1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
//===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the LiveRangeCalc class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveRangeCalc.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
void LiveRangeCalc::reset(const MachineFunction *MF,
SlotIndexes *SI,
MachineDominatorTree *MDT,
VNInfo::Allocator *VNIA) {
MRI = &MF->getRegInfo();
Indexes = SI;
DomTree = MDT;
Alloc = VNIA;
unsigned N = MF->getNumBlockIDs();
Seen.clear();
Seen.resize(N);
LiveOut.resize(N);
LiveIn.clear();
}
void LiveRangeCalc::createDeadDefs(LiveInterval *LI, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
// Visit all def operands. If the same instruction has multiple defs of Reg,
// LI->createDeadDef() will deduplicate.
for (MachineRegisterInfo::def_iterator
I = MRI->def_begin(Reg), E = MRI->def_end(); I != E; ++I) {
const MachineInstr *MI = &*I;
// Find the corresponding slot index.
SlotIndex Idx;
if (MI->isPHI())
// PHI defs begin at the basic block start index.
Idx = Indexes->getMBBStartIdx(MI->getParent());
else
// Instructions are either normal 'r', or early clobber 'e'.
Idx = Indexes->getInstructionIndex(MI)
.getRegSlot(I.getOperand().isEarlyClobber());
// Create the def in LI. This may find an existing def.
LI->createDeadDef(Idx, *Alloc);
}
}
void LiveRangeCalc::extendToUses(LiveInterval *LI, unsigned Reg) {
assert(MRI && Indexes && "call reset() first");
// Visit all operands that read Reg. This may include partial defs.
for (MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(Reg),
E = MRI->reg_nodbg_end(); I != E; ++I) {
MachineOperand &MO = I.getOperand();
// Clear all kill flags. They will be reinserted after register allocation
// by LiveIntervalAnalysis::addKillFlags().
if (MO.isUse())
MO.setIsKill(false);
if (!MO.readsReg())
continue;
// MI is reading Reg. We may have visited MI before if it happens to be
// reading Reg multiple times. That is OK, extend() is idempotent.
const MachineInstr *MI = &*I;
// Find the SlotIndex being read.
SlotIndex Idx;
if (MI->isPHI()) {
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
// PHI operands are paired: (Reg, PredMBB).
// Extend the live range to be live-out from PredMBB.
Idx = Indexes->getMBBEndIdx(MI->getOperand(I.getOperandNo()+1).getMBB());
} else {
// This is a normal instruction.
Idx = Indexes->getInstructionIndex(MI).getRegSlot();
// Check for early-clobber redefs.
unsigned DefIdx;
if (MO.isDef()) {
if (MO.isEarlyClobber())
Idx = Idx.getRegSlot(true);
} else if (MI->isRegTiedToDefOperand(I.getOperandNo(), &DefIdx)) {
// FIXME: This would be a lot easier if tied early-clobber uses also
// had an early-clobber flag.
if (MI->getOperand(DefIdx).isEarlyClobber())
Idx = Idx.getRegSlot(true);
}
}
extend(LI, Idx, Reg);
}
}
// Transfer information from the LiveIn vector to the live ranges.
void LiveRangeCalc::updateLiveIns(VNInfo *OverrideVNI) {
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
E = LiveIn.end(); I != E; ++I) {
if (!I->DomNode)
continue;
MachineBasicBlock *MBB = I->DomNode->getBlock();
VNInfo *VNI = OverrideVNI ? OverrideVNI : I->Value;
assert(VNI && "No live-in value found");
SlotIndex Start, End;
tie(Start, End) = Indexes->getMBBRange(MBB);
if (I->Kill.isValid())
I->LI->addRange(LiveRange(Start, I->Kill, VNI));
else {
I->LI->addRange(LiveRange(Start, End, VNI));
// The value is live-through, update LiveOut as well. Defer the Domtree
// lookup until it is needed.
assert(Seen.test(MBB->getNumber()));
LiveOut[MBB] = LiveOutPair(VNI, (MachineDomTreeNode *)0);
}
}
LiveIn.clear();
}
void LiveRangeCalc::extend(LiveInterval *LI,
SlotIndex Kill,
unsigned PhysReg) {
assert(LI && "Missing live range");
assert(Kill.isValid() && "Invalid SlotIndex");
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill.getPrevSlot());
assert(KillMBB && "No MBB at Kill");
// Is there a def in the same MBB we can extend?
if (LI->extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill))
return;
// Find the single reaching def, or determine if Kill is jointly dominated by
// multiple values, and we may need to create even more phi-defs to preserve
// VNInfo SSA form. Perform a search for all predecessor blocks where we
// know the dominating VNInfo.
VNInfo *VNI = findReachingDefs(LI, KillMBB, Kill, PhysReg);
// When there were multiple different values, we may need new PHIs.
if (!VNI)
updateSSA();
updateLiveIns(VNI);
}
// This function is called by a client after using the low-level API to add
// live-out and live-in blocks. The unique value optimization is not
// available, SplitEditor::transferValues handles that case directly anyway.
void LiveRangeCalc::calculateValues() {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
updateSSA();
updateLiveIns(0);
}
VNInfo *LiveRangeCalc::findReachingDefs(LiveInterval *LI,
MachineBasicBlock *KillMBB,
SlotIndex Kill,
unsigned PhysReg) {
// Blocks where LI should be live-in.
SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
// Remember if we have seen more than one value.
bool UniqueVNI = true;
VNInfo *TheVNI = 0;
// Using Seen as a visited set, perform a BFS for all reaching defs.
for (unsigned i = 0; i != WorkList.size(); ++i) {
MachineBasicBlock *MBB = WorkList[i];
#ifndef NDEBUG
if (MBB->pred_empty()) {
MBB->getParent()->verify();
llvm_unreachable("Use not jointly dominated by defs.");
}
if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
!MBB->isLiveIn(PhysReg)) {
MBB->getParent()->verify();
errs() << "The register needs to be live in to BB#" << MBB->getNumber()
<< ", but is missing from the live-in list.\n";
llvm_unreachable("Invalid global physical register");
}
#endif
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
// Is this a known live-out block?
if (Seen.test(Pred->getNumber())) {
if (VNInfo *VNI = LiveOut[Pred].first) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
}
continue;
}
SlotIndex Start, End;
tie(Start, End) = Indexes->getMBBRange(Pred);
// First time we see Pred. Try to determine the live-out value, but set
// it as null if Pred is live-through with an unknown value.
VNInfo *VNI = LI->extendInBlock(Start, End);
setLiveOutValue(Pred, VNI);
if (VNI) {
if (TheVNI && TheVNI != VNI)
UniqueVNI = false;
TheVNI = VNI;
continue;
}
// No, we need a live-in value for Pred as well
if (Pred != KillMBB)
WorkList.push_back(Pred);
else
// Loopback to KillMBB, so value is really live through.
Kill = SlotIndex();
}
}
// Transfer WorkList to LiveInBlocks in reverse order.
// This ordering works best with updateSSA().
LiveIn.clear();
LiveIn.reserve(WorkList.size());
while(!WorkList.empty())
addLiveInBlock(LI, DomTree->getNode(WorkList.pop_back_val()));
// The kill block may not be live-through.
assert(LiveIn.back().DomNode->getBlock() == KillMBB);
LiveIn.back().Kill = Kill;
return UniqueVNI ? TheVNI : 0;
}
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
void LiveRangeCalc::updateSSA() {
assert(Indexes && "Missing SlotIndexes");
assert(DomTree && "Missing dominator tree");
// Interate until convergence.
unsigned Changes;
do {
Changes = 0;
// Propagate live-out values down the dominator tree, inserting phi-defs
// when necessary.
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
E = LiveIn.end(); I != E; ++I) {
MachineDomTreeNode *Node = I->DomNode;
// Skip block if the live-in value has already been determined.
if (!Node)
continue;
MachineBasicBlock *MBB = Node->getBlock();
MachineDomTreeNode *IDom = Node->getIDom();
LiveOutPair IDomValue;
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
// IDom dominates all of our predecessors, but it may not be their
// immediate dominator. Check if any of them have live-out values that are
// properly dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
IDomValue = LiveOut[IDom->getBlock()];
// Cache the DomTree node that defined the value.
if (IDomValue.first && !IDomValue.second)
LiveOut[IDom->getBlock()].second = IDomValue.second =
DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair &Value = LiveOut[*PI];
if (!Value.first || Value.first == IDomValue.first)
continue;
// Cache the DomTree node that defined the value.
if (!Value.second)
Value.second =
DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
// This predecessor is carrying something other than IDomValue.
// It could be because IDomValue hasn't propagated yet, or it could be
// because MBB is in the dominance frontier of that value.
if (DomTree->dominates(IDom, Value.second)) {
needPHI = true;
break;
}
}
}
// The value may be live-through even if Kill is set, as can happen when
// we are called from extendRange. In that case LiveOutSeen is true, and
// LiveOut indicates a foreign or missing value.
LiveOutPair &LOP = LiveOut[MBB];
// Create a phi-def if required.
if (needPHI) {
++Changes;
assert(Alloc && "Need VNInfo allocator to create PHI-defs");
SlotIndex Start, End;
tie(Start, End) = Indexes->getMBBRange(MBB);
VNInfo *VNI = I->LI->getNextValue(Start, *Alloc);
I->Value = VNI;
// This block is done, we know the final value.
I->DomNode = 0;
// Add liveness since updateLiveIns now skips this node.
if (I->Kill.isValid())
I->LI->addRange(LiveRange(Start, I->Kill, VNI));
else {
I->LI->addRange(LiveRange(Start, End, VNI));
LOP = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
// No phi-def here. Remember incoming value.
I->Value = IDomValue.first;
// If the IDomValue is killed in the block, don't propagate through.
if (I->Kill.isValid())
continue;
// Propagate IDomValue if it isn't killed:
// MBB is live-out and doesn't define its own value.
if (LOP.first == IDomValue.first)
continue;
++Changes;
LOP = IDomValue;
}
}
} while (Changes);
}
|