aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/ELFWriter.cpp
blob: b644ebeb4be53a73e3234379b90ae34b6e11b59e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the target-independent ELF writer.  This file writes out
// the ELF file in the following order:
//
//  #1. ELF Header
//  #2. '.text' section
//  #3. '.data' section
//  #4. '.bss' section  (conceptual position in file)
//  ...
//  #X. '.shstrtab' section
//  #Y. Section Table
//
// The entries in the section table are laid out as:
//  #0. Null entry [required]
//  #1. ".text" entry - the program code
//  #2. ".data" entry - global variables with initializers.     [ if needed ]
//  #3. ".bss" entry  - global variables without initializers.  [ if needed ]
//  ...
//  #N. ".shstrtab" entry - String table for the section names.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "elfwriter"
#include "ELF.h"
#include "ELFWriter.h"
#include "ELFCodeEmitter.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/ObjectCodeEmitter.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetELFWriterInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallString.h"
using namespace llvm;

char ELFWriter::ID = 0;

//===----------------------------------------------------------------------===//
//                          ELFWriter Implementation
//===----------------------------------------------------------------------===//

ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
  : MachineFunctionPass(&ID), O(o), TM(tm),
    OutContext(*new MCContext(*TM.getMCAsmInfo())),
    TLOF(TM.getTargetLowering()->getObjFileLowering()),
    is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
    isLittleEndian(TM.getTargetData()->isLittleEndian()),
    ElfHdr(isLittleEndian, is64Bit) {

  MAI = TM.getMCAsmInfo();
  TEW = TM.getELFWriterInfo();

  // Create the object code emitter object for this target.
  ElfCE = new ELFCodeEmitter(*this);

  // Inital number of sections
  NumSections = 0;
}

ELFWriter::~ELFWriter() {
  delete ElfCE;
  delete &OutContext;

  while(!SymbolList.empty()) {
    delete SymbolList.back(); 
    SymbolList.pop_back();
  }

  while(!PrivateSyms.empty()) {
    delete PrivateSyms.back(); 
    PrivateSyms.pop_back();
  }

  while(!SectionList.empty()) {
    delete SectionList.back(); 
    SectionList.pop_back();
  }

  // Release the name mangler object.
  delete Mang; Mang = 0;
}

// doInitialization - Emit the file header and all of the global variables for
// the module to the ELF file.
bool ELFWriter::doInitialization(Module &M) {
  // Initialize TargetLoweringObjectFile.
  const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM);
  
  Mang = new Mangler(OutContext, *TM.getTargetData());

  // ELF Header
  // ----------
  // Fields e_shnum e_shstrndx are only known after all section have
  // been emitted. They locations in the ouput buffer are recorded so
  // to be patched up later.
  //
  // Note
  // ----
  // emitWord method behaves differently for ELF32 and ELF64, writing
  // 4 bytes in the former and 8 in the last for *_off and *_addr elf types

  ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
  ElfHdr.emitByte('E');  // e_ident[EI_MAG1]
  ElfHdr.emitByte('L');  // e_ident[EI_MAG2]
  ElfHdr.emitByte('F');  // e_ident[EI_MAG3]

  ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
  ElfHdr.emitByte(TEW->getEIData());  // e_ident[EI_DATA]
  ElfHdr.emitByte(EV_CURRENT);        // e_ident[EI_VERSION]
  ElfHdr.emitAlignment(16);           // e_ident[EI_NIDENT-EI_PAD]

  ElfHdr.emitWord16(ET_REL);             // e_type
  ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
  ElfHdr.emitWord32(EV_CURRENT);         // e_version
  ElfHdr.emitWord(0);                    // e_entry, no entry point in .o file
  ElfHdr.emitWord(0);                    // e_phoff, no program header for .o
  ELFHdr_e_shoff_Offset = ElfHdr.size();
  ElfHdr.emitWord(0);                    // e_shoff = sec hdr table off in bytes
  ElfHdr.emitWord32(TEW->getEFlags());   // e_flags = whatever the target wants
  ElfHdr.emitWord16(TEW->getHdrSize());  // e_ehsize = ELF header size
  ElfHdr.emitWord16(0);                  // e_phentsize = prog header entry size
  ElfHdr.emitWord16(0);                  // e_phnum = # prog header entries = 0

  // e_shentsize = Section header entry size
  ElfHdr.emitWord16(TEW->getSHdrSize());

  // e_shnum     = # of section header ents
  ELFHdr_e_shnum_Offset = ElfHdr.size();
  ElfHdr.emitWord16(0); // Placeholder

  // e_shstrndx  = Section # of '.shstrtab'
  ELFHdr_e_shstrndx_Offset = ElfHdr.size();
  ElfHdr.emitWord16(0); // Placeholder

  // Add the null section, which is required to be first in the file.
  getNullSection();

  // The first entry in the symtab is the null symbol and the second
  // is a local symbol containing the module/file name
  SymbolList.push_back(new ELFSym());
  SymbolList.push_back(ELFSym::getFileSym());

  return false;
}

// AddPendingGlobalSymbol - Add a global to be processed and to
// the global symbol lookup, use a zero index because the table
// index will be determined later.
void ELFWriter::AddPendingGlobalSymbol(const GlobalValue *GV, 
                                       bool AddToLookup /* = false */) {
  PendingGlobals.insert(GV);
  if (AddToLookup) 
    GblSymLookup[GV] = 0;
}

// AddPendingExternalSymbol - Add the external to be processed
// and to the external symbol lookup, use a zero index because
// the symbol table index will be determined later.
void ELFWriter::AddPendingExternalSymbol(const char *External) {
  PendingExternals.insert(External);
  ExtSymLookup[External] = 0;
}

ELFSection &ELFWriter::getDataSection() {
  const MCSectionELF *Data = (const MCSectionELF *)TLOF.getDataSection();
  return getSection(Data->getSectionName(), Data->getType(), 
                    Data->getFlags(), 4);
}

ELFSection &ELFWriter::getBSSSection() {
  const MCSectionELF *BSS = (const MCSectionELF *)TLOF.getBSSSection();
  return getSection(BSS->getSectionName(), BSS->getType(), BSS->getFlags(), 4);
}

// getCtorSection - Get the static constructor section
ELFSection &ELFWriter::getCtorSection() {
  const MCSectionELF *Ctor = (const MCSectionELF *)TLOF.getStaticCtorSection();
  return getSection(Ctor->getSectionName(), Ctor->getType(), Ctor->getFlags()); 
}

// getDtorSection - Get the static destructor section
ELFSection &ELFWriter::getDtorSection() {
  const MCSectionELF *Dtor = (const MCSectionELF *)TLOF.getStaticDtorSection();
  return getSection(Dtor->getSectionName(), Dtor->getType(), Dtor->getFlags());
}

// getTextSection - Get the text section for the specified function
ELFSection &ELFWriter::getTextSection(const Function *F) {
  const MCSectionELF *Text = 
    (const MCSectionELF *)TLOF.SectionForGlobal(F, Mang, TM);
  return getSection(Text->getSectionName(), Text->getType(), Text->getFlags());
}

// getJumpTableSection - Get a read only section for constants when 
// emitting jump tables. TODO: add PIC support
ELFSection &ELFWriter::getJumpTableSection() {
  const MCSectionELF *JT = 
    (const MCSectionELF *)TLOF.getSectionForConstant(SectionKind::getReadOnly());
  return getSection(JT->getSectionName(), JT->getType(), JT->getFlags(),
                    TM.getTargetData()->getPointerABIAlignment());
}

// getConstantPoolSection - Get a constant pool section based on the machine 
// constant pool entry type and relocation info.
ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) {
  SectionKind Kind;
  switch (CPE.getRelocationInfo()) {
  default: llvm_unreachable("Unknown section kind");
  case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
  case 1:
    Kind = SectionKind::getReadOnlyWithRelLocal();
    break;
  case 0:
    switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
    case 4:  Kind = SectionKind::getMergeableConst4(); break;
    case 8:  Kind = SectionKind::getMergeableConst8(); break;
    case 16: Kind = SectionKind::getMergeableConst16(); break;
    default: Kind = SectionKind::getMergeableConst(); break;
    }
  }

  const MCSectionELF *CPSect = 
    (const MCSectionELF *)TLOF.getSectionForConstant(Kind);
  return getSection(CPSect->getSectionName(), CPSect->getType(), 
                    CPSect->getFlags(), CPE.getAlignment());
}

// getRelocSection - Return the relocation section of section 'S'. 'RelA' 
// is true if the relocation section contains entries with addends.
ELFSection &ELFWriter::getRelocSection(ELFSection &S) {
  unsigned SectionType = TEW->hasRelocationAddend() ?
                ELFSection::SHT_RELA : ELFSection::SHT_REL;

  std::string SectionName(".rel");
  if (TEW->hasRelocationAddend())
    SectionName.append("a");
  SectionName.append(S.getName());

  return getSection(SectionName, SectionType, 0, TEW->getPrefELFAlignment());
}

// getGlobalELFVisibility - Returns the ELF specific visibility type
unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
  switch (GV->getVisibility()) {
  default:
    llvm_unreachable("unknown visibility type");
  case GlobalValue::DefaultVisibility:
    return ELFSym::STV_DEFAULT;
  case GlobalValue::HiddenVisibility:
    return ELFSym::STV_HIDDEN;
  case GlobalValue::ProtectedVisibility:
    return ELFSym::STV_PROTECTED;
  }
  return 0;
}

// getGlobalELFBinding - Returns the ELF specific binding type
unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) {
  if (GV->hasInternalLinkage())
    return ELFSym::STB_LOCAL;

  if (GV->isWeakForLinker() && !GV->hasCommonLinkage())
    return ELFSym::STB_WEAK;

  return ELFSym::STB_GLOBAL;
}

// getGlobalELFType - Returns the ELF specific type for a global
unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) {
  if (GV->isDeclaration())
    return ELFSym::STT_NOTYPE;

  if (isa<Function>(GV))
    return ELFSym::STT_FUNC;

  return ELFSym::STT_OBJECT;
}

// IsELFUndefSym - True if the global value must be marked as a symbol
// which points to a SHN_UNDEF section. This means that the symbol has
// no definition on the module.
static bool IsELFUndefSym(const GlobalValue *GV) {
  return GV->isDeclaration() || (isa<Function>(GV));
}

// AddToSymbolList - Update the symbol lookup and If the symbol is 
// private add it to PrivateSyms list, otherwise to SymbolList. 
void ELFWriter::AddToSymbolList(ELFSym *GblSym) {
  assert(GblSym->isGlobalValue() && "Symbol must be a global value");

  const GlobalValue *GV = GblSym->getGlobalValue(); 
  if (GV->hasPrivateLinkage()) {
    // For a private symbols, keep track of the index inside 
    // the private list since it will never go to the symbol 
    // table and won't be patched up later.
    PrivateSyms.push_back(GblSym);
    GblSymLookup[GV] = PrivateSyms.size()-1;
  } else {
    // Non private symbol are left with zero indices until 
    // they are patched up during the symbol table emition 
    // (where the indicies are created).
    SymbolList.push_back(GblSym);
    GblSymLookup[GV] = 0;
  }
}

// EmitGlobal - Choose the right section for global and emit it
void ELFWriter::EmitGlobal(const GlobalValue *GV) {

  // Check if the referenced symbol is already emitted
  if (GblSymLookup.find(GV) != GblSymLookup.end())
    return;

  // Handle ELF Bind, Visibility and Type for the current symbol
  unsigned SymBind = getGlobalELFBinding(GV);
  unsigned SymType = getGlobalELFType(GV);
  bool IsUndefSym = IsELFUndefSym(GV);

  ELFSym *GblSym = IsUndefSym ? ELFSym::getUndefGV(GV, SymBind)
    : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV));

  if (!IsUndefSym) {
    assert(isa<GlobalVariable>(GV) && "GV not a global variable!");
    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);

    // Handle special llvm globals
    if (EmitSpecialLLVMGlobal(GVar))
      return;

    // Get the ELF section where this global belongs from TLOF
    const MCSectionELF *S = 
      (const MCSectionELF *)TLOF.SectionForGlobal(GV, Mang, TM);
    ELFSection &ES = 
      getSection(S->getSectionName(), S->getType(), S->getFlags());
    SectionKind Kind = S->getKind();

    // The symbol align should update the section alignment if needed
    const TargetData *TD = TM.getTargetData();
    unsigned Align = TD->getPreferredAlignment(GVar);
    unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType());
    GblSym->Size = Size;

    if (S->HasCommonSymbols()) { // Symbol must go to a common section
      GblSym->SectionIdx = ELFSection::SHN_COMMON;

      // A new linkonce section is created for each global in the
      // common section, the default alignment is 1 and the symbol
      // value contains its alignment.
      ES.Align = 1;
      GblSym->Value = Align;

    } else if (Kind.isBSS() || Kind.isThreadBSS()) { // Symbol goes to BSS.
      GblSym->SectionIdx = ES.SectionIdx;

      // Update the size with alignment and the next object can
      // start in the right offset in the section
      if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1);
      ES.Align = std::max(ES.Align, Align);

      // GblSym->Value should contain the virtual offset inside the section.
      // Virtual because the BSS space is not allocated on ELF objects
      GblSym->Value = ES.Size;
      ES.Size += Size;

    } else { // The symbol must go to some kind of data section
      GblSym->SectionIdx = ES.SectionIdx;

      // GblSym->Value should contain the symbol offset inside the section,
      // and all symbols should start on their required alignment boundary
      ES.Align = std::max(ES.Align, Align);
      ES.emitAlignment(Align);
      GblSym->Value = ES.size();

      // Emit the global to the data section 'ES'
      EmitGlobalConstant(GVar->getInitializer(), ES);
    }
  }

  AddToSymbolList(GblSym);
}

void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
                                         ELFSection &GblS) {

  // Print the fields in successive locations. Pad to align if needed!
  const TargetData *TD = TM.getTargetData();
  unsigned Size = TD->getTypeAllocSize(CVS->getType());
  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
  uint64_t sizeSoFar = 0;
  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
    const Constant* field = CVS->getOperand(i);

    // Check if padding is needed and insert one or more 0s.
    uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
                        - cvsLayout->getElementOffset(i)) - fieldSize;
    sizeSoFar += fieldSize + padSize;

    // Now print the actual field value.
    EmitGlobalConstant(field, GblS);

    // Insert padding - this may include padding to increase the size of the
    // current field up to the ABI size (if the struct is not packed) as well
    // as padding to ensure that the next field starts at the right offset.
    GblS.emitZeros(padSize);
  }
  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
         "Layout of constant struct may be incorrect!");
}

void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
  const TargetData *TD = TM.getTargetData();
  unsigned Size = TD->getTypeAllocSize(CV->getType());

  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
      EmitGlobalConstant(CVA->getOperand(i), GblS);
    return;
  } else if (isa<ConstantAggregateZero>(CV)) {
    GblS.emitZeros(Size);
    return;
  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
    EmitGlobalConstantStruct(CVS, GblS);
    return;
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    APInt Val = CFP->getValueAPF().bitcastToAPInt();
    if (CFP->getType()->isDoubleTy())
      GblS.emitWord64(Val.getZExtValue());
    else if (CFP->getType()->isFloatTy())
      GblS.emitWord32(Val.getZExtValue());
    else if (CFP->getType()->isX86_FP80Ty()) {
      unsigned PadSize = TD->getTypeAllocSize(CFP->getType())-
                         TD->getTypeStoreSize(CFP->getType());
      GblS.emitWordFP80(Val.getRawData(), PadSize);
    } else if (CFP->getType()->isPPC_FP128Ty())
      llvm_unreachable("PPC_FP128Ty global emission not implemented");
    return;
  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    if (Size == 1)
      GblS.emitByte(CI->getZExtValue());
    else if (Size == 2) 
      GblS.emitWord16(CI->getZExtValue());
    else if (Size == 4)
      GblS.emitWord32(CI->getZExtValue());
    else 
      EmitGlobalConstantLargeInt(CI, GblS);
    return;
  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
    const VectorType *PTy = CP->getType();
    for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
      EmitGlobalConstant(CP->getOperand(I), GblS);
    return;
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    // Resolve a constant expression which returns a (Constant, Offset)
    // pair. If 'Res.first' is a GlobalValue, emit a relocation with 
    // the offset 'Res.second', otherwise emit a global constant like
    // it is always done for not contant expression types.
    CstExprResTy Res = ResolveConstantExpr(CE);
    const Constant *Op = Res.first;

    if (isa<GlobalValue>(Op))
      EmitGlobalDataRelocation(cast<const GlobalValue>(Op), 
                               TD->getTypeAllocSize(Op->getType()), 
                               GblS, Res.second);
    else
      EmitGlobalConstant(Op, GblS);

    return;
  } else if (CV->getType()->getTypeID() == Type::PointerTyID) {
    // Fill the data entry with zeros or emit a relocation entry
    if (isa<ConstantPointerNull>(CV))
      GblS.emitZeros(Size);
    else 
      EmitGlobalDataRelocation(cast<const GlobalValue>(CV), 
                               Size, GblS);
    return;
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
    // This is a constant address for a global variable or function and
    // therefore must be referenced using a relocation entry.
    EmitGlobalDataRelocation(GV, Size, GblS);
    return;
  }

  std::string msg;
  raw_string_ostream ErrorMsg(msg);
  ErrorMsg << "Constant unimp for type: " << *CV->getType();
  report_fatal_error(ErrorMsg.str());
}

// ResolveConstantExpr - Resolve the constant expression until it stop
// yielding other constant expressions.
CstExprResTy ELFWriter::ResolveConstantExpr(const Constant *CV) {
  const TargetData *TD = TM.getTargetData();
  
  // There ins't constant expression inside others anymore
  if (!isa<ConstantExpr>(CV))
    return std::make_pair(CV, 0);

  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
  switch (CE->getOpcode()) {
  case Instruction::BitCast:
    return ResolveConstantExpr(CE->getOperand(0));
  
  case Instruction::GetElementPtr: {
    const Constant *ptrVal = CE->getOperand(0);
    SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
    int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
                                          idxVec.size());
    return std::make_pair(ptrVal, Offset);
  }
  case Instruction::IntToPtr: {
    Constant *Op = CE->getOperand(0);
    Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
                                      false/*ZExt*/);
    return ResolveConstantExpr(Op);
  }
  case Instruction::PtrToInt: {
    Constant *Op = CE->getOperand(0);
    const Type *Ty = CE->getType();

    // We can emit the pointer value into this slot if the slot is an
    // integer slot greater or equal to the size of the pointer.
    if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
      return ResolveConstantExpr(Op);

    llvm_unreachable("Integer size less then pointer size");
  }
  case Instruction::Add:
  case Instruction::Sub: {
    // Only handle cases where there's a constant expression with GlobalValue
    // as first operand and ConstantInt as second, which are the cases we can
    // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1
    // 1)  Instruction::Add  => (global) + CstInt
    // 2)  Instruction::Sub  => (global) + -CstInt
    const Constant *Op0 = CE->getOperand(0); 
    const Constant *Op1 = CE->getOperand(1); 
    assert(isa<ConstantInt>(Op1) && "Op1 must be a ConstantInt");

    CstExprResTy Res = ResolveConstantExpr(Op0);
    assert(isa<GlobalValue>(Res.first) && "Op0 must be a GlobalValue");

    const APInt &RHS = cast<ConstantInt>(Op1)->getValue();
    switch (CE->getOpcode()) {
    case Instruction::Add: 
      return std::make_pair(Res.first, RHS.getSExtValue());
    case Instruction::Sub:
      return std::make_pair(Res.first, (-RHS).getSExtValue());
    }
  }
  }

  report_fatal_error(CE->getOpcodeName() +
                     StringRef(": Unsupported ConstantExpr type"));

  return std::make_pair(CV, 0); // silence warning
}

void ELFWriter::EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size,
                                         ELFSection &GblS, int64_t Offset) {
  // Create the relocation entry for the global value
  MachineRelocation MR =
    MachineRelocation::getGV(GblS.getCurrentPCOffset(),
                             TEW->getAbsoluteLabelMachineRelTy(),
                             const_cast<GlobalValue*>(GV),
                             Offset);

  // Fill the data entry with zeros
  GblS.emitZeros(Size);

  // Add the relocation entry for the current data section
  GblS.addRelocation(MR);
}

void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt *CI, 
                                           ELFSection &S) {
  const TargetData *TD = TM.getTargetData();
  unsigned BitWidth = CI->getBitWidth();
  assert(isPowerOf2_32(BitWidth) &&
         "Non-power-of-2-sized integers not handled!");

  const uint64_t *RawData = CI->getValue().getRawData();
  uint64_t Val = 0;
  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
    Val = (TD->isBigEndian()) ? RawData[e - i - 1] : RawData[i];
    S.emitWord64(Val);
  }
}

/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM.  If so, emit it and return true, otherwise
/// do nothing and return false.
bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
  if (GV->getName() == "llvm.used")
    llvm_unreachable("not implemented yet");

  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
  if (GV->getSection() == "llvm.metadata" ||
      GV->hasAvailableExternallyLinkage())
    return true;
  
  if (!GV->hasAppendingLinkage()) return false;

  assert(GV->hasInitializer() && "Not a special LLVM global!");
  
  const TargetData *TD = TM.getTargetData();
  unsigned Align = TD->getPointerPrefAlignment();
  if (GV->getName() == "llvm.global_ctors") {
    ELFSection &Ctor = getCtorSection();
    Ctor.emitAlignment(Align);
    EmitXXStructorList(GV->getInitializer(), Ctor);
    return true;
  } 
  
  if (GV->getName() == "llvm.global_dtors") {
    ELFSection &Dtor = getDtorSection();
    Dtor.emitAlignment(Align);
    EmitXXStructorList(GV->getInitializer(), Dtor);
    return true;
  }
  
  return false;
}

/// EmitXXStructorList - Emit the ctor or dtor list.  This just emits out the 
/// function pointers, ignoring the init priority.
void ELFWriter::EmitXXStructorList(Constant *List, ELFSection &Xtor) {
  // Should be an array of '{ int, void ()* }' structs.  The first value is the
  // init priority, which we ignore.
  if (!isa<ConstantArray>(List)) return;
  ConstantArray *InitList = cast<ConstantArray>(List);
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.

      if (CS->getOperand(1)->isNullValue())
        return;  // Found a null terminator, exit printing.
      // Emit the function pointer.
      EmitGlobalConstant(CS->getOperand(1), Xtor);
    }
}

bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
  // Nothing to do here, this is all done through the ElfCE object above.
  return false;
}

/// doFinalization - Now that the module has been completely processed, emit
/// the ELF file to 'O'.
bool ELFWriter::doFinalization(Module &M) {
  // Emit .data section placeholder
  getDataSection();

  // Emit .bss section placeholder
  getBSSSection();

  // Build and emit data, bss and "common" sections.
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I)
    EmitGlobal(I);

  // Emit all pending globals
  for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end();
       I != E; ++I)
    EmitGlobal(*I);

  // Emit all pending externals
  for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end();
       I != E; ++I)
    SymbolList.push_back(ELFSym::getExtSym(*I));

  // Emit a symbol for each section created until now, skip null section
  for (unsigned i = 1, e = SectionList.size(); i < e; ++i) {
    ELFSection &ES = *SectionList[i];
    ELFSym *SectionSym = ELFSym::getSectionSym();
    SectionSym->SectionIdx = ES.SectionIdx;
    SymbolList.push_back(SectionSym);
    ES.Sym = SymbolList.back();
  }

  // Emit string table
  EmitStringTable(M.getModuleIdentifier());

  // Emit the symbol table now, if non-empty.
  EmitSymbolTable();

  // Emit the relocation sections.
  EmitRelocations();

  // Emit the sections string table.
  EmitSectionTableStringTable();

  // Dump the sections and section table to the .o file.
  OutputSectionsAndSectionTable();

  return false;
}

// RelocateField - Patch relocatable field with 'Offset' in 'BO'
// using a 'Value' of known 'Size'
void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset,
                              int64_t Value, unsigned Size) {
  if (Size == 32)
    BO.fixWord32(Value, Offset);
  else if (Size == 64)
    BO.fixWord64(Value, Offset);
  else
    llvm_unreachable("don't know howto patch relocatable field");
}

/// EmitRelocations - Emit relocations
void ELFWriter::EmitRelocations() {

  // True if the target uses the relocation entry to hold the addend,
  // otherwise the addend is written directly to the relocatable field.
  bool HasRelA = TEW->hasRelocationAddend();

  // Create Relocation sections for each section which needs it.
  for (unsigned i=0, e=SectionList.size(); i != e; ++i) {
    ELFSection &S = *SectionList[i];

    // This section does not have relocations
    if (!S.hasRelocations()) continue;
    ELFSection &RelSec = getRelocSection(S);

    // 'Link' - Section hdr idx of the associated symbol table
    // 'Info' - Section hdr idx of the section to which the relocation applies
    ELFSection &SymTab = getSymbolTableSection();
    RelSec.Link = SymTab.SectionIdx;
    RelSec.Info = S.SectionIdx;
    RelSec.EntSize = TEW->getRelocationEntrySize();

    // Get the relocations from Section
    std::vector<MachineRelocation> Relos = S.getRelocations();
    for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
         MRE = Relos.end(); MRI != MRE; ++MRI) {
      MachineRelocation &MR = *MRI;

      // Relocatable field offset from the section start
      unsigned RelOffset = MR.getMachineCodeOffset();

      // Symbol index in the symbol table
      unsigned SymIdx = 0;

      // Target specific relocation field type and size
      unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
      unsigned RelTySize = TEW->getRelocationTySize(RelType);
      int64_t Addend = 0;

      // There are several machine relocations types, and each one of
      // them needs a different approach to retrieve the symbol table index.
      if (MR.isGlobalValue()) {
        const GlobalValue *G = MR.getGlobalValue();
        int64_t GlobalOffset = MR.getConstantVal();
        SymIdx = GblSymLookup[G];
        if (G->hasPrivateLinkage()) {
          // If the target uses a section offset in the relocation:
          // SymIdx + Addend = section sym for global + section offset
          unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx;
          Addend = PrivateSyms[SymIdx]->Value + GlobalOffset;
          SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
        } else {
          Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset);
        }
      } else if (MR.isExternalSymbol()) {
        const char *ExtSym = MR.getExternalSymbol();
        SymIdx = ExtSymLookup[ExtSym];
        Addend = TEW->getDefaultAddendForRelTy(RelType);
      } else {
        // Get the symbol index for the section symbol
        unsigned SectionIdx = MR.getConstantVal();
        SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();

        // The symbol offset inside the section
        int64_t SymOffset = (int64_t)MR.getResultPointer();

        // For pc relative relocations where symbols are defined in the same
        // section they are referenced, ignore the relocation entry and patch
        // the relocatable field with the symbol offset directly.
        if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) {
          int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType);
          RelocateField(S, RelOffset, Value, RelTySize);
          continue;
        }

        Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset);
      }

      // The target without addend on the relocation symbol must be
      // patched in the relocation place itself to contain the addend
      // otherwise write zeros to make sure there is no garbage there
      RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize);

      // Get the relocation entry and emit to the relocation section
      ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend);
      EmitRelocation(RelSec, Rel, HasRelA);
    }
  }
}

/// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel,
                               bool HasRelA) {
  RelSec.emitWord(Rel.getOffset());
  RelSec.emitWord(Rel.getInfo(is64Bit));
  if (HasRelA)
    RelSec.emitWord(Rel.getAddend());
}

/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
  if (is64Bit) {
    SymbolTable.emitWord32(Sym.NameIdx);
    SymbolTable.emitByte(Sym.Info);
    SymbolTable.emitByte(Sym.Other);
    SymbolTable.emitWord16(Sym.SectionIdx);
    SymbolTable.emitWord64(Sym.Value);
    SymbolTable.emitWord64(Sym.Size);
  } else {
    SymbolTable.emitWord32(Sym.NameIdx);
    SymbolTable.emitWord32(Sym.Value);
    SymbolTable.emitWord32(Sym.Size);
    SymbolTable.emitByte(Sym.Info);
    SymbolTable.emitByte(Sym.Other);
    SymbolTable.emitWord16(Sym.SectionIdx);
  }
}

/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
/// Section Header Table
void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
                                  const ELFSection &SHdr) {
  SHdrTab.emitWord32(SHdr.NameIdx);
  SHdrTab.emitWord32(SHdr.Type);
  if (is64Bit) {
    SHdrTab.emitWord64(SHdr.Flags);
    SHdrTab.emitWord(SHdr.Addr);
    SHdrTab.emitWord(SHdr.Offset);
    SHdrTab.emitWord64(SHdr.Size);
    SHdrTab.emitWord32(SHdr.Link);
    SHdrTab.emitWord32(SHdr.Info);
    SHdrTab.emitWord64(SHdr.Align);
    SHdrTab.emitWord64(SHdr.EntSize);
  } else {
    SHdrTab.emitWord32(SHdr.Flags);
    SHdrTab.emitWord(SHdr.Addr);
    SHdrTab.emitWord(SHdr.Offset);
    SHdrTab.emitWord32(SHdr.Size);
    SHdrTab.emitWord32(SHdr.Link);
    SHdrTab.emitWord32(SHdr.Info);
    SHdrTab.emitWord32(SHdr.Align);
    SHdrTab.emitWord32(SHdr.EntSize);
  }
}

/// EmitStringTable - If the current symbol table is non-empty, emit the string
/// table for it
void ELFWriter::EmitStringTable(const std::string &ModuleName) {
  if (!SymbolList.size()) return;  // Empty symbol table.
  ELFSection &StrTab = getStringTableSection();

  // Set the zero'th symbol to a null byte, as required.
  StrTab.emitByte(0);

  // Walk on the symbol list and write symbol names into the string table.
  unsigned Index = 1;
  for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
    ELFSym &Sym = *(*I);

    std::string Name;
    if (Sym.isGlobalValue()) {
      SmallString<40> NameStr;
      Mang->getNameWithPrefix(NameStr, Sym.getGlobalValue(), false);
      Name.append(NameStr.begin(), NameStr.end());
    } else if (Sym.isExternalSym())
      Name.append(Sym.getExternalSymbol());
    else if (Sym.isFileType())
      Name.append(ModuleName);

    if (Name.empty()) {
      Sym.NameIdx = 0;
    } else {
      Sym.NameIdx = Index;
      StrTab.emitString(Name);

      // Keep track of the number of bytes emitted to this section.
      Index += Name.size()+1;
    }
  }
  assert(Index == StrTab.size());
  StrTab.Size = Index;
}

// SortSymbols - On the symbol table local symbols must come before
// all other symbols with non-local bindings. The return value is
// the position of the first non local symbol.
unsigned ELFWriter::SortSymbols() {
  unsigned FirstNonLocalSymbol;
  std::vector<ELFSym*> LocalSyms, OtherSyms;

  for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
    if ((*I)->isLocalBind())
      LocalSyms.push_back(*I);
    else
      OtherSyms.push_back(*I);
  }
  SymbolList.clear();
  FirstNonLocalSymbol = LocalSyms.size();

  for (unsigned i = 0; i < FirstNonLocalSymbol; ++i)
    SymbolList.push_back(LocalSyms[i]);

  for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I)
    SymbolList.push_back(*I);

  LocalSyms.clear();
  OtherSyms.clear();

  return FirstNonLocalSymbol;
}

/// EmitSymbolTable - Emit the symbol table itself.
void ELFWriter::EmitSymbolTable() {
  if (!SymbolList.size()) return;  // Empty symbol table.

  // Now that we have emitted the string table and know the offset into the
  // string table of each symbol, emit the symbol table itself.
  ELFSection &SymTab = getSymbolTableSection();
  SymTab.Align = TEW->getPrefELFAlignment();

  // Section Index of .strtab.
  SymTab.Link = getStringTableSection().SectionIdx;

  // Size of each symtab entry.
  SymTab.EntSize = TEW->getSymTabEntrySize();

  // Reorder the symbol table with local symbols first!
  unsigned FirstNonLocalSymbol = SortSymbols();

  // Emit all the symbols to the symbol table.
  for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) {
    ELFSym &Sym = *SymbolList[i];

    // Emit symbol to the symbol table
    EmitSymbol(SymTab, Sym);

    // Record the symbol table index for each symbol
    if (Sym.isGlobalValue())
      GblSymLookup[Sym.getGlobalValue()] = i;
    else if (Sym.isExternalSym())
      ExtSymLookup[Sym.getExternalSymbol()] = i;

    // Keep track on the symbol index into the symbol table
    Sym.SymTabIdx = i;
  }

  // One greater than the symbol table index of the last local symbol
  SymTab.Info = FirstNonLocalSymbol;
  SymTab.Size = SymTab.size();
}

/// EmitSectionTableStringTable - This method adds and emits a section for the
/// ELF Section Table string table: the string table that holds all of the
/// section names.
void ELFWriter::EmitSectionTableStringTable() {
  // First step: add the section for the string table to the list of sections:
  ELFSection &SHStrTab = getSectionHeaderStringTableSection();

  // Now that we know which section number is the .shstrtab section, update the
  // e_shstrndx entry in the ELF header.
  ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);

  // Set the NameIdx of each section in the string table and emit the bytes for
  // the string table.
  unsigned Index = 0;

  for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
    ELFSection &S = *(*I);
    // Set the index into the table.  Note if we have lots of entries with
    // common suffixes, we could memoize them here if we cared.
    S.NameIdx = Index;
    SHStrTab.emitString(S.getName());

    // Keep track of the number of bytes emitted to this section.
    Index += S.getName().size()+1;
  }

  // Set the size of .shstrtab now that we know what it is.
  assert(Index == SHStrTab.size());
  SHStrTab.Size = Index;
}

/// OutputSectionsAndSectionTable - Now that we have constructed the file header
/// and all of the sections, emit these to the ostream destination and emit the
/// SectionTable.
void ELFWriter::OutputSectionsAndSectionTable() {
  // Pass #1: Compute the file offset for each section.
  size_t FileOff = ElfHdr.size();   // File header first.

  // Adjust alignment of all section if needed, skip the null section.
  for (unsigned i=1, e=SectionList.size(); i < e; ++i) {
    ELFSection &ES = *SectionList[i];
    if (!ES.size()) {
      ES.Offset = FileOff;
      continue;
    }

    // Update Section size
    if (!ES.Size)
      ES.Size = ES.size();

    // Align FileOff to whatever the alignment restrictions of the section are.
    if (ES.Align)
      FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1);

    ES.Offset = FileOff;
    FileOff += ES.Size;
  }

  // Align Section Header.
  unsigned TableAlign = TEW->getPrefELFAlignment();
  FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);

  // Now that we know where all of the sections will be emitted, set the e_shnum
  // entry in the ELF header.
  ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);

  // Now that we know the offset in the file of the section table, update the
  // e_shoff address in the ELF header.
  ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);

  // Now that we know all of the data in the file header, emit it and all of the
  // sections!
  O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
  FileOff = ElfHdr.size();

  // Section Header Table blob
  BinaryObject SHdrTable(isLittleEndian, is64Bit);

  // Emit all of sections to the file and build the section header table.
  for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
    ELFSection &S = *(*I);
    DEBUG(dbgs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
                 << ", Size: " << S.Size << ", Offset: " << S.Offset
                 << ", SectionData Size: " << S.size() << "\n");

    // Align FileOff to whatever the alignment restrictions of the section are.
    if (S.size()) {
      if (S.Align)  {
        for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
             FileOff != NewFileOff; ++FileOff)
          O << (char)0xAB;
      }
      O.write((char *)&S.getData()[0], S.Size);
      FileOff += S.Size;
    }

    EmitSectionHeader(SHdrTable, S);
  }

  // Align output for the section table.
  for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
       FileOff != NewFileOff; ++FileOff)
    O << (char)0xAB;

  // Emit the section table itself.
  O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
}