aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/ExecutionDepsFix.cpp
blob: 0d26f9d4cba0b283138712adfbb2c367a58555fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the execution dependency fix pass.
//
// Some X86 SSE instructions like mov, and, or, xor are available in different
// variants for different operand types. These variant instructions are
// equivalent, but on Nehalem and newer cpus there is extra latency
// transferring data between integer and floating point domains.  ARM cores
// have similar issues when they are configured with both VFP and NEON
// pipelines.
//
// This pass changes the variant instructions to minimize domain crossings.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "execution-fix"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;

/// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
/// of execution domains.
///
/// An open DomainValue represents a set of instructions that can still switch
/// execution domain. Multiple registers may refer to the same open
/// DomainValue - they will eventually be collapsed to the same execution
/// domain.
///
/// A collapsed DomainValue represents a single register that has been forced
/// into one of more execution domains. There is a separate collapsed
/// DomainValue for each register, but it may contain multiple execution
/// domains. A register value is initially created in a single execution
/// domain, but if we were forced to pay the penalty of a domain crossing, we
/// keep track of the fact that the register is now available in multiple
/// domains.
namespace {
struct DomainValue {
  // Basic reference counting.
  unsigned Refs;

  // Bitmask of available domains. For an open DomainValue, it is the still
  // possible domains for collapsing. For a collapsed DomainValue it is the
  // domains where the register is available for free.
  unsigned AvailableDomains;

  // Pointer to the next DomainValue in a chain.  When two DomainValues are
  // merged, Victim.Next is set to point to Victor, so old DomainValue
  // references can be updated by following the chain.
  DomainValue *Next;

  // Twiddleable instructions using or defining these registers.
  SmallVector<MachineInstr*, 8> Instrs;

  // A collapsed DomainValue has no instructions to twiddle - it simply keeps
  // track of the domains where the registers are already available.
  bool isCollapsed() const { return Instrs.empty(); }

  // Is domain available?
  bool hasDomain(unsigned domain) const {
    return AvailableDomains & (1u << domain);
  }

  // Mark domain as available.
  void addDomain(unsigned domain) {
    AvailableDomains |= 1u << domain;
  }

  // Restrict to a single domain available.
  void setSingleDomain(unsigned domain) {
    AvailableDomains = 1u << domain;
  }

  // Return bitmask of domains that are available and in mask.
  unsigned getCommonDomains(unsigned mask) const {
    return AvailableDomains & mask;
  }

  // First domain available.
  unsigned getFirstDomain() const {
    return countTrailingZeros(AvailableDomains);
  }

  DomainValue() : Refs(0) { clear(); }

  // Clear this DomainValue and point to next which has all its data.
  void clear() {
    AvailableDomains = 0;
    Next = 0;
    Instrs.clear();
  }
};
}

namespace {
/// LiveReg - Information about a live register.
struct LiveReg {
  /// Value currently in this register, or NULL when no value is being tracked.
  /// This counts as a DomainValue reference.
  DomainValue *Value;

  /// Instruction that defined this register, relative to the beginning of the
  /// current basic block.  When a LiveReg is used to represent a live-out
  /// register, this value is relative to the end of the basic block, so it
  /// will be a negative number.
  int Def;
};
} // anonynous namespace

namespace {
class ExeDepsFix : public MachineFunctionPass {
  static char ID;
  SpecificBumpPtrAllocator<DomainValue> Allocator;
  SmallVector<DomainValue*,16> Avail;

  const TargetRegisterClass *const RC;
  MachineFunction *MF;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  std::vector<int> AliasMap;
  const unsigned NumRegs;
  LiveReg *LiveRegs;
  typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
  LiveOutMap LiveOuts;

  /// List of undefined register reads in this block in forward order.
  std::vector<std::pair<MachineInstr*, unsigned> > UndefReads;

  /// Storage for register unit liveness.
  LiveRegUnits LiveUnits;

  /// Current instruction number.
  /// The first instruction in each basic block is 0.
  int CurInstr;

  /// True when the current block has a predecessor that hasn't been visited
  /// yet.
  bool SeenUnknownBackEdge;

public:
  ExeDepsFix(const TargetRegisterClass *rc)
    : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  virtual bool runOnMachineFunction(MachineFunction &MF);

  virtual const char *getPassName() const {
    return "Execution dependency fix";
  }

private:
  // Register mapping.
  int regIndex(unsigned Reg);

  // DomainValue allocation.
  DomainValue *alloc(int domain = -1);
  DomainValue *retain(DomainValue *DV) {
    if (DV) ++DV->Refs;
    return DV;
  }
  void release(DomainValue*);
  DomainValue *resolve(DomainValue*&);

  // LiveRegs manipulations.
  void setLiveReg(int rx, DomainValue *DV);
  void kill(int rx);
  void force(int rx, unsigned domain);
  void collapse(DomainValue *dv, unsigned domain);
  bool merge(DomainValue *A, DomainValue *B);

  void enterBasicBlock(MachineBasicBlock*);
  void leaveBasicBlock(MachineBasicBlock*);
  void visitInstr(MachineInstr*);
  void processDefs(MachineInstr*, bool Kill);
  void visitSoftInstr(MachineInstr*, unsigned mask);
  void visitHardInstr(MachineInstr*, unsigned domain);
  bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
  void processUndefReads(MachineBasicBlock*);
};
}

char ExeDepsFix::ID = 0;

/// Translate TRI register number to an index into our smaller tables of
/// interesting registers. Return -1 for boring registers.
int ExeDepsFix::regIndex(unsigned Reg) {
  assert(Reg < AliasMap.size() && "Invalid register");
  return AliasMap[Reg];
}

DomainValue *ExeDepsFix::alloc(int domain) {
  DomainValue *dv = Avail.empty() ?
                      new(Allocator.Allocate()) DomainValue :
                      Avail.pop_back_val();
  if (domain >= 0)
    dv->addDomain(domain);
  assert(dv->Refs == 0 && "Reference count wasn't cleared");
  assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
  return dv;
}

/// release - Release a reference to DV.  When the last reference is released,
/// collapse if needed.
void ExeDepsFix::release(DomainValue *DV) {
  while (DV) {
    assert(DV->Refs && "Bad DomainValue");
    if (--DV->Refs)
      return;

    // There are no more DV references. Collapse any contained instructions.
    if (DV->AvailableDomains && !DV->isCollapsed())
      collapse(DV, DV->getFirstDomain());

    DomainValue *Next = DV->Next;
    DV->clear();
    Avail.push_back(DV);
    // Also release the next DomainValue in the chain.
    DV = Next;
  }
}

/// resolve - Follow the chain of dead DomainValues until a live DomainValue is
/// reached.  Update the referenced pointer when necessary.
DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
  DomainValue *DV = DVRef;
  if (!DV || !DV->Next)
    return DV;

  // DV has a chain. Find the end.
  do DV = DV->Next;
  while (DV->Next);

  // Update DVRef to point to DV.
  retain(DV);
  release(DVRef);
  DVRef = DV;
  return DV;
}

/// Set LiveRegs[rx] = dv, updating reference counts.
void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(LiveRegs && "Must enter basic block first.");

  if (LiveRegs[rx].Value == dv)
    return;
  if (LiveRegs[rx].Value)
    release(LiveRegs[rx].Value);
  LiveRegs[rx].Value = retain(dv);
}

// Kill register rx, recycle or collapse any DomainValue.
void ExeDepsFix::kill(int rx) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(LiveRegs && "Must enter basic block first.");
  if (!LiveRegs[rx].Value)
    return;

  release(LiveRegs[rx].Value);
  LiveRegs[rx].Value = 0;
}

/// Force register rx into domain.
void ExeDepsFix::force(int rx, unsigned domain) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(LiveRegs && "Must enter basic block first.");
  if (DomainValue *dv = LiveRegs[rx].Value) {
    if (dv->isCollapsed())
      dv->addDomain(domain);
    else if (dv->hasDomain(domain))
      collapse(dv, domain);
    else {
      // This is an incompatible open DomainValue. Collapse it to whatever and
      // force the new value into domain. This costs a domain crossing.
      collapse(dv, dv->getFirstDomain());
      assert(LiveRegs[rx].Value && "Not live after collapse?");
      LiveRegs[rx].Value->addDomain(domain);
    }
  } else {
    // Set up basic collapsed DomainValue.
    setLiveReg(rx, alloc(domain));
  }
}

/// Collapse open DomainValue into given domain. If there are multiple
/// registers using dv, they each get a unique collapsed DomainValue.
void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
  assert(dv->hasDomain(domain) && "Cannot collapse");

  // Collapse all the instructions.
  while (!dv->Instrs.empty())
    TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
  dv->setSingleDomain(domain);

  // If there are multiple users, give them new, unique DomainValues.
  if (LiveRegs && dv->Refs > 1)
    for (unsigned rx = 0; rx != NumRegs; ++rx)
      if (LiveRegs[rx].Value == dv)
        setLiveReg(rx, alloc(domain));
}

/// Merge - All instructions and registers in B are moved to A, and B is
/// released.
bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
  assert(!A->isCollapsed() && "Cannot merge into collapsed");
  assert(!B->isCollapsed() && "Cannot merge from collapsed");
  if (A == B)
    return true;
  // Restrict to the domains that A and B have in common.
  unsigned common = A->getCommonDomains(B->AvailableDomains);
  if (!common)
    return false;
  A->AvailableDomains = common;
  A->Instrs.append(B->Instrs.begin(), B->Instrs.end());

  // Clear the old DomainValue so we won't try to swizzle instructions twice.
  B->clear();
  // All uses of B are referred to A.
  B->Next = retain(A);

  for (unsigned rx = 0; rx != NumRegs; ++rx)
    if (LiveRegs[rx].Value == B)
      setLiveReg(rx, A);
  return true;
}

// enterBasicBlock - Set up LiveRegs by merging predecessor live-out values.
void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
  // Detect back-edges from predecessors we haven't processed yet.
  SeenUnknownBackEdge = false;

  // Reset instruction counter in each basic block.
  CurInstr = 0;

  // Set up UndefReads to track undefined register reads.
  UndefReads.clear();
  LiveUnits.clear();

  // Set up LiveRegs to represent registers entering MBB.
  if (!LiveRegs)
    LiveRegs = new LiveReg[NumRegs];

  // Default values are 'nothing happened a long time ago'.
  for (unsigned rx = 0; rx != NumRegs; ++rx) {
    LiveRegs[rx].Value = 0;
    LiveRegs[rx].Def = -(1 << 20);
  }

  // This is the entry block.
  if (MBB->pred_empty()) {
    for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(),
         e = MBB->livein_end(); i != e; ++i) {
      int rx = regIndex(*i);
      if (rx < 0)
        continue;
      // Treat function live-ins as if they were defined just before the first
      // instruction.  Usually, function arguments are set up immediately
      // before the call.
      LiveRegs[rx].Def = -1;
    }
    DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
    return;
  }

  // Try to coalesce live-out registers from predecessors.
  for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
       pe = MBB->pred_end(); pi != pe; ++pi) {
    LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
    if (fi == LiveOuts.end()) {
      SeenUnknownBackEdge = true;
      continue;
    }
    assert(fi->second && "Can't have NULL entries");

    for (unsigned rx = 0; rx != NumRegs; ++rx) {
      // Use the most recent predecessor def for each register.
      LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);

      DomainValue *pdv = resolve(fi->second[rx].Value);
      if (!pdv)
        continue;
      if (!LiveRegs[rx].Value) {
        setLiveReg(rx, pdv);
        continue;
      }

      // We have a live DomainValue from more than one predecessor.
      if (LiveRegs[rx].Value->isCollapsed()) {
        // We are already collapsed, but predecessor is not. Force him.
        unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
        if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
          collapse(pdv, Domain);
        continue;
      }

      // Currently open, merge in predecessor.
      if (!pdv->isCollapsed())
        merge(LiveRegs[rx].Value, pdv);
      else
        force(rx, pdv->getFirstDomain());
    }
  }
  DEBUG(dbgs() << "BB#" << MBB->getNumber()
        << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
}

void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
  assert(LiveRegs && "Must enter basic block first.");
  // Save live registers at end of MBB - used by enterBasicBlock().
  // Also use LiveOuts as a visited set to detect back-edges.
  bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;

  if (First) {
    // LiveRegs was inserted in LiveOuts.  Adjust all defs to be relative to
    // the end of this block instead of the beginning.
    for (unsigned i = 0, e = NumRegs; i != e; ++i)
      LiveRegs[i].Def -= CurInstr;
  } else {
    // Insertion failed, this must be the second pass.
    // Release all the DomainValues instead of keeping them.
    for (unsigned i = 0, e = NumRegs; i != e; ++i)
      release(LiveRegs[i].Value);
    delete[] LiveRegs;
  }
  LiveRegs = 0;
}

void ExeDepsFix::visitInstr(MachineInstr *MI) {
  if (MI->isDebugValue())
    return;

  // Update instructions with explicit execution domains.
  std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI);
  if (DomP.first) {
    if (DomP.second)
      visitSoftInstr(MI, DomP.second);
    else
      visitHardInstr(MI, DomP.first);
  }

  // Process defs to track register ages, and kill values clobbered by generic
  // instructions.
  processDefs(MI, !DomP.first);
}

/// \brief Return true to if it makes sense to break dependence on a partial def
/// or undef use.
bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
                                       unsigned Pref) {
  int rx = regIndex(MI->getOperand(OpIdx).getReg());
  if (rx < 0)
    return false;

  unsigned Clearance = CurInstr - LiveRegs[rx].Def;
  DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);

  if (Pref > Clearance) {
    DEBUG(dbgs() << ": Break dependency.\n");
    return true;
  }
  // The current clearance seems OK, but we may be ignoring a def from a
  // back-edge.
  if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
    DEBUG(dbgs() << ": OK .\n");
    return false;
  }
  // A def from an unprocessed back-edge may make us break this dependency.
  DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
  return false;
}

// Update def-ages for registers defined by MI.
// If Kill is set, also kill off DomainValues clobbered by the defs.
//
// Also break dependencies on partial defs and undef uses.
void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
  assert(!MI->isDebugValue() && "Won't process debug values");

  // Break dependence on undef uses. Do this before updating LiveRegs below.
  unsigned OpNum;
  unsigned Pref = TII->getUndefRegClearance(MI, OpNum, TRI);
  if (Pref) {
    if (shouldBreakDependence(MI, OpNum, Pref))
      UndefReads.push_back(std::make_pair(MI, OpNum));
  }
  const MCInstrDesc &MCID = MI->getDesc();
  for (unsigned i = 0,
         e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
         i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    if (MO.isImplicit())
      break;
    if (MO.isUse())
      continue;
    int rx = regIndex(MO.getReg());
    if (rx < 0)
      continue;

    // This instruction explicitly defines rx.
    DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
                 << '\t' << *MI);

    // Check clearance before partial register updates.
    // Call breakDependence before setting LiveRegs[rx].Def.
    unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
    if (Pref && shouldBreakDependence(MI, i, Pref))
      TII->breakPartialRegDependency(MI, i, TRI);

    // How many instructions since rx was last written?
    LiveRegs[rx].Def = CurInstr;

    // Kill off domains redefined by generic instructions.
    if (Kill)
      kill(rx);
  }
  ++CurInstr;
}

/// \break Break false dependencies on undefined register reads.
///
/// Walk the block backward computing precise liveness. This is expensive, so we
/// only do it on demand. Note that the occurrence of undefined register reads
/// that should be broken is very rare, but when they occur we may have many in
/// a single block.
void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
  if (UndefReads.empty())
    return;

  // Collect this block's live out register units.
  LiveUnits.init(TRI);
  for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI) {
    LiveUnits.addLiveIns(*SI, *TRI);
  }
  MachineInstr *UndefMI = UndefReads.back().first;
  unsigned OpIdx = UndefReads.back().second;

  for (MachineBasicBlock::reverse_iterator I = MBB->rbegin(), E = MBB->rend();
       I != E; ++I) {
    if (UndefMI == &*I) {
      if (!LiveUnits.contains(UndefMI->getOperand(OpIdx).getReg(), *TRI))
        TII->breakPartialRegDependency(UndefMI, OpIdx, TRI);

      UndefReads.pop_back();
      if (UndefReads.empty())
        return;

      UndefMI = UndefReads.back().first;
      OpIdx = UndefReads.back().second;
    }
    LiveUnits.stepBackward(*I, *TRI);
  }
}

// A hard instruction only works in one domain. All input registers will be
// forced into that domain.
void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
  // Collapse all uses.
  for (unsigned i = mi->getDesc().getNumDefs(),
                e = mi->getDesc().getNumOperands(); i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg()) continue;
    int rx = regIndex(mo.getReg());
    if (rx < 0) continue;
    force(rx, domain);
  }

  // Kill all defs and force them.
  for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg()) continue;
    int rx = regIndex(mo.getReg());
    if (rx < 0) continue;
    kill(rx);
    force(rx, domain);
  }
}

// A soft instruction can be changed to work in other domains given by mask.
void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
  // Bitmask of available domains for this instruction after taking collapsed
  // operands into account.
  unsigned available = mask;

  // Scan the explicit use operands for incoming domains.
  SmallVector<int, 4> used;
  if (LiveRegs)
    for (unsigned i = mi->getDesc().getNumDefs(),
                  e = mi->getDesc().getNumOperands(); i != e; ++i) {
      MachineOperand &mo = mi->getOperand(i);
      if (!mo.isReg()) continue;
      int rx = regIndex(mo.getReg());
      if (rx < 0) continue;
      if (DomainValue *dv = LiveRegs[rx].Value) {
        // Bitmask of domains that dv and available have in common.
        unsigned common = dv->getCommonDomains(available);
        // Is it possible to use this collapsed register for free?
        if (dv->isCollapsed()) {
          // Restrict available domains to the ones in common with the operand.
          // If there are no common domains, we must pay the cross-domain
          // penalty for this operand.
          if (common) available = common;
        } else if (common)
          // Open DomainValue is compatible, save it for merging.
          used.push_back(rx);
        else
          // Open DomainValue is not compatible with instruction. It is useless
          // now.
          kill(rx);
      }
    }

  // If the collapsed operands force a single domain, propagate the collapse.
  if (isPowerOf2_32(available)) {
    unsigned domain = countTrailingZeros(available);
    TII->setExecutionDomain(mi, domain);
    visitHardInstr(mi, domain);
    return;
  }

  // Kill off any remaining uses that don't match available, and build a list of
  // incoming DomainValues that we want to merge.
  SmallVector<LiveReg, 4> Regs;
  for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
    int rx = *i;
    const LiveReg &LR = LiveRegs[rx];
    // This useless DomainValue could have been missed above.
    if (!LR.Value->getCommonDomains(available)) {
      kill(rx);
      continue;
    }
    // Sorted insertion.
    bool Inserted = false;
    for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end();
           i != e && !Inserted; ++i) {
      if (LR.Def < i->Def) {
        Inserted = true;
        Regs.insert(i, LR);
      }
    }
    if (!Inserted)
      Regs.push_back(LR);
  }

  // doms are now sorted in order of appearance. Try to merge them all, giving
  // priority to the latest ones.
  DomainValue *dv = 0;
  while (!Regs.empty()) {
    if (!dv) {
      dv = Regs.pop_back_val().Value;
      // Force the first dv to match the current instruction.
      dv->AvailableDomains = dv->getCommonDomains(available);
      assert(dv->AvailableDomains && "Domain should have been filtered");
      continue;
    }

    DomainValue *Latest = Regs.pop_back_val().Value;
    // Skip already merged values.
    if (Latest == dv || Latest->Next)
      continue;
    if (merge(dv, Latest))
      continue;

    // If latest didn't merge, it is useless now. Kill all registers using it.
    for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i)
      if (LiveRegs[*i].Value == Latest)
        kill(*i);
  }

  // dv is the DomainValue we are going to use for this instruction.
  if (!dv) {
    dv = alloc();
    dv->AvailableDomains = available;
  }
  dv->Instrs.push_back(mi);

  // Finally set all defs and non-collapsed uses to dv. We must iterate through
  // all the operators, including imp-def ones.
  for (MachineInstr::mop_iterator ii = mi->operands_begin(),
                                  ee = mi->operands_end();
                                  ii != ee; ++ii) {
    MachineOperand &mo = *ii;
    if (!mo.isReg()) continue;
    int rx = regIndex(mo.getReg());
    if (rx < 0) continue;
    if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
      kill(rx);
      setLiveReg(rx, dv);
    }
  }
}

bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
  MF = &mf;
  TII = MF->getTarget().getInstrInfo();
  TRI = MF->getTarget().getRegisterInfo();
  LiveRegs = 0;
  assert(NumRegs == RC->getNumRegs() && "Bad regclass");

  DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
               << RC->getName() << " **********\n");

  // If no relevant registers are used in the function, we can skip it
  // completely.
  bool anyregs = false;
  for (TargetRegisterClass::const_iterator I = RC->begin(), E = RC->end();
       I != E; ++I)
    if (MF->getRegInfo().isPhysRegUsed(*I)) {
      anyregs = true;
      break;
    }
  if (!anyregs) return false;

  // Initialize the AliasMap on the first use.
  if (AliasMap.empty()) {
    // Given a PhysReg, AliasMap[PhysReg] is either the relevant index into RC,
    // or -1.
    AliasMap.resize(TRI->getNumRegs(), -1);
    for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
      for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
           AI.isValid(); ++AI)
        AliasMap[*AI] = i;
  }

  MachineBasicBlock *Entry = MF->begin();
  ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
  SmallVector<MachineBasicBlock*, 16> Loops;
  for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
         MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
    MachineBasicBlock *MBB = *MBBI;
    enterBasicBlock(MBB);
    if (SeenUnknownBackEdge)
      Loops.push_back(MBB);
    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
        ++I)
      visitInstr(I);
    processUndefReads(MBB);
    leaveBasicBlock(MBB);
  }

  // Visit all the loop blocks again in order to merge DomainValues from
  // back-edges.
  for (unsigned i = 0, e = Loops.size(); i != e; ++i) {
    MachineBasicBlock *MBB = Loops[i];
    enterBasicBlock(MBB);
    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
        ++I)
      if (!I->isDebugValue())
        processDefs(I, false);
    processUndefReads(MBB);
    leaveBasicBlock(MBB);
  }

  // Clear the LiveOuts vectors and collapse any remaining DomainValues.
  for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
         MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
    LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
    if (FI == LiveOuts.end() || !FI->second)
      continue;
    for (unsigned i = 0, e = NumRegs; i != e; ++i)
      if (FI->second[i].Value)
        release(FI->second[i].Value);
    delete[] FI->second;
  }
  LiveOuts.clear();
  UndefReads.clear();
  Avail.clear();
  Allocator.DestroyAll();

  return false;
}

FunctionPass *
llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
  return new ExeDepsFix(RC);
}