aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/DFAPacketizer.cpp
blob: 5ff641c7c8445ddc743918afa35f88bcd1121777 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//=- llvm/CodeGen/DFAPacketizer.cpp - DFA Packetizer for VLIW -*- C++ -*-=====//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This class implements a deterministic finite automaton (DFA) based
// packetizing mechanism for VLIW architectures. It provides APIs to
// determine whether there exists a legal mapping of instructions to
// functional unit assignments in a packet. The DFA is auto-generated from
// the target's Schedule.td file.
//
// A DFA consists of 3 major elements: states, inputs, and transitions. For
// the packetizing mechanism, the input is the set of instruction classes for
// a target. The state models all possible combinations of functional unit
// consumption for a given set of instructions in a packet. A transition
// models the addition of an instruction to a packet. In the DFA constructed
// by this class, if an instruction can be added to a packet, then a valid
// transition exists from the corresponding state. Invalid transitions
// indicate that the instruction cannot be added to the current packet.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
using namespace llvm;

DFAPacketizer::DFAPacketizer(const InstrItineraryData *I, const int (*SIT)[2],
                             const unsigned *SET):
  InstrItins(I), CurrentState(0), DFAStateInputTable(SIT),
  DFAStateEntryTable(SET) {}


//
// ReadTable - Read the DFA transition table and update CachedTable.
//
// Format of the transition tables:
// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
//                           transitions
// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable
//                         for the ith state
//
void DFAPacketizer::ReadTable(unsigned int state) {
  unsigned ThisState = DFAStateEntryTable[state];
  unsigned NextStateInTable = DFAStateEntryTable[state+1];
  // Early exit in case CachedTable has already contains this
  // state's transitions.
  if (CachedTable.count(UnsignPair(state,
                                   DFAStateInputTable[ThisState][0])))
    return;

  for (unsigned i = ThisState; i < NextStateInTable; i++)
    CachedTable[UnsignPair(state, DFAStateInputTable[i][0])] =
      DFAStateInputTable[i][1];
}


// canReserveResources - Check if the resources occupied by a MCInstrDesc
// are available in the current state.
bool DFAPacketizer::canReserveResources(const llvm::MCInstrDesc *MID) {
  unsigned InsnClass = MID->getSchedClass();
  const llvm::InstrStage *IS = InstrItins->beginStage(InsnClass);
  unsigned FuncUnits = IS->getUnits();
  UnsignPair StateTrans = UnsignPair(CurrentState, FuncUnits);
  ReadTable(CurrentState);
  return (CachedTable.count(StateTrans) != 0);
}


// reserveResources - Reserve the resources occupied by a MCInstrDesc and
// change the current state to reflect that change.
void DFAPacketizer::reserveResources(const llvm::MCInstrDesc *MID) {
  unsigned InsnClass = MID->getSchedClass();
  const llvm::InstrStage *IS = InstrItins->beginStage(InsnClass);
  unsigned FuncUnits = IS->getUnits();
  UnsignPair StateTrans = UnsignPair(CurrentState, FuncUnits);
  ReadTable(CurrentState);
  assert(CachedTable.count(StateTrans) != 0);
  CurrentState = CachedTable[StateTrans];
}


// canReserveResources - Check if the resources occupied by a machine
// instruction are available in the current state.
bool DFAPacketizer::canReserveResources(llvm::MachineInstr *MI) {
  const llvm::MCInstrDesc &MID = MI->getDesc();
  return canReserveResources(&MID);
}

// reserveResources - Reserve the resources occupied by a machine
// instruction and change the current state to reflect that change.
void DFAPacketizer::reserveResources(llvm::MachineInstr *MI) {
  const llvm::MCInstrDesc &MID = MI->getDesc();
  reserveResources(&MID);
}

namespace {
// DefaultVLIWScheduler - This class extends ScheduleDAGInstrs and overrides
// Schedule method to build the dependence graph.
class DefaultVLIWScheduler : public ScheduleDAGInstrs {
public:
  DefaultVLIWScheduler(MachineFunction &MF, MachineLoopInfo &MLI,
                       MachineDominatorTree &MDT, bool IsPostRA);
  // Schedule - Actual scheduling work.
  void schedule();
};
} // end anonymous namespace

DefaultVLIWScheduler::DefaultVLIWScheduler(
  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
  bool IsPostRA) :
  ScheduleDAGInstrs(MF, MLI, MDT, IsPostRA) {
}

void DefaultVLIWScheduler::schedule() {
  // Build the scheduling graph.
  buildSchedGraph(0);
}

// VLIWPacketizerList Ctor
VLIWPacketizerList::VLIWPacketizerList(
  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
  bool IsPostRA) : TM(MF.getTarget()), MF(MF)  {
  TII = TM.getInstrInfo();
  ResourceTracker = TII->CreateTargetScheduleState(&TM, 0);
  SchedulerImpl = new DefaultVLIWScheduler(MF, MLI, MDT, IsPostRA);
}

// VLIWPacketizerList Dtor
VLIWPacketizerList::~VLIWPacketizerList() {
  delete SchedulerImpl;
  delete ResourceTracker;
}

// ignorePseudoInstruction - ignore pseudo instructions.
bool VLIWPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
                                                 MachineBasicBlock *MBB) {
  if (MI->isDebugValue())
    return true;

  if (TII->isSchedulingBoundary(MI, MBB, MF))
    return true;

  return false;
}

// isSoloInstruction - return true if instruction I must end previous
// packet.
bool VLIWPacketizerList::isSoloInstruction(MachineInstr *I) {
  if (I->isInlineAsm())
    return true;

  return false;
}

// addToPacket - Add I to the current packet and reserve resource.
void VLIWPacketizerList::addToPacket(MachineInstr *MI) {
  CurrentPacketMIs.push_back(MI);
  ResourceTracker->reserveResources(MI);
}

// endPacket - End the current packet, bundle packet instructions and reset
// DFA state.
void VLIWPacketizerList::endPacket(MachineBasicBlock *MBB,
                                         MachineInstr *I) {
  if (CurrentPacketMIs.size() > 1) {
    MachineInstr *MIFirst = CurrentPacketMIs.front();
    finalizeBundle(*MBB, MIFirst, I);
  }
  CurrentPacketMIs.clear();
  ResourceTracker->clearResources();
}

// PacketizeMIs - Bundle machine instructions into packets.
void VLIWPacketizerList::PacketizeMIs(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator BeginItr,
                                      MachineBasicBlock::iterator EndItr) {
  assert(MBB->end() == EndItr && "Bad EndIndex");

  SchedulerImpl->enterRegion(MBB, BeginItr, EndItr, MBB->size());

  // Build the DAG without reordering instructions.
  SchedulerImpl->schedule();

  // Remember scheduling units.
  SUnits = SchedulerImpl->SUnits;

  // The main packetizer loop.
  for (; BeginItr != EndItr; ++BeginItr) {
    MachineInstr *MI = BeginItr;

    // Ignore pseudo instructions.
    if (ignorePseudoInstruction(MI, MBB))
      continue;

    // End the current packet if needed.
    if (isSoloInstruction(MI)) {
      endPacket(MBB, MI);
      continue;
    }

    SUnit *SUI = SchedulerImpl->getSUnit(MI);
    assert(SUI && "Missing SUnit Info!");

    // Ask DFA if machine resource is available for MI.
    bool ResourceAvail = ResourceTracker->canReserveResources(MI);
    if (ResourceAvail) {
      // Dependency check for MI with instructions in CurrentPacketMIs.
      for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
           VE = CurrentPacketMIs.end(); VI != VE; ++VI) {
        MachineInstr *MJ = *VI;
        SUnit *SUJ = SchedulerImpl->getSUnit(MJ);
        assert(SUJ && "Missing SUnit Info!");

        // Is it legal to packetize SUI and SUJ together.
        if (!isLegalToPacketizeTogether(SUI, SUJ)) {
          // Allow packetization if dependency can be pruned.
          if (!isLegalToPruneDependencies(SUI, SUJ)) {
            // End the packet if dependency cannot be pruned.
            endPacket(MBB, MI);
            break;
          } // !isLegalToPruneDependencies.
        } // !isLegalToPacketizeTogether.
      } // For all instructions in CurrentPacketMIs.
    } else {
      // End the packet if resource is not available.
      endPacket(MBB, MI);
    }

    // Add MI to the current packet.
    addToPacket(MI);
  } // For all instructions in BB.

  // End any packet left behind.
  endPacket(MBB, EndItr);

  SchedulerImpl->exitRegion();
}