aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
blob: 4e75d892e5239083f0d9c198cb6c2b497602fc7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "LiveRangeCalc.h"
#include "VirtRegMap.h"
#include <algorithm>
#include <limits>
#include <cmath>
using namespace llvm;

// Switch to the new experimental algorithm for computing live intervals.
static cl::opt<bool>
NewLiveIntervals("new-live-intervals", cl::Hidden,
                 cl::desc("Use new algorithm forcomputing live intervals"));

char LiveIntervals::ID = 0;
char &llvm::LiveIntervalsID = LiveIntervals::ID;
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
                "Live Interval Analysis", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
                "Live Interval Analysis", false, false)

void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addRequired<LiveVariables>();
  AU.addPreserved<LiveVariables>();
  AU.addPreservedID(MachineLoopInfoID);
  AU.addRequiredTransitiveID(MachineDominatorsID);
  AU.addPreservedID(MachineDominatorsID);
  AU.addPreserved<SlotIndexes>();
  AU.addRequiredTransitive<SlotIndexes>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
  DomTree(0), LRCalc(0) {
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
}

LiveIntervals::~LiveIntervals() {
  delete LRCalc;
}

void LiveIntervals::releaseMemory() {
  // Free the live intervals themselves.
  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
  VirtRegIntervals.clear();
  RegMaskSlots.clear();
  RegMaskBits.clear();
  RegMaskBlocks.clear();

  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
    delete RegUnitIntervals[i];
  RegUnitIntervals.clear();

  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
  VNInfoAllocator.Reset();
}

/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
  MF = &fn;
  MRI = &MF->getRegInfo();
  TM = &fn.getTarget();
  TRI = TM->getRegisterInfo();
  TII = TM->getInstrInfo();
  AA = &getAnalysis<AliasAnalysis>();
  LV = &getAnalysis<LiveVariables>();
  Indexes = &getAnalysis<SlotIndexes>();
  DomTree = &getAnalysis<MachineDominatorTree>();
  if (!LRCalc)
    LRCalc = new LiveRangeCalc();

  // Allocate space for all virtual registers.
  VirtRegIntervals.resize(MRI->getNumVirtRegs());

  if (NewLiveIntervals) {
    // This is the new way of computing live intervals.
    // It is independent of LiveVariables, and it can run at any time.
    computeVirtRegs();
    computeRegMasks();
  } else {
    // This is the old way of computing live intervals.
    // It depends on LiveVariables.
    computeIntervals();
  }
  computeLiveInRegUnits();

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
  OS << "********** INTERVALS **********\n";

  // Dump the regunits.
  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
    if (LiveInterval *LI = RegUnitIntervals[i])
      OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';

  // Dump the virtregs.
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (hasInterval(Reg))
      OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
  }

  OS << "RegMasks:";
  for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
    OS << ' ' << RegMaskSlots[i];
  OS << '\n';

  printInstrs(OS);
}

void LiveIntervals::printInstrs(raw_ostream &OS) const {
  OS << "********** MACHINEINSTRS **********\n";
  MF->print(OS, Indexes);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LiveIntervals::dumpInstrs() const {
  printInstrs(dbgs());
}
#endif

static
bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
  unsigned Reg = MI.getOperand(MOIdx).getReg();
  for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg())
      continue;
    if (MO.getReg() == Reg && MO.isDef()) {
      assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
             MI.getOperand(MOIdx).getSubReg() &&
             (MO.getSubReg() || MO.isImplicit()));
      return true;
    }
  }
  return false;
}

/// isPartialRedef - Return true if the specified def at the specific index is
/// partially re-defining the specified live interval. A common case of this is
/// a definition of the sub-register.
bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
                                   LiveInterval &interval) {
  if (!MO.getSubReg() || MO.isEarlyClobber())
    return false;

  SlotIndex RedefIndex = MIIdx.getRegSlot();
  const LiveRange *OldLR =
    interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
  MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
  if (DefMI != 0) {
    return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
  }
  return false;
}

void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
                                             MachineBasicBlock::iterator mi,
                                             SlotIndex MIIdx,
                                             MachineOperand& MO,
                                             unsigned MOIdx,
                                             LiveInterval &interval) {
  DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));

  // Virtual registers may be defined multiple times (due to phi
  // elimination and 2-addr elimination).  Much of what we do only has to be
  // done once for the vreg.  We use an empty interval to detect the first
  // time we see a vreg.
  LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg);
  if (interval.empty()) {
    // Get the Idx of the defining instructions.
    SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());

    // Make sure the first definition is not a partial redefinition.
    assert(!MO.readsReg() && "First def cannot also read virtual register "
           "missing <undef> flag?");

    VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
    assert(ValNo->id == 0 && "First value in interval is not 0?");

    // Loop over all of the blocks that the vreg is defined in.  There are
    // two cases we have to handle here.  The most common case is a vreg
    // whose lifetime is contained within a basic block.  In this case there
    // will be a single kill, in MBB, which comes after the definition.
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
      // FIXME: what about dead vars?
      SlotIndex killIdx;
      if (vi.Kills[0] != mi)
        killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
      else
        killIdx = defIndex.getDeadSlot();

      // If the kill happens after the definition, we have an intra-block
      // live range.
      if (killIdx > defIndex) {
        assert(vi.AliveBlocks.empty() &&
               "Shouldn't be alive across any blocks!");
        LiveRange LR(defIndex, killIdx, ValNo);
        interval.addRange(LR);
        DEBUG(dbgs() << " +" << LR << "\n");
        return;
      }
    }

    // The other case we handle is when a virtual register lives to the end
    // of the defining block, potentially live across some blocks, then is
    // live into some number of blocks, but gets killed.  Start by adding a
    // range that goes from this definition to the end of the defining block.
    LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
    DEBUG(dbgs() << " +" << NewLR);
    interval.addRange(NewLR);

    bool PHIJoin = LV->isPHIJoin(interval.reg);

    if (PHIJoin) {
      // A phi join register is killed at the end of the MBB and revived as a
      // new valno in the killing blocks.
      assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
      DEBUG(dbgs() << " phi-join");
    } else {
      // Iterate over all of the blocks that the variable is completely
      // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
      // live interval.
      for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
               E = vi.AliveBlocks.end(); I != E; ++I) {
        MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I);
        LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock),
                     ValNo);
        interval.addRange(LR);
        DEBUG(dbgs() << " +" << LR);
      }
    }

    // Finally, this virtual register is live from the start of any killing
    // block to the 'use' slot of the killing instruction.
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = vi.Kills[i];
      SlotIndex Start = getMBBStartIdx(Kill->getParent());
      SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();

      // Create interval with one of a NEW value number.  Note that this value
      // number isn't actually defined by an instruction, weird huh? :)
      if (PHIJoin) {
        assert(getInstructionFromIndex(Start) == 0 &&
               "PHI def index points at actual instruction.");
        ValNo = interval.getNextValue(Start, VNInfoAllocator);
      }
      LiveRange LR(Start, killIdx, ValNo);
      interval.addRange(LR);
      DEBUG(dbgs() << " +" << LR);
    }

  } else {
    if (MultipleDefsBySameMI(*mi, MOIdx))
      // Multiple defs of the same virtual register by the same instruction.
      // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
      // This is likely due to elimination of REG_SEQUENCE instructions. Return
      // here since there is nothing to do.
      return;

    // If this is the second time we see a virtual register definition, it
    // must be due to phi elimination or two addr elimination.  If this is
    // the result of two address elimination, then the vreg is one of the
    // def-and-use register operand.

    // It may also be partial redef like this:
    // 80  %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
    // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
    bool PartReDef = isPartialRedef(MIIdx, MO, interval);
    if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
      // If this is a two-address definition, then we have already processed
      // the live range.  The only problem is that we didn't realize there
      // are actually two values in the live interval.  Because of this we
      // need to take the LiveRegion that defines this register and split it
      // into two values.
      SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());

      const LiveRange *OldLR =
        interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
      VNInfo *OldValNo = OldLR->valno;
      SlotIndex DefIndex = OldValNo->def.getRegSlot();

      // Delete the previous value, which should be short and continuous,
      // because the 2-addr copy must be in the same MBB as the redef.
      interval.removeRange(DefIndex, RedefIndex);

      // The new value number (#1) is defined by the instruction we claimed
      // defined value #0.
      VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);

      // Value#0 is now defined by the 2-addr instruction.
      OldValNo->def = RedefIndex;

      // Add the new live interval which replaces the range for the input copy.
      LiveRange LR(DefIndex, RedefIndex, ValNo);
      DEBUG(dbgs() << " replace range with " << LR);
      interval.addRange(LR);

      // If this redefinition is dead, we need to add a dummy unit live
      // range covering the def slot.
      if (MO.isDead())
        interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
                                    OldValNo));

      DEBUG(dbgs() << " RESULT: " << interval);
    } else if (LV->isPHIJoin(interval.reg)) {
      // In the case of PHI elimination, each variable definition is only
      // live until the end of the block.  We've already taken care of the
      // rest of the live range.

      SlotIndex defIndex = MIIdx.getRegSlot();
      if (MO.isEarlyClobber())
        defIndex = MIIdx.getRegSlot(true);

      VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);

      SlotIndex killIndex = getMBBEndIdx(mbb);
      LiveRange LR(defIndex, killIndex, ValNo);
      interval.addRange(LR);
      DEBUG(dbgs() << " phi-join +" << LR);
    } else {
      llvm_unreachable("Multiply defined register");
    }
  }

  DEBUG(dbgs() << '\n');
}

void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator MI,
                                      SlotIndex MIIdx,
                                      MachineOperand& MO,
                                      unsigned MOIdx) {
  if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
    handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
                             getOrCreateInterval(MO.getReg()));
}

/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals() {
  DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
               << "********** Function: " << MF->getName() << '\n');

  RegMaskBlocks.resize(MF->getNumBlockIDs());

  SmallVector<unsigned, 8> UndefUses;
  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
       MBBI != E; ++MBBI) {
    MachineBasicBlock *MBB = MBBI;
    RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();

    if (MBB->empty())
      continue;

    // Track the index of the current machine instr.
    SlotIndex MIIndex = getMBBStartIdx(MBB);
    DEBUG(dbgs() << "BB#" << MBB->getNumber()
          << ":\t\t# derived from " << MBB->getName() << "\n");

    // Skip over empty initial indices.
    if (getInstructionFromIndex(MIIndex) == 0)
      MIIndex = Indexes->getNextNonNullIndex(MIIndex);

    for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
         MI != miEnd; ++MI) {
      DEBUG(dbgs() << MIIndex << "\t" << *MI);
      if (MI->isDebugValue())
        continue;
      assert(Indexes->getInstructionFromIndex(MIIndex) == MI &&
             "Lost SlotIndex synchronization");

      // Handle defs.
      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
        MachineOperand &MO = MI->getOperand(i);

        // Collect register masks.
        if (MO.isRegMask()) {
          RegMaskSlots.push_back(MIIndex.getRegSlot());
          RegMaskBits.push_back(MO.getRegMask());
          continue;
        }

        if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
          continue;

        // handle register defs - build intervals
        if (MO.isDef())
          handleRegisterDef(MBB, MI, MIIndex, MO, i);
        else if (MO.isUndef())
          UndefUses.push_back(MO.getReg());
      }

      // Move to the next instr slot.
      MIIndex = Indexes->getNextNonNullIndex(MIIndex);
    }

    // Compute the number of register mask instructions in this block.
    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
    RMB.second = RegMaskSlots.size() - RMB.first;
  }

  // Create empty intervals for registers defined by implicit_def's (except
  // for those implicit_def that define values which are liveout of their
  // blocks.
  for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
    unsigned UndefReg = UndefUses[i];
    (void)getOrCreateInterval(UndefReg);
  }
}

LiveInterval* LiveIntervals::createInterval(unsigned reg) {
  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
  return new LiveInterval(reg, Weight);
}


/// computeVirtRegInterval - Compute the live interval of a virtual register,
/// based on defs and uses.
void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
  assert(LRCalc && "LRCalc not initialized.");
  assert(LI->empty() && "Should only compute empty intervals.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
  LRCalc->createDeadDefs(LI);
  LRCalc->extendToUses(LI);
}

void LiveIntervals::computeVirtRegs() {
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->reg_nodbg_empty(Reg))
      continue;
    LiveInterval *LI = createInterval(Reg);
    VirtRegIntervals[Reg] = LI;
    computeVirtRegInterval(LI);
  }
}

void LiveIntervals::computeRegMasks() {
  RegMaskBlocks.resize(MF->getNumBlockIDs());

  // Find all instructions with regmask operands.
  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
       MBBI != E; ++MBBI) {
    MachineBasicBlock *MBB = MBBI;
    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
    RMB.first = RegMaskSlots.size();
    for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
         MI != ME; ++MI)
      for (MIOperands MO(MI); MO.isValid(); ++MO) {
        if (!MO->isRegMask())
          continue;
          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
          RegMaskBits.push_back(MO->getRegMask());
      }
    // Compute the number of register mask instructions in this block.
    RMB.second = RegMaskSlots.size() - RMB.first;
  }
}

//===----------------------------------------------------------------------===//
//                           Register Unit Liveness
//===----------------------------------------------------------------------===//
//
// Fixed interference typically comes from ABI boundaries: Function arguments
// and return values are passed in fixed registers, and so are exception
// pointers entering landing pads. Certain instructions require values to be
// present in specific registers. That is also represented through fixed
// interference.
//

/// computeRegUnitInterval - Compute the live interval of a register unit, based
/// on the uses and defs of aliasing registers.  The interval should be empty,
/// or contain only dead phi-defs from ABI blocks.
void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
  unsigned Unit = LI->reg;

  assert(LRCalc && "LRCalc not initialized.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());

  // The physregs aliasing Unit are the roots and their super-registers.
  // Create all values as dead defs before extending to uses. Note that roots
  // may share super-registers. That's OK because createDeadDefs() is
  // idempotent. It is very rare for a register unit to have multiple roots, so
  // uniquing super-registers is probably not worthwhile.
  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    unsigned Root = *Roots;
    if (!MRI->reg_empty(Root))
      LRCalc->createDeadDefs(LI, Root);
    for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
      if (!MRI->reg_empty(*Supers))
        LRCalc->createDeadDefs(LI, *Supers);
    }
  }

  // Now extend LI to reach all uses.
  // Ignore uses of reserved registers. We only track defs of those.
  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    unsigned Root = *Roots;
    if (!MRI->isReserved(Root) && !MRI->reg_empty(Root))
      LRCalc->extendToUses(LI, Root);
    for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
      unsigned Reg = *Supers;
      if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
        LRCalc->extendToUses(LI, Reg);
    }
  }
}


/// computeLiveInRegUnits - Precompute the live ranges of any register units
/// that are live-in to an ABI block somewhere. Register values can appear
/// without a corresponding def when entering the entry block or a landing pad.
///
void LiveIntervals::computeLiveInRegUnits() {
  RegUnitIntervals.resize(TRI->getNumRegUnits());
  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");

  // Keep track of the intervals allocated.
  SmallVector<LiveInterval*, 8> NewIntvs;

  // Check all basic blocks for live-ins.
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    const MachineBasicBlock *MBB = MFI;

    // We only care about ABI blocks: Entry + landing pads.
    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
      continue;

    // Create phi-defs at Begin for all live-in registers.
    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
         LIE = MBB->livein_end(); LII != LIE; ++LII) {
      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
        unsigned Unit = *Units;
        LiveInterval *Intv = RegUnitIntervals[Unit];
        if (!Intv) {
          Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
          NewIntvs.push_back(Intv);
        }
        VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
        (void)VNI;
        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
      }
    }
    DEBUG(dbgs() << '\n');
  }
  DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");

  // Compute the 'normal' part of the intervals.
  for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
    computeRegUnitInterval(NewIntvs[i]);
}


/// shrinkToUses - After removing some uses of a register, shrink its live
/// range to just the remaining uses. This method does not compute reaching
/// defs for new uses, and it doesn't remove dead defs.
bool LiveIntervals::shrinkToUses(LiveInterval *li,
                                 SmallVectorImpl<MachineInstr*> *dead) {
  DEBUG(dbgs() << "Shrink: " << *li << '\n');
  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
         && "Can only shrink virtual registers");
  // Find all the values used, including PHI kills.
  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;

  // Blocks that have already been added to WorkList as live-out.
  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;

  // Visit all instructions reading li->reg.
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
       MachineInstr *UseMI = I.skipInstruction();) {
    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
      continue;
    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
    LiveRangeQuery LRQ(*li, Idx);
    VNInfo *VNI = LRQ.valueIn();
    if (!VNI) {
      // This shouldn't happen: readsVirtualRegister returns true, but there is
      // no live value. It is likely caused by a target getting <undef> flags
      // wrong.
      DEBUG(dbgs() << Idx << '\t' << *UseMI
                   << "Warning: Instr claims to read non-existent value in "
                    << *li << '\n');
      continue;
    }
    // Special case: An early-clobber tied operand reads and writes the
    // register one slot early.
    if (VNInfo *DefVNI = LRQ.valueDefined())
      Idx = DefVNI->def;

    WorkList.push_back(std::make_pair(Idx, VNI));
  }

  // Create a new live interval with only minimal live segments per def.
  LiveInterval NewLI(li->reg, 0);
  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
       I != E; ++I) {
    VNInfo *VNI = *I;
    if (VNI->isUnused())
      continue;
    NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
  }

  // Keep track of the PHIs that are in use.
  SmallPtrSet<VNInfo*, 8> UsedPHIs;

  // Extend intervals to reach all uses in WorkList.
  while (!WorkList.empty()) {
    SlotIndex Idx = WorkList.back().first;
    VNInfo *VNI = WorkList.back().second;
    WorkList.pop_back();
    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
    SlotIndex BlockStart = getMBBStartIdx(MBB);

    // Extend the live range for VNI to be live at Idx.
    if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
      (void)ExtVNI;
      assert(ExtVNI == VNI && "Unexpected existing value number");
      // Is this a PHIDef we haven't seen before?
      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
        continue;
      // The PHI is live, make sure the predecessors are live-out.
      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
           PE = MBB->pred_end(); PI != PE; ++PI) {
        if (!LiveOut.insert(*PI))
          continue;
        SlotIndex Stop = getMBBEndIdx(*PI);
        // A predecessor is not required to have a live-out value for a PHI.
        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
          WorkList.push_back(std::make_pair(Stop, PVNI));
      }
      continue;
    }

    // VNI is live-in to MBB.
    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
    NewLI.addRange(LiveRange(BlockStart, Idx, VNI));

    // Make sure VNI is live-out from the predecessors.
    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
      if (!LiveOut.insert(*PI))
        continue;
      SlotIndex Stop = getMBBEndIdx(*PI);
      assert(li->getVNInfoBefore(Stop) == VNI &&
             "Wrong value out of predecessor");
      WorkList.push_back(std::make_pair(Stop, VNI));
    }
  }

  // Handle dead values.
  bool CanSeparate = false;
  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
       I != E; ++I) {
    VNInfo *VNI = *I;
    if (VNI->isUnused())
      continue;
    LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
    assert(LII != NewLI.end() && "Missing live range for PHI");
    if (LII->end != VNI->def.getDeadSlot())
      continue;
    if (VNI->isPHIDef()) {
      // This is a dead PHI. Remove it.
      VNI->markUnused();
      NewLI.removeRange(*LII);
      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
      CanSeparate = true;
    } else {
      // This is a dead def. Make sure the instruction knows.
      MachineInstr *MI = getInstructionFromIndex(VNI->def);
      assert(MI && "No instruction defining live value");
      MI->addRegisterDead(li->reg, TRI);
      if (dead && MI->allDefsAreDead()) {
        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
        dead->push_back(MI);
      }
    }
  }

  // Move the trimmed ranges back.
  li->ranges.swap(NewLI.ranges);
  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
  return CanSeparate;
}

void LiveIntervals::extendToIndices(LiveInterval *LI,
                                    ArrayRef<SlotIndex> Indices) {
  assert(LRCalc && "LRCalc not initialized.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
    LRCalc->extend(LI, Indices[i]);
}

void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
                               SmallVectorImpl<SlotIndex> *EndPoints) {
  LiveRangeQuery LRQ(*LI, Kill);
  VNInfo *VNI = LRQ.valueOut();
  if (!VNI)
    return;

  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
  SlotIndex MBBStart, MBBEnd;
  tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);

  // If VNI isn't live out from KillMBB, the value is trivially pruned.
  if (LRQ.endPoint() < MBBEnd) {
    LI->removeRange(Kill, LRQ.endPoint());
    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    return;
  }

  // VNI is live out of KillMBB.
  LI->removeRange(Kill, MBBEnd);
  if (EndPoints) EndPoints->push_back(MBBEnd);

  // Find all blocks that are reachable from KillMBB without leaving VNI's live
  // range. It is possible that KillMBB itself is reachable, so start a DFS
  // from each successor.
  typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
  VisitedTy Visited;
  for (MachineBasicBlock::succ_iterator
       SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
       SuccI != SuccE; ++SuccI) {
    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
         I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
         I != E;) {
      MachineBasicBlock *MBB = *I;

      // Check if VNI is live in to MBB.
      tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
      LiveRangeQuery LRQ(*LI, MBBStart);
      if (LRQ.valueIn() != VNI) {
        // This block isn't part of the VNI live range. Prune the search.
        I.skipChildren();
        continue;
      }

      // Prune the search if VNI is killed in MBB.
      if (LRQ.endPoint() < MBBEnd) {
        LI->removeRange(MBBStart, LRQ.endPoint());
        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
        I.skipChildren();
        continue;
      }

      // VNI is live through MBB.
      LI->removeRange(MBBStart, MBBEnd);
      if (EndPoints) EndPoints->push_back(MBBEnd);
      ++I;
    }
  }
}

//===----------------------------------------------------------------------===//
// Register allocator hooks.
//

void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
  // Keep track of regunit ranges.
  SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;

  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->reg_nodbg_empty(Reg))
      continue;
    LiveInterval *LI = &getInterval(Reg);
    if (LI->empty())
      continue;

    // Find the regunit intervals for the assigned register. They may overlap
    // the virtual register live range, cancelling any kills.
    RU.clear();
    for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
         ++Units) {
      LiveInterval *RUInt = &getRegUnit(*Units);
      if (RUInt->empty())
        continue;
      RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
    }

    // Every instruction that kills Reg corresponds to a live range end point.
    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
         ++RI) {
      // A block index indicates an MBB edge.
      if (RI->end.isBlock())
        continue;
      MachineInstr *MI = getInstructionFromIndex(RI->end);
      if (!MI)
        continue;

      // Check if any of the reguints are live beyond the end of RI. That could
      // happen when a physreg is defined as a copy of a virtreg:
      //
      //   %EAX = COPY %vreg5
      //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
      //   BAR %EAX<kill>
      //
      // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
      bool CancelKill = false;
      for (unsigned u = 0, e = RU.size(); u != e; ++u) {
        LiveInterval *RInt = RU[u].first;
        LiveInterval::iterator &I = RU[u].second;
        if (I == RInt->end())
          continue;
        I = RInt->advanceTo(I, RI->end);
        if (I == RInt->end() || I->start >= RI->end)
          continue;
        // I is overlapping RI.
        CancelKill = true;
        break;
      }
      if (CancelKill)
        MI->clearRegisterKills(Reg, NULL);
      else
        MI->addRegisterKilled(Reg, NULL);
    }
  }
}

MachineBasicBlock*
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
  // A local live range must be fully contained inside the block, meaning it is
  // defined and killed at instructions, not at block boundaries. It is not
  // live in or or out of any block.
  //
  // It is technically possible to have a PHI-defined live range identical to a
  // single block, but we are going to return false in that case.

  SlotIndex Start = LI.beginIndex();
  if (Start.isBlock())
    return NULL;

  SlotIndex Stop = LI.endIndex();
  if (Stop.isBlock())
    return NULL;

  // getMBBFromIndex doesn't need to search the MBB table when both indexes
  // belong to proper instructions.
  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
  return MBB1 == MBB2 ? MBB1 : NULL;
}

bool
LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
       I != E; ++I) {
    const VNInfo *PHI = *I;
    if (PHI->isUnused() || !PHI->isPHIDef())
      continue;
    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
    // Conservatively return true instead of scanning huge predecessor lists.
    if (PHIMBB->pred_size() > 100)
      return true;
    for (MachineBasicBlock::const_pred_iterator
         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
        return true;
  }
  return false;
}

float
LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
  // Limit the loop depth ridiculousness.
  if (loopDepth > 200)
    loopDepth = 200;

  // The loop depth is used to roughly estimate the number of times the
  // instruction is executed. Something like 10^d is simple, but will quickly
  // overflow a float. This expression behaves like 10^d for small d, but is
  // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
  // headroom before overflow.
  // By the way, powf() might be unavailable here. For consistency,
  // We may take pow(double,double).
  float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);

  return (isDef + isUse) * lc;
}

LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
                                                  MachineInstr* startInst) {
  LiveInterval& Interval = getOrCreateInterval(reg);
  VNInfo* VN = Interval.getNextValue(
    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    getVNInfoAllocator());
  LiveRange LR(
     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
     getMBBEndIdx(startInst->getParent()), VN);
  Interval.addRange(LR);

  return LR;
}


//===----------------------------------------------------------------------===//
//                          Register mask functions
//===----------------------------------------------------------------------===//

bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
                                             BitVector &UsableRegs) {
  if (LI.empty())
    return false;
  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();

  // Use a smaller arrays for local live ranges.
  ArrayRef<SlotIndex> Slots;
  ArrayRef<const uint32_t*> Bits;
  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
    Bits = getRegMaskBitsInBlock(MBB->getNumber());
  } else {
    Slots = getRegMaskSlots();
    Bits = getRegMaskBits();
  }

  // We are going to enumerate all the register mask slots contained in LI.
  // Start with a binary search of RegMaskSlots to find a starting point.
  ArrayRef<SlotIndex>::iterator SlotI =
    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();

  // No slots in range, LI begins after the last call.
  if (SlotI == SlotE)
    return false;

  bool Found = false;
  for (;;) {
    assert(*SlotI >= LiveI->start);
    // Loop over all slots overlapping this segment.
    while (*SlotI < LiveI->end) {
      // *SlotI overlaps LI. Collect mask bits.
      if (!Found) {
        // This is the first overlap. Initialize UsableRegs to all ones.
        UsableRegs.clear();
        UsableRegs.resize(TRI->getNumRegs(), true);
        Found = true;
      }
      // Remove usable registers clobbered by this mask.
      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
      if (++SlotI == SlotE)
        return Found;
    }
    // *SlotI is beyond the current LI segment.
    LiveI = LI.advanceTo(LiveI, *SlotI);
    if (LiveI == LiveE)
      return Found;
    // Advance SlotI until it overlaps.
    while (*SlotI < LiveI->start)
      if (++SlotI == SlotE)
        return Found;
  }
}

//===----------------------------------------------------------------------===//
//                         IntervalUpdate class.
//===----------------------------------------------------------------------===//

// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
class LiveIntervals::HMEditor {
private:
  LiveIntervals& LIS;
  const MachineRegisterInfo& MRI;
  const TargetRegisterInfo& TRI;
  SlotIndex OldIdx;
  SlotIndex NewIdx;
  SmallPtrSet<LiveInterval*, 8> Updated;
  bool UpdateFlags;

public:
  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
           const TargetRegisterInfo& TRI,
           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
      UpdateFlags(UpdateFlags) {}

  // FIXME: UpdateFlags is a workaround that creates live intervals for all
  // physregs, even those that aren't needed for regalloc, in order to update
  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
  // flags, and postRA passes will use a live register utility instead.
  LiveInterval *getRegUnitLI(unsigned Unit) {
    if (UpdateFlags)
      return &LIS.getRegUnit(Unit);
    return LIS.getCachedRegUnit(Unit);
  }

  /// Update all live ranges touched by MI, assuming a move from OldIdx to
  /// NewIdx.
  void updateAllRanges(MachineInstr *MI) {
    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
    bool hasRegMask = false;
    for (MIOperands MO(MI); MO.isValid(); ++MO) {
      if (MO->isRegMask())
        hasRegMask = true;
      if (!MO->isReg())
        continue;
      // Aggressively clear all kill flags.
      // They are reinserted by VirtRegRewriter.
      if (MO->isUse())
        MO->setIsKill(false);

      unsigned Reg = MO->getReg();
      if (!Reg)
        continue;
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        updateRange(LIS.getInterval(Reg));
        continue;
      }

      // For physregs, only update the regunits that actually have a
      // precomputed live range.
      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
        if (LiveInterval *LI = getRegUnitLI(*Units))
          updateRange(*LI);
    }
    if (hasRegMask)
      updateRegMaskSlots();
  }

private:
  /// Update a single live range, assuming an instruction has been moved from
  /// OldIdx to NewIdx.
  void updateRange(LiveInterval &LI) {
    if (!Updated.insert(&LI))
      return;
    DEBUG({
      dbgs() << "     ";
      if (TargetRegisterInfo::isVirtualRegister(LI.reg))
        dbgs() << PrintReg(LI.reg);
      else
        dbgs() << PrintRegUnit(LI.reg, &TRI);
      dbgs() << ":\t" << LI << '\n';
    });
    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
      handleMoveDown(LI);
    else
      handleMoveUp(LI);
    DEBUG(dbgs() << "        -->\t" << LI << '\n');
    LI.verify();
  }

  /// Update LI to reflect an instruction has been moved downwards from OldIdx
  /// to NewIdx.
  ///
  /// 1. Live def at OldIdx:
  ///    Move def to NewIdx, assert endpoint after NewIdx.
  ///
  /// 2. Live def at OldIdx, killed at NewIdx:
  ///    Change to dead def at NewIdx.
  ///    (Happens when bundling def+kill together).
  ///
  /// 3. Dead def at OldIdx:
  ///    Move def to NewIdx, possibly across another live value.
  ///
  /// 4. Def at OldIdx AND at NewIdx:
  ///    Remove live range [OldIdx;NewIdx) and value defined at OldIdx.
  ///    (Happens when bundling multiple defs together).
  ///
  /// 5. Value read at OldIdx, killed before NewIdx:
  ///    Extend kill to NewIdx.
  ///
  void handleMoveDown(LiveInterval &LI) {
    // First look for a kill at OldIdx.
    LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
    LiveInterval::iterator E = LI.end();
    // Is LI even live at OldIdx?
    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
      return;

    // Handle a live-in value.
    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
      bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
      // If the live-in value already extends to NewIdx, there is nothing to do.
      if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
        return;
      // Aggressively remove all kill flags from the old kill point.
      // Kill flags shouldn't be used while live intervals exist, they will be
      // reinserted by VirtRegRewriter.
      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
        for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
          if (MO->isReg() && MO->isUse())
            MO->setIsKill(false);
      // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by
      // overlapping ranges. Case 5 above.
      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
      // If this was a kill, there may also be a def. Otherwise we're done.
      if (!isKill)
        return;
      ++I;
    }

    // Check for a def at OldIdx.
    if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
      return;
    // We have a def at OldIdx.
    VNInfo *DefVNI = I->valno;
    assert(DefVNI->def == I->start && "Inconsistent def");
    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
    // If the defined value extends beyond NewIdx, just move the def down.
    // This is case 1 above.
    if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
      I->start = DefVNI->def;
      return;
    }
    // The remaining possibilities are now:
    // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
    // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
    // In either case, it is possible that there is an existing def at NewIdx.
    assert((I->end == OldIdx.getDeadSlot() ||
            SlotIndex::isSameInstr(I->end, NewIdx)) &&
            "Cannot move def below kill");
    LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot());
    if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
      // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
      // coalesced into that value.
      assert(NewI->valno != DefVNI && "Multiple defs of value?");
      LI.removeValNo(DefVNI);
      return;
    }
    // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
    // If the def at OldIdx was dead, we allow it to be moved across other LI
    // values. The new range should be placed immediately before NewI, move any
    // intermediate ranges up.
    assert(NewI != I && "Inconsistent iterators");
    std::copy(llvm::next(I), NewI, I);
    *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
  }

  /// Update LI to reflect an instruction has been moved upwards from OldIdx
  /// to NewIdx.
  ///
  /// 1. Live def at OldIdx:
  ///    Hoist def to NewIdx.
  ///
  /// 2. Dead def at OldIdx:
  ///    Hoist def+end to NewIdx, possibly move across other values.
  ///
  /// 3. Dead def at OldIdx AND existing def at NewIdx:
  ///    Remove value defined at OldIdx, coalescing it with existing value.
  ///
  /// 4. Live def at OldIdx AND existing def at NewIdx:
  ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
  ///    (Happens when bundling multiple defs together).
  ///
  /// 5. Value killed at OldIdx:
  ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
  ///    OldIdx.
  ///
  void handleMoveUp(LiveInterval &LI) {
    // First look for a kill at OldIdx.
    LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
    LiveInterval::iterator E = LI.end();
    // Is LI even live at OldIdx?
    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
      return;

    // Handle a live-in value.
    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
      // If the live-in value isn't killed here, there is nothing to do.
      if (!SlotIndex::isSameInstr(OldIdx, I->end))
        return;
      // Adjust I->end to end at NewIdx. If we are hoisting a kill above
      // another use, we need to search for that use. Case 5 above.
      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
      ++I;
      // If OldIdx also defines a value, there couldn't have been another use.
      if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
        // No def, search for the new kill.
        // This can never be an early clobber kill since there is no def.
        llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot();
        return;
      }
    }

    // Now deal with the def at OldIdx.
    assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
    VNInfo *DefVNI = I->valno;
    assert(DefVNI->def == I->start && "Inconsistent def");
    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());

    // Check for an existing def at NewIdx.
    LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot());
    if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
      assert(NewI->valno != DefVNI && "Same value defined more than once?");
      // There is an existing def at NewIdx.
      if (I->end.isDead()) {
        // Case 3: Remove the dead def at OldIdx.
        LI.removeValNo(DefVNI);
        return;
      }
      // Case 4: Replace def at NewIdx with live def at OldIdx.
      I->start = DefVNI->def;
      LI.removeValNo(NewI->valno);
      return;
    }

    // There is no existing def at NewIdx. Hoist DefVNI.
    if (!I->end.isDead()) {
      // Leave the end point of a live def.
      I->start = DefVNI->def;
      return;
    }

    // DefVNI is a dead def. It may have been moved across other values in LI,
    // so move I up to NewI. Slide [NewI;I) down one position.
    std::copy_backward(NewI, I, llvm::next(I));
    *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
  }

  void updateRegMaskSlots() {
    SmallVectorImpl<SlotIndex>::iterator RI =
      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
                       OldIdx);
    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
           "No RegMask at OldIdx.");
    *RI = NewIdx.getRegSlot();
    assert((RI == LIS.RegMaskSlots.begin() ||
            SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
            "Cannot move regmask instruction above another call");
    assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
            SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
            "Cannot move regmask instruction below another call");
  }

  // Return the last use of reg between NewIdx and OldIdx.
  SlotIndex findLastUseBefore(unsigned Reg) {
    SlotIndex LastUse = NewIdx;

    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
      for (MachineRegisterInfo::use_nodbg_iterator
             UI = MRI.use_nodbg_begin(Reg),
             UE = MRI.use_nodbg_end();
           UI != UE; UI.skipInstruction()) {
        const MachineInstr* MI = &*UI;
        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
        if (InstSlot > LastUse && InstSlot < OldIdx)
          LastUse = InstSlot;
      }
    } else {
      MachineInstr* MI = LIS.getSlotIndexes()->getInstructionFromIndex(NewIdx);
      MachineBasicBlock::iterator MII(MI);
      ++MII;
      MachineBasicBlock* MBB = MI->getParent();
      for (; MII != MBB->end() && LIS.getInstructionIndex(MII) < OldIdx; ++MII){
        for (MachineInstr::mop_iterator MOI = MII->operands_begin(),
                                        MOE = MII->operands_end();
             MOI != MOE; ++MOI) {
          const MachineOperand& mop = *MOI;
          if (!mop.isReg() || mop.getReg() == 0 ||
              TargetRegisterInfo::isVirtualRegister(mop.getReg()))
            continue;

          if (TRI.hasRegUnit(mop.getReg(), Reg))
            LastUse = LIS.getInstructionIndex(MII);
        }
      }
    }
    return LastUse;
  }
};

void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
  Indexes->removeMachineInstrFromMaps(MI);
  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
         OldIndex < getMBBEndIdx(MI->getParent()) &&
         "Cannot handle moves across basic block boundaries.");

  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
  HME.updateAllRanges(MI);
}

void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
                                         MachineInstr* BundleStart,
                                         bool UpdateFlags) {
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
  HME.updateAllRanges(MI);
}