
    case 2: Linkage = GlobalValue::AppendingLinkage; break;
    case 3: Linkage = GlobalValue::InternalLinkage;  break;
    case 4: Linkage = GlobalValue::LinkOnceLinkage;  break;
    default:
      error("Unknown linkage type: " + utostr(LinkageID));
      Linkage = GlobalValue::InternalLinkage;
      break;
    }

    const Type *Ty = getType(SlotNo);
    if (!Ty)
      error("Global has no type! SlotNo=" + utostr(SlotNo));

    if (!isa<PointerType>(Ty))
      error("Global not a pointer type! Ty= " + Ty->getDescription());

    const Type *ElTy = cast<PointerType>(Ty)->getElementType();

    // Create the global variable...
    GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
                                            0, "", TheModule);
    GV->setAlignment(Alignment);
    insertValue(GV, SlotNo, ModuleValues);

    unsigned initSlot = 0;
    if (hasInitializer) {
      initSlot = read_vbr_uint();
      GlobalInits.push_back(std::make_pair(GV, initSlot));
    }

    // Notify handler about the global value.
    if (Handler)
      Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot);

    // Get next item
    VarType = read_vbr_uint();
  }

  // Read the function objects for all of the functions that are coming
  unsigned FnSignature = read_vbr_uint();

  if (hasNoFlagsForFunctions)
    FnSignature = (FnSignature << 5) + 1;

  // List is terminated by VoidTy.
  while (((FnSignature & (~0U >> 1)) >> 5) != Type::VoidTyID) {
    const Type *Ty = getType((FnSignature & (~0U >> 1)) >> 5);
    if (!isa<PointerType>(Ty) ||
        !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
      error("Function not a pointer to function type! Ty = " +
            Ty->getDescription());
    }

    // We create functions by passing the underlying FunctionType to create...
    const FunctionType* FTy =
      cast<FunctionType>(cast<PointerType>(Ty)->getElementType());


    // Insert the place holder.
    Function* Func = new Function(FTy, GlobalValue::ExternalLinkage,
                                  "", TheModule);
    insertValue(Func, (FnSignature & (~0U >> 1)) >> 5, ModuleValues);

    // Flags are not used yet.
    unsigned Flags = FnSignature & 31;

    // Save this for later so we know type of lazily instantiated functions.
    // Note that known-external functions do not have FunctionInfo blocks, so we
    // do not add them to the FunctionSignatureList.
    if ((Flags & (1 << 4)) == 0)
      FunctionSignatureList.push_back(Func);

    // Get the calling convention from the low bits.
    unsigned CC = Flags & 15;
    unsigned Alignment = 0;
    if (FnSignature & (1 << 31)) {  // Has extension word?
      unsigned ExtWord = read_vbr_uint();
      Alignment = (1 << (ExtWord & 31)) >> 1;
      CC |= ((ExtWord >> 5) & 15) << 4;
    }
    
    Func->setCallingConv(CC-1);
    Func->setAlignment(Alignment);

    if (Handler) Handler->handleFunctionDeclaration(Func);

    // Get the next function signature.
    FnSignature = read_vbr_uint();
    if (hasNoFlagsForFunctions)
      FnSignature = (FnSignature << 5) + 1;
  }

  // Now that the function signature list is set up, reverse it so that we can
  // remove elements efficiently from the back of the vector.
  std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());

  // If this bytecode format has dependent library information in it ..
  if (!hasNoDependentLibraries) {
    // Read in the number of dependent library items that follow
    unsigned num_dep_libs = read_vbr_uint();
    std::string dep_lib;
    while( num_dep_libs-- ) {
      dep_lib = read_str();
      TheModule->addLibrary(dep_lib);
      if (Handler)
        Handler->handleDependentLibrary(dep_lib);
    }


    // Read target triple and place into the module
    std::string triple = read_str();
    TheModule->setTargetTriple(triple);
    if (Handler)
      Handler->handleTargetTriple(triple);
  }

  if (hasInconsistentModuleGlobalInfo)
    align32();

  // This is for future proofing... in the future extra fields may be added that
  // we don't understand, so we transparently ignore them.
  //
  At = BlockEnd;

  if (Handler) Handler->handleModuleGlobalsEnd();
}

/// Parse the version information and decode it by setting flags on the
/// Reader that enable backward compatibility of the reader.
void BytecodeReader::ParseVersionInfo() {
  unsigned Version = read_vbr_uint();

  // Unpack version number: low four bits are for flags, top bits = version
  Module::Endianness  Endianness;
  Module::PointerSize PointerSize;
  Endianness  = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
  PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;

  bool hasNoEndianness = Version & 4;
  bool hasNoPointerSize = Version & 8;

  RevisionNum = Version >> 4;

  // Default values for the current bytecode version
  hasInconsistentModuleGlobalInfo = false;
  hasExplicitPrimitiveZeros = false;
  hasRestrictedGEPTypes = false;
  hasTypeDerivedFromValue = false;
  hasLongBlockHeaders = false;
  has32BitTypes = false;
  hasNoDependentLibraries = false;
  hasAlignment = false;
  hasNoUndefValue = false;
  hasNoFlagsForFunctions = false;
  hasNoUnreachableInst = false;

  switch (RevisionNum) {
  case 0:               //  LLVM 1.0, 1.1 (Released)
    // Base LLVM 1.0 bytecode format.
    hasInconsistentModuleGlobalInfo = true;
    hasExplicitPrimitiveZeros = true;

    // FALL THROUGH

  case 1:               // LLVM 1.2 (Released)
    // LLVM 1.2 added explicit support for emitting strings efficiently.

    // Also, it fixed the problem where the size of the ModuleGlobalInfo block
    // included the size for the alignment at the end, where the rest of the
    // blocks did not.

    // LLVM 1.2 and before required that GEP indices be ubyte constants for
    // structures and longs for sequential types.
    hasRestrictedGEPTypes = true;

    // LLVM 1.2 and before had the Type class derive from Value class. This
    // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
    // written differently because Types can no longer be part of the
    // type planes for Values.
    hasTypeDerivedFromValue = true;

    // FALL THROUGH

  case 2:                // 1.2.5 (Not Released)

    // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
    // especially for small files where the 8 bytes per block is a large
    // fraction of the total block size. In LLVM 1.3, the block type and length
    // are compressed into a single 32-bit unsigned integer. 27 bits for length,
    // 5 bits for block type.
    hasLongBlockHeaders = true;

    // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
    // this has been reduced to vbr_uint24. It shouldn't make much difference
    // since we haven't run into a module with > 24 million types, but for
    // safety the 24-bit restriction has been enforced in 1.3 to free some bits
    // in various places and to ensure consistency.
    has32BitTypes = true;

    // LLVM 1.2 and earlier did not provide a target triple nor a list of
    // libraries on which the bytecode is dependent. LLVM 1.3 provides these
    // features, for use in future versions of LLVM.
    hasNoDependentLibraries = true;

    // FALL THROUGH

  case 3:               // LLVM 1.3 (Released)
    // LLVM 1.3 and earlier caused alignment bytes to be written on some block
    // boundaries and at the end of some strings. In extreme cases (e.g. lots
    // of GEP references to a constant array), this can increase the file size
    // by 30% or more. In version 1.4 alignment is done away with completely.
    hasAlignment = true;

    // FALL THROUGH

  case 4:               // 1.3.1 (Not Released)
    // In version 4, we did not support the 'undef' constant.
    hasNoUndefValue = true;

    // In version 4 and above, we did not include space for flags for functions
    // in the module info block.
    hasNoFlagsForFunctions = true;

    // In version 4 and above, we did not include the 'unreachable' instruction
    // in the opcode numbering in the bytecode file.
    hasNoUnreachableInst = true;
    break;

    // FALL THROUGH

  case 5:               // 1.4 (Released)
    break;

  default:
    error("Unknown bytecode version number: " + itostr(RevisionNum));
  }

  if (hasNoEndianness) Endianness  = Module::AnyEndianness;
  if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;

  TheModule->setEndianness(Endianness);
  TheModule->setPointerSize(PointerSize);

  if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
}

/// Parse a whole module.
void BytecodeReader::ParseModule() {
  unsigned Type, Size;

  FunctionSignatureList.clear(); // Just in case...

  // Read into instance variables...
  ParseVersionInfo();
  align32();

  bool SeenModuleGlobalInfo = false;
  bool SeenGlobalTypePlane = false;
  BufPtr MyEnd = BlockEnd;
  while (At < MyEnd) {
    BufPtr OldAt = At;
    read_block(Type, Size);

    switch (Type) {

    case BytecodeFormat::GlobalTypePlaneBlockID:
      if (SeenGlobalTypePlane)
        error("Two GlobalTypePlane Blocks Encountered!");

      if (Size > 0)
        ParseGlobalTypes();
      SeenGlobalTypePlane = true;
      break;

    case BytecodeFormat::ModuleGlobalInfoBlockID:
      if (SeenModuleGlobalInfo)
        error("Two ModuleGlobalInfo Blocks Encountered!");
      ParseModuleGlobalInfo();
      SeenModuleGlobalInfo = true;
      break;

    case BytecodeFormat::ConstantPoolBlockID:
      ParseConstantPool(ModuleValues, ModuleTypes,false);
      break;

    case BytecodeFormat::FunctionBlockID:
      ParseFunctionLazily();
      break;

    case BytecodeFormat::SymbolTableBlockID:
      ParseSymbolTable(0, &TheModule->getSymbolTable());
      break;

    default:
      At += Size;
      if (OldAt > At) {
        error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
      }
      break;
    }
    BlockEnd = MyEnd;
    align32();
  }

  // After the module constant pool has been read, we can safely initialize
  // global variables...
  while (!GlobalInits.empty()) {
    GlobalVariable *GV = GlobalInits.back().first;
    unsigned Slot = GlobalInits.back().second;
    GlobalInits.pop_back();

    // Look up the initializer value...
    // FIXME: Preserve this type ID!

    const llvm::PointerType* GVType = GV->getType();
    unsigned TypeSlot = getTypeSlot(GVType->getElementType());
    if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
      if (GV->hasInitializer())
        error("Global *already* has an initializer?!");
      if (Handler) Handler->handleGlobalInitializer(GV,CV);
      GV->setInitializer(CV);
    } else
      error("Cannot find initializer value.");
  }

  if (!ConstantFwdRefs.empty())
    error("Use of undefined constants in a module");

  /// Make sure we pulled them all out. If we didn't then there's a declaration
  /// but a missing body. That's not allowed.
  if (!FunctionSignatureList.empty())
    error("Function declared, but bytecode stream ended before definition");
}

/// This function completely parses a bytecode buffer given by the \p Buf
/// and \p Length parameters.
void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
                                   const std::string &ModuleID) {

  try {
    RevisionNum = 0;
    At = MemStart = BlockStart = Buf;
    MemEnd = BlockEnd = Buf + Length;

    // Create the module
    TheModule = new Module(ModuleID);

    if (Handler) Handler->handleStart(TheModule, Length);

    // Read the four bytes of the signature.
    unsigned Sig = read_uint();

    // If this is a compressed file
    if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {

      // Invoke the decompression of the bytecode. Note that we have to skip the
      // file's magic number which is not part of the compressed block. Hence,
      // the Buf+4 and Length-4. The result goes into decompressedBlock, a data
      // member for retention until BytecodeReader is destructed.
      unsigned decompressedLength = Compressor::decompressToNewBuffer(
          (char*)Buf+4,Length-4,decompressedBlock);

      // We must adjust the buffer pointers used by the bytecode reader to point
      // into the new decompressed block. After decompression, the
      // decompressedBlock will point to a contiguous memory area that has
      // the decompressed data.
      At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock;
      MemEnd = BlockEnd = Buf + decompressedLength;

    // else if this isn't a regular (uncompressed) bytecode file, then its
    // and error, generate that now.
    } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
      error("Invalid bytecode signature: " + utohexstr(Sig));
    }

    // Tell the handler we're starting a module
    if (Handler) Handler->handleModuleBegin(ModuleID);

    // Get the module block and size and verify. This is handled specially
    // because the module block/size is always written in long format. Other
    // blocks are written in short format so the read_block method is used.
    unsigned Type, Size;
    Type = read_uint();
    Size = read_uint();
    if (Type != BytecodeFormat::ModuleBlockID) {
      error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
            + utostr(Size));
    }

    // It looks like the darwin ranlib program is broken, and adds trailing
    // garbage to the end of some bytecode files.  This hack allows the bc
    // reader to ignore trailing garbage on bytecode files.
    if (At + Size < MemEnd)
      MemEnd = BlockEnd = At+Size;

    if (At + Size != MemEnd)
      error("Invalid Top Level Block Length! Type:" + utostr(Type)
            + ", Size:" + utostr(Size));

    // Parse the module contents
    this->ParseModule();

    // Check for missing functions
    if (hasFunctions())
      error("Function expected, but bytecode stream ended!");

    // Tell the handler we're done with the module
    if (Handler)
      Handler->handleModuleEnd(ModuleID);

    // Tell the handler we're finished the parse
    if (Handler) Handler->handleFinish();

  } catch (std::string& errstr) {
    if (Handler) Handler->handleError(errstr);
    freeState();
    delete TheModule;
    TheModule = 0;
    if (decompressedBlock != 0 ) {
      ::free(decompressedBlock);
      decompressedBlock = 0;
    }
    throw;
  } catch (...) {
    std::string msg("Unknown Exception Occurred");
    if (Handler) Handler->handleError(msg);
    freeState();
    delete TheModule;
    TheModule = 0;
    if (decompressedBlock != 0) {
      ::free(decompressedBlock);
      decompressedBlock = 0;
    }
    throw msg;
  }
}

//===----------------------------------------------------------------------===//
//=== Default Implementations of Handler Methods
//===----------------------------------------------------------------------===//

BytecodeHandler::~BytecodeHandler() {}