aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/AsmPrinter.cpp
blob: 7abb8d59543e9f1ea9eda11ed48908b520b2b3a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Constants.h"
#include "llvm/Instruction.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;

bool AsmPrinter::doInitialization(Module &M) {
  Mang = new Mangler(M, GlobalPrefix);
  return false;
}

bool AsmPrinter::doFinalization(Module &M) {
  delete Mang; Mang = 0;
  return false;
}

void AsmPrinter::setupMachineFunction(MachineFunction &MF) {
  // What's my mangled name?
  CurrentFnName = Mang->getValueName((Value*)MF.getFunction());
}

// emitAlignment - Emit an alignment directive to the specified power of two.
void AsmPrinter::emitAlignment(unsigned NumBits) const {
  if (AlignmentIsInBytes) NumBits = 1 << NumBits;
  O << AlignDirective << NumBits << "\n";
}

/// emitZeros - Emit a block of zeros.
///
void AsmPrinter::emitZeros(uint64_t NumZeros) const {
  if (NumZeros) {
    if (ZeroDirective)
      O << ZeroDirective << NumZeros << "\n";
    else {
      for (; NumZeros; --NumZeros)
        O << Data8bitsDirective << "0\n";
    }
  }
}

// Print out the specified constant, without a storage class.  Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::emitConstantValueOnly(const Constant *CV) {
  if (CV->isNullValue() || isa<UndefValue>(CV))
    O << "0";
  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
    assert(CB == ConstantBool::True);
    O << "1";
  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
    if (((CI->getValue() << 32) >> 32) == CI->getValue())
      O << CI->getValue();
    else
      O << (unsigned long long)CI->getValue();
  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
    O << CI->getValue();
  else if (isa<GlobalValue>((Value*)CV)) {
    // This is a constant address for a global variable or function. Use the
    // name of the variable or function as the address value, possibly
    // decorating it with GlobalVarAddrPrefix/Suffix or
    // FunctionAddrPrefix/Suffix (these all default to "" )
    if (isa<Function>((Value*)CV))
      O << FunctionAddrPrefix << Mang->getValueName(CV) << FunctionAddrSuffix;
    else
      O << GlobalVarAddrPrefix << Mang->getValueName(CV) << GlobalVarAddrSuffix;
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    const TargetData &TD = TM.getTargetData();
    switch(CE->getOpcode()) {
    case Instruction::GetElementPtr: {
      // generate a symbolic expression for the byte address
      const Constant *ptrVal = CE->getOperand(0);
      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
      if (int64_t Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
        if (Offset)
          O << "(";
        emitConstantValueOnly(ptrVal);
        if (Offset > 0)
          O << ") + " << Offset;
        else if (Offset < 0)
          O << ") - " << -Offset;
      } else {
        emitConstantValueOnly(ptrVal);
      }
      break;
    }
    case Instruction::Cast: {
      // Support only non-converting or widening casts for now, that is, ones
      // that do not involve a change in value.  This assertion is really gross,
      // and may not even be a complete check.
      Constant *Op = CE->getOperand(0);
      const Type *OpTy = Op->getType(), *Ty = CE->getType();

      // Remember, kids, pointers can be losslessly converted back and forth
      // into 32-bit or wider integers, regardless of signedness. :-P
      assert(((isa<PointerType>(OpTy)
               && (Ty == Type::LongTy || Ty == Type::ULongTy
                   || Ty == Type::IntTy || Ty == Type::UIntTy))
              || (isa<PointerType>(Ty)
                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
                   && OpTy->isLosslesslyConvertibleTo(Ty))))
             && "FIXME: Don't yet support this kind of constant cast expr");
      O << "(";
      emitConstantValueOnly(Op);
      O << ")";
      break;
    }
    case Instruction::Add:
      O << "(";
      emitConstantValueOnly(CE->getOperand(0));
      O << ") + (";
      emitConstantValueOnly(CE->getOperand(1));
      O << ")";
      break;
    default:
      assert(0 && "Unsupported operator!");
    }
  } else {
    assert(0 && "Unknown constant value!");
  }
}

/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
  return (X&7)+'0';
}

/// getAsCString - Return the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
  assert(CVA->isString() && "Array is not string compatible!");

  O << "\"";
  for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
    unsigned char C =
        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getRawValue();

    if (C == '"') {
      O << "\\\"";
    } else if (C == '\\') {
      O << "\\\\";
    } else if (isprint(C)) {
      O << C;
    } else {
      switch(C) {
      case '\b': O << "\\b"; break;
      case '\f': O << "\\f"; break;
      case '\n': O << "\\n"; break;
      case '\r': O << "\\r"; break;
      case '\t': O << "\\t"; break;
      default:
        O << '\\';
        O << toOctal(C >> 6);
        O << toOctal(C >> 3);
        O << toOctal(C >> 0);
        break;
      }
    }
  }
  O << "\"";
}

/// emitGlobalConstant - Print a general LLVM constant to the .s file.
///
void AsmPrinter::emitGlobalConstant(const Constant *CV) {
  const TargetData &TD = TM.getTargetData();

  if (CV->isNullValue() || isa<UndefValue>(CV)) {
    emitZeros(TD.getTypeSize(CV->getType()));
    return;
  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
    if (CVA->isString()) {
      O << AsciiDirective;
      printAsCString(O, CVA);
      O << "\n";
    } else { // Not a string.  Print the values in successive locations
      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
        emitGlobalConstant(CVA->getOperand(i));
    }
    return;
  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
    // Print the fields in successive locations. Pad to align if needed!
    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
    uint64_t sizeSoFar = 0;
    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
      const Constant* field = CVS->getOperand(i);

      // Check if padding is needed and insert one or more 0s.
      uint64_t fieldSize = TD.getTypeSize(field->getType());
      uint64_t padSize = ((i == e-1? cvsLayout->StructSize
                           : cvsLayout->MemberOffsets[i+1])
                          - cvsLayout->MemberOffsets[i]) - fieldSize;
      sizeSoFar += fieldSize + padSize;

      // Now print the actual field value
      emitGlobalConstant(field);

      // Insert the field padding unless it's zero bytes...
      emitZeros(padSize);
    }
    assert(sizeSoFar == cvsLayout->StructSize &&
           "Layout of constant struct may be incorrect!");
    return;
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    // FP Constants are printed as integer constants to avoid losing
    // precision...
    double Val = CFP->getValue();
    if (CFP->getType() == Type::DoubleTy) {
      union DU {                            // Abide by C TBAA rules
        double FVal;
        uint64_t UVal;
      } U;
      U.FVal = Val;

      if (Data64bitsDirective)
        O << Data64bitsDirective << U.UVal << "\t" << CommentString
          << " double value: " << Val << "\n";
      else if (TD.isBigEndian()) {
        O << Data32bitsDirective << unsigned(U.UVal >> 32)
          << "\t" << CommentString << " double most significant word "
          << Val << "\n";
        O << Data32bitsDirective << unsigned(U.UVal)
          << "\t" << CommentString << " double least significant word "
          << Val << "\n";
      } else {
        O << Data32bitsDirective << unsigned(U.UVal)
          << "\t" << CommentString << " double least significant word " << Val
          << "\n";
        O << Data32bitsDirective << unsigned(U.UVal >> 32)
          << "\t" << CommentString << " double most significant word " << Val
          << "\n";
      }
      return;
    } else {
      union FU {                            // Abide by C TBAA rules
        float FVal;
        int32_t UVal;
      } U;
      U.FVal = (float)Val;

      O << Data32bitsDirective << U.UVal << "\t" << CommentString
        << " float " << Val << "\n";
      return;
    }
  } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) {
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
      uint64_t Val = CI->getRawValue();

      if (Data64bitsDirective)
        O << Data64bitsDirective << Val << "\n";
      else if (TD.isBigEndian()) {
        O << Data32bitsDirective << unsigned(Val >> 32)
          << "\t" << CommentString << " Double-word most significant word "
          << Val << "\n";
        O << Data32bitsDirective << unsigned(Val)
          << "\t" << CommentString << " Double-word least significant word "
          << Val << "\n";
      } else {
        O << Data32bitsDirective << unsigned(Val)
          << "\t" << CommentString << " Double-word least significant word "
          << Val << "\n";
        O << Data32bitsDirective << unsigned(Val >> 32)
          << "\t" << CommentString << " Double-word most significant word "
          << Val << "\n";
      }
      return;
    }
  }

  const Type *type = CV->getType();
  switch (type->getTypeID()) {
  case Type::BoolTyID:
  case Type::UByteTyID: case Type::SByteTyID:
    O << Data8bitsDirective;
    break;
  case Type::UShortTyID: case Type::ShortTyID:
    O << Data16bitsDirective;
    break;
  case Type::PointerTyID:
    if (TD.getPointerSize() == 8) {
      O << Data64bitsDirective;
      break;
    }
    //Fall through for pointer size == int size
  case Type::UIntTyID: case Type::IntTyID:
    O << Data32bitsDirective;
    break;
  case Type::ULongTyID: case Type::LongTyID:
    assert (0 && "Should have already output double-word constant.");
  case Type::FloatTyID: case Type::DoubleTyID:
    assert (0 && "Should have already output floating point constant.");
  default:
    assert (0 && "Can't handle printing this type of thing");
    break;
  }
  emitConstantValueOnly(CV);
  O << "\n";
}