1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
//===-- InterferenceCache.cpp - Caching per-block interference ---------*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// InterferenceCache remembers per-block interference in LiveIntervalUnions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "InterferenceCache.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
// Static member used for null interference cursors.
InterferenceCache::BlockInterference InterferenceCache::Cursor::NoInterference;
void InterferenceCache::init(MachineFunction *mf,
LiveIntervalUnion *liuarray,
SlotIndexes *indexes,
const TargetRegisterInfo *tri) {
MF = mf;
LIUArray = liuarray;
TRI = tri;
PhysRegEntries.assign(TRI->getNumRegs(), 0);
for (unsigned i = 0; i != CacheEntries; ++i)
Entries[i].clear(mf, indexes);
}
InterferenceCache::Entry *InterferenceCache::get(unsigned PhysReg) {
unsigned E = PhysRegEntries[PhysReg];
if (E < CacheEntries && Entries[E].getPhysReg() == PhysReg) {
if (!Entries[E].valid(LIUArray, TRI))
Entries[E].revalidate();
return &Entries[E];
}
// No valid entry exists, pick the next round-robin entry.
E = RoundRobin;
if (++RoundRobin == CacheEntries)
RoundRobin = 0;
for (unsigned i = 0; i != CacheEntries; ++i) {
// Skip entries that are in use.
if (Entries[E].hasRefs()) {
if (++E == CacheEntries)
E = 0;
continue;
}
Entries[E].reset(PhysReg, LIUArray, TRI, MF);
PhysRegEntries[PhysReg] = E;
return &Entries[E];
}
llvm_unreachable("Ran out of interference cache entries.");
}
/// revalidate - LIU contents have changed, update tags.
void InterferenceCache::Entry::revalidate() {
// Invalidate all block entries.
++Tag;
// Invalidate all iterators.
PrevPos = SlotIndex();
for (unsigned i = 0, e = Aliases.size(); i != e; ++i)
Aliases[i].second = Aliases[i].first->getTag();
}
void InterferenceCache::Entry::reset(unsigned physReg,
LiveIntervalUnion *LIUArray,
const TargetRegisterInfo *TRI,
const MachineFunction *MF) {
assert(!hasRefs() && "Cannot reset cache entry with references");
// LIU's changed, invalidate cache.
++Tag;
PhysReg = physReg;
Blocks.resize(MF->getNumBlockIDs());
Aliases.clear();
for (const unsigned *AS = TRI->getOverlaps(PhysReg); *AS; ++AS) {
LiveIntervalUnion *LIU = LIUArray + *AS;
Aliases.push_back(std::make_pair(LIU, LIU->getTag()));
}
// Reset iterators.
PrevPos = SlotIndex();
unsigned e = Aliases.size();
Iters.resize(e);
for (unsigned i = 0; i != e; ++i)
Iters[i].setMap(Aliases[i].first->getMap());
}
bool InterferenceCache::Entry::valid(LiveIntervalUnion *LIUArray,
const TargetRegisterInfo *TRI) {
unsigned i = 0, e = Aliases.size();
for (const unsigned *AS = TRI->getOverlaps(PhysReg); *AS; ++AS, ++i) {
LiveIntervalUnion *LIU = LIUArray + *AS;
if (i == e || Aliases[i].first != LIU)
return false;
if (LIU->changedSince(Aliases[i].second))
return false;
}
return i == e;
}
void InterferenceCache::Entry::update(unsigned MBBNum) {
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
// Use advanceTo only when possible.
if (PrevPos != Start) {
if (!PrevPos.isValid() || Start < PrevPos)
for (unsigned i = 0, e = Iters.size(); i != e; ++i)
Iters[i].find(Start);
else
for (unsigned i = 0, e = Iters.size(); i != e; ++i)
Iters[i].advanceTo(Start);
PrevPos = Start;
}
MachineFunction::const_iterator MFI = MF->getBlockNumbered(MBBNum);
BlockInterference *BI = &Blocks[MBBNum];
for (;;) {
BI->Tag = Tag;
BI->First = BI->Last = SlotIndex();
// Check for first interference.
for (unsigned i = 0, e = Iters.size(); i != e; ++i) {
Iter &I = Iters[i];
if (!I.valid())
continue;
SlotIndex StartI = I.start();
if (StartI >= Stop)
continue;
if (!BI->First.isValid() || StartI < BI->First)
BI->First = StartI;
}
PrevPos = Stop;
if (BI->First.isValid())
break;
// No interference in this block? Go ahead and precompute the next block.
if (++MFI == MF->end())
return;
MBBNum = MFI->getNumber();
BI = &Blocks[MBBNum];
if (BI->Tag == Tag)
return;
tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
}
// Check for last interference in block.
for (unsigned i = 0, e = Iters.size(); i != e; ++i) {
Iter &I = Iters[i];
if (!I.valid() || I.start() >= Stop)
continue;
I.advanceTo(Stop);
bool Backup = !I.valid() || I.start() >= Stop;
if (Backup)
--I;
SlotIndex StopI = I.stop();
if (!BI->Last.isValid() || StopI > BI->Last)
BI->Last = StopI;
if (Backup)
++I;
}
}
|