aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
blob: d6cc357fd5425b00f49f5413c7b1a25b93645aa5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "liveintervals"
#include "LiveIntervals.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CFG.h"
#include "Support/CommandLine.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include "VirtRegMap.h"
#include <cmath>
#include <iostream>
#include <limits>

using namespace llvm;

namespace {
    RegisterAnalysis<LiveIntervals> X("liveintervals",
                                      "Live Interval Analysis");

    Statistic<> numIntervals
    ("liveintervals", "Number of original intervals");

    Statistic<> numIntervalsAfter
    ("liveintervals", "Number of intervals after coalescing");

    Statistic<> numJoins
    ("liveintervals", "Number of interval joins performed");

    Statistic<> numPeep
    ("liveintervals", "Number of identity moves eliminated after coalescing");

    Statistic<> numFolded
    ("liveintervals", "Number of loads/stores folded into instructions");

    cl::opt<bool>
    join("join-liveintervals",
         cl::desc("Join compatible live intervals"),
         cl::init(true));
};

void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
{
    AU.addPreserved<LiveVariables>();
    AU.addRequired<LiveVariables>();
    AU.addPreservedID(PHIEliminationID);
    AU.addRequiredID(PHIEliminationID);
    AU.addRequiredID(TwoAddressInstructionPassID);
    AU.addRequired<LoopInfo>();
    MachineFunctionPass::getAnalysisUsage(AU);
}

void LiveIntervals::releaseMemory()
{
    mbbi2mbbMap_.clear();
    mi2iMap_.clear();
    i2miMap_.clear();
    r2iMap_.clear();
    r2rMap_.clear();
    intervals_.clear();
}


/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
    mf_ = &fn;
    tm_ = &fn.getTarget();
    mri_ = tm_->getRegisterInfo();
    lv_ = &getAnalysis<LiveVariables>();

    // number MachineInstrs
    unsigned miIndex = 0;
    for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
         mbb != mbbEnd; ++mbb) {
        const std::pair<MachineBasicBlock*, unsigned>& entry =
            lv_->getMachineBasicBlockInfo(mbb);
        bool inserted = mbbi2mbbMap_.insert(std::make_pair(entry.second,
                                                           entry.first)).second;
        assert(inserted && "multiple index -> MachineBasicBlock");

        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
             mi != miEnd; ++mi) {
            inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
            assert(inserted && "multiple MachineInstr -> index mappings");
            i2miMap_.push_back(mi);
            miIndex += InstrSlots::NUM;
        }
    }

    computeIntervals();

    numIntervals += intervals_.size();

    // join intervals if requested
    if (join) joinIntervals();

    numIntervalsAfter += intervals_.size();

    // perform a final pass over the instructions and compute spill
    // weights, coalesce virtual registers and remove identity moves
    const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
    const TargetInstrInfo& tii = tm_->getInstrInfo();

    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
         mbbi != mbbe; ++mbbi) {
        MachineBasicBlock* mbb = mbbi;
        unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());

        for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
             mii != mie; ) {
            for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
                const MachineOperand& mop = mii->getOperand(i);
                if (mop.isRegister() && mop.getReg()) {
                    // replace register with representative register
                    unsigned reg = rep(mop.getReg());
                    mii->SetMachineOperandReg(i, reg);

                    if (MRegisterInfo::isVirtualRegister(reg)) {
                        Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
                        assert(r2iit != r2iMap_.end());
                        r2iit->second->weight += pow(10.0F, loopDepth);
                    }
                }
            }

            // if the move is now an identity move delete it
            unsigned srcReg, dstReg;
            if (tii.isMoveInstr(*mii, srcReg, dstReg) && srcReg == dstReg) {
                // remove index -> MachineInstr and
                // MachineInstr -> index mappings
                Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
                if (mi2i != mi2iMap_.end()) {
                    i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
                    mi2iMap_.erase(mi2i);
                }
                mii = mbbi->erase(mii);
                ++numPeep;
            }
            else
                ++mii;
        }
    }

    intervals_.sort(StartPointComp());
    DEBUG(std::cerr << "********** INTERVALS **********\n");
    DEBUG(std::copy(intervals_.begin(), intervals_.end(),
                    std::ostream_iterator<Interval>(std::cerr, "\n")));
    DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
    DEBUG(
        for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
             mbbi != mbbe; ++mbbi) {
            std::cerr << mbbi->getBasicBlock()->getName() << ":\n";
            for (MachineBasicBlock::iterator mii = mbbi->begin(),
                     mie = mbbi->end(); mii != mie; ++mii) {
                std::cerr << getInstructionIndex(mii) << '\t';
                mii->print(std::cerr, *tm_);
            }
        });

    return true;
}

void LiveIntervals::updateSpilledInterval(Interval& li,
                                          VirtRegMap& vrm,
                                          int slot)
{
    assert(li.weight != std::numeric_limits<float>::infinity() &&
           "attempt to spill already spilled interval!");
    Interval::Ranges oldRanges;
    swap(oldRanges, li.ranges);

    DEBUG(std::cerr << "\t\t\t\tupdating interval: " << li);

    for (Interval::Ranges::iterator i = oldRanges.begin(), e = oldRanges.end();
         i != e; ++i) {
        unsigned index = getBaseIndex(i->first);
        unsigned end = getBaseIndex(i->second-1) + InstrSlots::NUM;
        for (; index < end; index += InstrSlots::NUM) {
            // skip deleted instructions
            while (!getInstructionFromIndex(index)) index += InstrSlots::NUM;
            MachineBasicBlock::iterator mi = getInstructionFromIndex(index);

        for_operand:
            for (unsigned i = 0; i < mi->getNumOperands(); ++i) {
                MachineOperand& mop = mi->getOperand(i);
                if (mop.isRegister() && mop.getReg() == li.reg) {
                    MachineInstr* old = mi;
                    if (mri_->foldMemoryOperand(mi, i, slot)) {
                        lv_->instructionChanged(old, mi);
                        vrm.virtFolded(li.reg, old, mi);
                        mi2iMap_.erase(old);
                        i2miMap_[index/InstrSlots::NUM] = mi;
                        mi2iMap_[mi] = index;
                        ++numFolded;
                        goto for_operand;
                    }
                    else {
                        // This is tricky. We need to add information in
                        // the interval about the spill code so we have to
                        // use our extra load/store slots.
                        //
                        // If we have a use we are going to have a load so
                        // we start the interval from the load slot
                        // onwards. Otherwise we start from the def slot.
                        unsigned start = (mop.isUse() ?
                                          getLoadIndex(index) :
                                          getDefIndex(index));
                        // If we have a def we are going to have a store
                        // right after it so we end the interval after the
                        // use of the next instruction. Otherwise we end
                        // after the use of this instruction.
                        unsigned end = 1 + (mop.isDef() ?
                                            getUseIndex(index+InstrSlots::NUM) :
                                            getUseIndex(index));
                        li.addRange(start, end);
                    }
                }
            }
        }
    }
    // the new spill weight is now infinity as it cannot be spilled again
    li.weight = std::numeric_limits<float>::infinity();
    DEBUG(std::cerr << '\n');
    DEBUG(std::cerr << "\t\t\t\tupdated interval: " << li << '\n');
}

void LiveIntervals::printRegName(unsigned reg) const
{
    if (MRegisterInfo::isPhysicalRegister(reg))
        std::cerr << mri_->getName(reg);
    else
        std::cerr << "%reg" << reg;
}

void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
                                             MachineBasicBlock::iterator mi,
                                             unsigned reg)
{
    DEBUG(std::cerr << "\t\tregister: "; printRegName(reg));
    LiveVariables::VarInfo& vi = lv_->getVarInfo(reg);

    Interval* interval = 0;
    Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
    if (r2iit == r2iMap_.end() || r2iit->first != reg) {
        // add new interval
        intervals_.push_back(Interval(reg));
        // update interval index for this register
        r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
        interval = &intervals_.back();

        // iterate over all of the blocks that the variable is
        // completely live in, adding them to the live
        // interval. obviously we only need to do this once.
        for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
            if (vi.AliveBlocks[i]) {
                MachineBasicBlock* mbb = lv_->getIndexMachineBasicBlock(i);
                if (!mbb->empty()) {
                    interval->addRange(
                        getInstructionIndex(&mbb->front()),
                        getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
                }
            }
        }
    }
    else {
        interval = &*r2iit->second;
    }

    unsigned baseIndex = getInstructionIndex(mi);

    bool killedInDefiningBasicBlock = false;
    for (int i = 0, e = vi.Kills.size(); i != e; ++i) {
        MachineBasicBlock* killerBlock = vi.Kills[i].first;
        MachineInstr* killerInstr = vi.Kills[i].second;
        unsigned start = (mbb == killerBlock ?
                          getDefIndex(baseIndex) :
                          getInstructionIndex(&killerBlock->front()));
        unsigned end = (killerInstr == mi ?
                         // dead
                        start + 1 :
                        // killed
                        getUseIndex(getInstructionIndex(killerInstr))+1);
        // we do not want to add invalid ranges. these can happen when
        // a variable has its latest use and is redefined later on in
        // the same basic block (common with variables introduced by
        // PHI elimination)
        if (start < end) {
            killedInDefiningBasicBlock |= mbb == killerBlock;
            interval->addRange(start, end);
        }
    }

    if (!killedInDefiningBasicBlock) {
        unsigned end = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
        interval->addRange(getDefIndex(baseIndex), end);
    }
    DEBUG(std::cerr << '\n');
}

void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
                                              MachineBasicBlock::iterator mi,
                                              unsigned reg)
{
    DEBUG(std::cerr << "\t\tregister: "; printRegName(reg));
    typedef LiveVariables::killed_iterator KillIter;

    MachineBasicBlock::iterator e = mbb->end();
    unsigned baseIndex = getInstructionIndex(mi);
    unsigned start = getDefIndex(baseIndex);
    unsigned end = start;

    // a variable can be dead by the instruction defining it
    for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
         ki != ke; ++ki) {
        if (reg == ki->second) {
            DEBUG(std::cerr << " dead");
            end = getDefIndex(start) + 1;
            goto exit;
        }
    }

    // a variable can only be killed by subsequent instructions
    do {
        ++mi;
        baseIndex += InstrSlots::NUM;
        for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
             ki != ke; ++ki) {
            if (reg == ki->second) {
                DEBUG(std::cerr << " killed");
                end = getUseIndex(baseIndex) + 1;
                goto exit;
            }
        }
    } while (mi != e);

exit:
    assert(start < end && "did not find end of interval?");

    Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
    if (r2iit != r2iMap_.end() && r2iit->first == reg) {
        r2iit->second->addRange(start, end);
    }
    else {
        intervals_.push_back(Interval(reg));
        // update interval index for this register
        r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
        intervals_.back().addRange(start, end);
    }
    DEBUG(std::cerr << '\n');
}

void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
                                      MachineBasicBlock::iterator mi,
                                      unsigned reg)
{
    if (MRegisterInfo::isPhysicalRegister(reg)) {
        if (lv_->getAllocatablePhysicalRegisters()[reg]) {
            handlePhysicalRegisterDef(mbb, mi, reg);
            for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
                handlePhysicalRegisterDef(mbb, mi, *as);
        }
    }
    else {
        handleVirtualRegisterDef(mbb, mi, reg);
    }
}

unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const
{
    Mi2IndexMap::const_iterator it = mi2iMap_.find(instr);
    return (it == mi2iMap_.end() ?
            std::numeric_limits<unsigned>::max() :
            it->second);
}

MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const
{
    index /= InstrSlots::NUM; // convert index to vector index
    assert(index < i2miMap_.size() &&
           "index does not correspond to an instruction");
    return i2miMap_[index];
}

/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals()
{
    DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
    DEBUG(std::cerr << "********** Function: "
          << mf_->getFunction()->getName() << '\n');

    for (MbbIndex2MbbMap::iterator
             it = mbbi2mbbMap_.begin(), itEnd = mbbi2mbbMap_.end();
         it != itEnd; ++it) {
        MachineBasicBlock* mbb = it->second;
        DEBUG(std::cerr << mbb->getBasicBlock()->getName() << ":\n");

        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
             mi != miEnd; ++mi) {
            const TargetInstrDescriptor& tid =
                tm_->getInstrInfo().get(mi->getOpcode());
            DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
                  mi->print(std::cerr, *tm_));

            // handle implicit defs
            for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
                handleRegisterDef(mbb, mi, *id);

            // handle explicit defs
            for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
                MachineOperand& mop = mi->getOperand(i);
                // handle register defs - build intervals
                if (mop.isRegister() && mop.getReg() && mop.isDef())
                    handleRegisterDef(mbb, mi, mop.getReg());
            }
        }
    }
}

unsigned LiveIntervals::rep(unsigned reg)
{
    Reg2RegMap::iterator it = r2rMap_.find(reg);
    if (it != r2rMap_.end())
        return it->second = rep(it->second);
    return reg;
}

void LiveIntervals::joinIntervals()
{
    DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");

    const TargetInstrInfo& tii = tm_->getInstrInfo();

    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
         mbbi != mbbe; ++mbbi) {
        MachineBasicBlock* mbb = mbbi;
        DEBUG(std::cerr << mbb->getBasicBlock()->getName() << ":\n");

        for (MachineBasicBlock::iterator mi = mbb->begin(), mie = mbb->end();
             mi != mie; ++mi) {
            const TargetInstrDescriptor& tid =
                tm_->getInstrInfo().get(mi->getOpcode());
            DEBUG(std::cerr << getInstructionIndex(mi) << '\t';
                  mi->print(std::cerr, *tm_););

            // we only join virtual registers with allocatable
            // physical registers since we do not have liveness information
            // on not allocatable physical registers
            unsigned regA, regB;
            if (tii.isMoveInstr(*mi, regA, regB) &&
                (MRegisterInfo::isVirtualRegister(regA) ||
                 lv_->getAllocatablePhysicalRegisters()[regA]) &&
                (MRegisterInfo::isVirtualRegister(regB) ||
                 lv_->getAllocatablePhysicalRegisters()[regB])) {

                // get representative registers
                regA = rep(regA);
                regB = rep(regB);

                // if they are already joined we continue
                if (regA == regB)
                    continue;

                Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA);
                assert(r2iA != r2iMap_.end());
                Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB);
                assert(r2iB != r2iMap_.end());

                Intervals::iterator intA = r2iA->second;
                Intervals::iterator intB = r2iB->second;

                // both A and B are virtual registers
                if (MRegisterInfo::isVirtualRegister(intA->reg) &&
                    MRegisterInfo::isVirtualRegister(intB->reg)) {

                    const TargetRegisterClass *rcA, *rcB;
                    rcA = mf_->getSSARegMap()->getRegClass(intA->reg);
                    rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
                    assert(rcA == rcB && "registers must be of the same class");

                    // if their intervals do not overlap we join them
                    if (!intB->overlaps(*intA)) {
                        intA->join(*intB);
                        r2iB->second = r2iA->second;
                        r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
                        intervals_.erase(intB);
                    }
                }
                else if (MRegisterInfo::isPhysicalRegister(intA->reg) ^
                         MRegisterInfo::isPhysicalRegister(intB->reg)) {
                    if (MRegisterInfo::isPhysicalRegister(intB->reg)) {
                        std::swap(regA, regB);
                        std::swap(intA, intB);
                        std::swap(r2iA, r2iB);
                    }

                    assert(MRegisterInfo::isPhysicalRegister(intA->reg) &&
                           MRegisterInfo::isVirtualRegister(intB->reg) &&
                           "A must be physical and B must be virtual");

                    if (!intA->overlaps(*intB) &&
                         !overlapsAliases(*intA, *intB)) {
                        intA->join(*intB);
                        r2iB->second = r2iA->second;
                        r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
                        intervals_.erase(intB);
                    }
                }
            }
        }
    }
}

bool LiveIntervals::overlapsAliases(const Interval& lhs,
                                    const Interval& rhs) const
{
    assert(MRegisterInfo::isPhysicalRegister(lhs.reg) &&
           "first interval must describe a physical register");

    for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) {
        Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as);
        assert(r2i != r2iMap_.end() && "alias does not have interval?");
        if (rhs.overlaps(*r2i->second))
            return true;
    }

    return false;
}

LiveIntervals::Interval::Interval(unsigned r)
    : reg(r),
      weight((MRegisterInfo::isPhysicalRegister(r) ?
              std::numeric_limits<float>::infinity() : 0.0F))
{

}

bool LiveIntervals::Interval::spilled() const
{
    return (weight == std::numeric_limits<float>::infinity() &&
            MRegisterInfo::isVirtualRegister(reg));
}

// An example for liveAt():
//
// this = [1,4), liveAt(0) will return false. The instruction defining
// this spans slots [0,3]. The interval belongs to an spilled
// definition of the variable it represents. This is because slot 1 is
// used (def slot) and spans up to slot 3 (store slot).
//
bool LiveIntervals::Interval::liveAt(unsigned index) const
{
    Range dummy(index, index+1);
    Ranges::const_iterator r = std::upper_bound(ranges.begin(),
                                                ranges.end(),
                                                dummy);
    if (r == ranges.begin())
        return false;

    --r;
    return index >= r->first && index < r->second;
}

// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live intervals should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
bool LiveIntervals::Interval::overlaps(const Interval& other) const
{
    Ranges::const_iterator i = ranges.begin();
    Ranges::const_iterator ie = ranges.end();
    Ranges::const_iterator j = other.ranges.begin();
    Ranges::const_iterator je = other.ranges.end();
    if (i->first < j->first) {
        i = std::upper_bound(i, ie, *j);
        if (i != ranges.begin()) --i;
    }
    else if (j->first < i->first) {
        j = std::upper_bound(j, je, *i);
        if (j != other.ranges.begin()) --j;
    }

    while (i != ie && j != je) {
        if (i->first == j->first) {
            return true;
        }
        else {
            if (i->first > j->first) {
                swap(i, j);
                swap(ie, je);
            }
            assert(i->first < j->first);

            if (i->second > j->first) {
                return true;
            }
            else {
                ++i;
            }
        }
    }

    return false;
}

void LiveIntervals::Interval::addRange(unsigned start, unsigned end)
{
    assert(start < end && "Invalid range to add!");
    DEBUG(std::cerr << " +[" << start << ',' << end << ")");
    //assert(start < end && "invalid range?");
    Range range = std::make_pair(start, end);
    Ranges::iterator it =
        ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range),
                      range);

    it = mergeRangesForward(it);
    it = mergeRangesBackward(it);
}

void LiveIntervals::Interval::join(const LiveIntervals::Interval& other)
{
    DEBUG(std::cerr << "\t\tjoining " << *this << " with " << other << '\n');
    Ranges::iterator cur = ranges.begin();

    for (Ranges::const_iterator i = other.ranges.begin(),
             e = other.ranges.end(); i != e; ++i) {
        cur = ranges.insert(std::upper_bound(cur, ranges.end(), *i), *i);
        cur = mergeRangesForward(cur);
        cur = mergeRangesBackward(cur);
    }
    weight += other.weight;
    ++numJoins;
}

LiveIntervals::Interval::Ranges::iterator
LiveIntervals::Interval::mergeRangesForward(Ranges::iterator it)
{
    Ranges::iterator n;
    while ((n = next(it)) != ranges.end()) {
        if (n->first > it->second)
            break;
        it->second = std::max(it->second, n->second);
        n = ranges.erase(n);
    }
    return it;
}

LiveIntervals::Interval::Ranges::iterator
LiveIntervals::Interval::mergeRangesBackward(Ranges::iterator it)
{
    while (it != ranges.begin()) {
        Ranges::iterator p = prior(it);
        if (it->first > p->second)
            break;

        it->first = std::min(it->first, p->first);
        it->second = std::max(it->second, p->second);
        it = ranges.erase(p);
    }

    return it;
}

std::ostream& llvm::operator<<(std::ostream& os,
                               const LiveIntervals::Interval& li)
{
    os << "%reg" << li.reg << ',' << li.weight << " = ";
    if (li.empty())
        return os << "EMPTY";
    for (LiveIntervals::Interval::Ranges::const_iterator
             i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
        os << "[" << i->first << "," << i->second << ")";
    }
    return os;
}