1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
|
//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
using namespace llvm;
MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
: BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
AddressTaken(false), CachedMCSymbol(NULL) {
Insts.Parent = this;
}
MachineBasicBlock::~MachineBasicBlock() {
LeakDetector::removeGarbageObject(this);
}
/// getSymbol - Return the MCSymbol for this basic block.
///
MCSymbol *MachineBasicBlock::getSymbol() const {
if (!CachedMCSymbol) {
const MachineFunction *MF = getParent();
MCContext &Ctx = MF->getContext();
const char *Prefix = Ctx.getAsmInfo()->getPrivateGlobalPrefix();
CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
Twine(MF->getFunctionNumber()) +
"_" + Twine(getNumber()));
}
return CachedMCSymbol;
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
MBB.print(OS);
return OS;
}
/// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
/// parent pointer of the MBB, the MBB numbering, and any instructions in the
/// MBB to be on the right operand list for registers.
///
/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
/// gets the next available unique MBB number. If it is removed from a
/// MachineFunction, it goes back to being #-1.
void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
MachineFunction &MF = *N->getParent();
N->Number = MF.addToMBBNumbering(N);
// Make sure the instructions have their operands in the reginfo lists.
MachineRegisterInfo &RegInfo = MF.getRegInfo();
for (MachineBasicBlock::instr_iterator
I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
I->AddRegOperandsToUseLists(RegInfo);
LeakDetector::removeGarbageObject(N);
}
void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
N->getParent()->removeFromMBBNumbering(N->Number);
N->Number = -1;
LeakDetector::addGarbageObject(N);
}
/// addNodeToList (MI) - When we add an instruction to a basic block
/// list, we update its parent pointer and add its operands from reg use/def
/// lists if appropriate.
void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
assert(N->getParent() == 0 && "machine instruction already in a basic block");
N->setParent(Parent);
// Add the instruction's register operands to their corresponding
// use/def lists.
MachineFunction *MF = Parent->getParent();
N->AddRegOperandsToUseLists(MF->getRegInfo());
LeakDetector::removeGarbageObject(N);
}
/// removeNodeFromList (MI) - When we remove an instruction from a basic block
/// list, we update its parent pointer and remove its operands from reg use/def
/// lists if appropriate.
void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
assert(N->getParent() != 0 && "machine instruction not in a basic block");
// Remove from the use/def lists.
if (MachineFunction *MF = N->getParent()->getParent())
N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
N->setParent(0);
LeakDetector::addGarbageObject(N);
}
/// transferNodesFromList (MI) - When moving a range of instructions from one
/// MBB list to another, we need to update the parent pointers and the use/def
/// lists.
void ilist_traits<MachineInstr>::
transferNodesFromList(ilist_traits<MachineInstr> &fromList,
ilist_iterator<MachineInstr> first,
ilist_iterator<MachineInstr> last) {
assert(Parent->getParent() == fromList.Parent->getParent() &&
"MachineInstr parent mismatch!");
// Splice within the same MBB -> no change.
if (Parent == fromList.Parent) return;
// If splicing between two blocks within the same function, just update the
// parent pointers.
for (; first != last; ++first)
first->setParent(Parent);
}
void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
assert(!MI->getParent() && "MI is still in a block!");
Parent->getParent()->DeleteMachineInstr(MI);
}
MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
instr_iterator I = instr_begin(), E = instr_end();
while (I != E && I->isPHI())
++I;
assert((I == E || !I->isInsideBundle()) &&
"First non-phi MI cannot be inside a bundle!");
return I;
}
MachineBasicBlock::iterator
MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
iterator E = end();
while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
++I;
// FIXME: This needs to change if we wish to bundle labels / dbg_values
// inside the bundle.
assert((I == E || !I->isInsideBundle()) &&
"First non-phi / non-label instruction is inside a bundle!");
return I;
}
MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
iterator B = begin(), E = end(), I = E;
while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
; /*noop */
while (I != E && !I->isTerminator())
++I;
return I;
}
MachineBasicBlock::const_iterator
MachineBasicBlock::getFirstTerminator() const {
const_iterator B = begin(), E = end(), I = E;
while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
; /*noop */
while (I != E && !I->isTerminator())
++I;
return I;
}
MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
instr_iterator B = instr_begin(), E = instr_end(), I = E;
while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
; /*noop */
while (I != E && !I->isTerminator())
++I;
return I;
}
MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
// Skip over end-of-block dbg_value instructions.
instr_iterator B = instr_begin(), I = instr_end();
while (I != B) {
--I;
// Return instruction that starts a bundle.
if (I->isDebugValue() || I->isInsideBundle())
continue;
return I;
}
// The block is all debug values.
return end();
}
MachineBasicBlock::const_iterator
MachineBasicBlock::getLastNonDebugInstr() const {
// Skip over end-of-block dbg_value instructions.
const_instr_iterator B = instr_begin(), I = instr_end();
while (I != B) {
--I;
// Return instruction that starts a bundle.
if (I->isDebugValue() || I->isInsideBundle())
continue;
return I;
}
// The block is all debug values.
return end();
}
const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
// A block with a landing pad successor only has one other successor.
if (succ_size() > 2)
return 0;
for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
if ((*I)->isLandingPad())
return *I;
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineBasicBlock::dump() const {
print(dbgs());
}
#endif
StringRef MachineBasicBlock::getName() const {
if (const BasicBlock *LBB = getBasicBlock())
return LBB->getName();
else
return "(null)";
}
/// Return a hopefully unique identifier for this block.
std::string MachineBasicBlock::getFullName() const {
std::string Name;
if (getParent())
Name = (getParent()->getName() + ":").str();
if (getBasicBlock())
Name += getBasicBlock()->getName();
else
Name += (Twine("BB") + Twine(getNumber())).str();
return Name;
}
void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
const MachineFunction *MF = getParent();
if (!MF) {
OS << "Can't print out MachineBasicBlock because parent MachineFunction"
<< " is null\n";
return;
}
if (Indexes)
OS << Indexes->getMBBStartIdx(this) << '\t';
OS << "BB#" << getNumber() << ": ";
const char *Comma = "";
if (const BasicBlock *LBB = getBasicBlock()) {
OS << Comma << "derived from LLVM BB ";
WriteAsOperand(OS, LBB, /*PrintType=*/false);
Comma = ", ";
}
if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
if (Alignment)
OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
<< " bytes)";
OS << '\n';
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
if (!livein_empty()) {
if (Indexes) OS << '\t';
OS << " Live Ins:";
for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
OS << ' ' << PrintReg(*I, TRI);
OS << '\n';
}
// Print the preds of this block according to the CFG.
if (!pred_empty()) {
if (Indexes) OS << '\t';
OS << " Predecessors according to CFG:";
for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
OS << " BB#" << (*PI)->getNumber();
OS << '\n';
}
for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
if (Indexes) {
if (Indexes->hasIndex(I))
OS << Indexes->getInstructionIndex(I);
OS << '\t';
}
OS << '\t';
if (I->isInsideBundle())
OS << " * ";
I->print(OS, &getParent()->getTarget());
}
// Print the successors of this block according to the CFG.
if (!succ_empty()) {
if (Indexes) OS << '\t';
OS << " Successors according to CFG:";
for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
OS << " BB#" << (*SI)->getNumber();
if (!Weights.empty())
OS << '(' << *getWeightIterator(SI) << ')';
}
OS << '\n';
}
}
void MachineBasicBlock::removeLiveIn(unsigned Reg) {
std::vector<unsigned>::iterator I =
std::find(LiveIns.begin(), LiveIns.end(), Reg);
if (I != LiveIns.end())
LiveIns.erase(I);
}
bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
return I != livein_end();
}
unsigned
MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
assert(getParent() && "MBB must be inserted in function");
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
assert(RC && "Register class is required");
assert((isLandingPad() || this == &getParent()->front()) &&
"Only the entry block and landing pads can have physreg live ins");
bool LiveIn = isLiveIn(PhysReg);
iterator I = SkipPHIsAndLabels(begin()), E = end();
MachineRegisterInfo &MRI = getParent()->getRegInfo();
const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo();
// Look for an existing copy.
if (LiveIn)
for (;I != E && I->isCopy(); ++I)
if (I->getOperand(1).getReg() == PhysReg) {
unsigned VirtReg = I->getOperand(0).getReg();
if (!MRI.constrainRegClass(VirtReg, RC))
llvm_unreachable("Incompatible live-in register class.");
return VirtReg;
}
// No luck, create a virtual register.
unsigned VirtReg = MRI.createVirtualRegister(RC);
BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
.addReg(PhysReg, RegState::Kill);
if (!LiveIn)
addLiveIn(PhysReg);
return VirtReg;
}
void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
getParent()->splice(NewAfter, this);
}
void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
MachineFunction::iterator BBI = NewBefore;
getParent()->splice(++BBI, this);
}
void MachineBasicBlock::updateTerminator() {
const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
// A block with no successors has no concerns with fall-through edges.
if (this->succ_empty()) return;
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
DebugLoc dl; // FIXME: this is nowhere
bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
(void) B;
assert(!B && "UpdateTerminators requires analyzable predecessors!");
if (Cond.empty()) {
if (TBB) {
// The block has an unconditional branch. If its successor is now
// its layout successor, delete the branch.
if (isLayoutSuccessor(TBB))
TII->RemoveBranch(*this);
} else {
// The block has an unconditional fallthrough. If its successor is not
// its layout successor, insert a branch. First we have to locate the
// only non-landing-pad successor, as that is the fallthrough block.
for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
if ((*SI)->isLandingPad())
continue;
assert(!TBB && "Found more than one non-landing-pad successor!");
TBB = *SI;
}
// If there is no non-landing-pad successor, the block has no
// fall-through edges to be concerned with.
if (!TBB)
return;
// Finally update the unconditional successor to be reached via a branch
// if it would not be reached by fallthrough.
if (!isLayoutSuccessor(TBB))
TII->InsertBranch(*this, TBB, 0, Cond, dl);
}
} else {
if (FBB) {
// The block has a non-fallthrough conditional branch. If one of its
// successors is its layout successor, rewrite it to a fallthrough
// conditional branch.
if (isLayoutSuccessor(TBB)) {
if (TII->ReverseBranchCondition(Cond))
return;
TII->RemoveBranch(*this);
TII->InsertBranch(*this, FBB, 0, Cond, dl);
} else if (isLayoutSuccessor(FBB)) {
TII->RemoveBranch(*this);
TII->InsertBranch(*this, TBB, 0, Cond, dl);
}
} else {
// Walk through the successors and find the successor which is not
// a landing pad and is not the conditional branch destination (in TBB)
// as the fallthrough successor.
MachineBasicBlock *FallthroughBB = 0;
for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
if ((*SI)->isLandingPad() || *SI == TBB)
continue;
assert(!FallthroughBB && "Found more than one fallthrough successor.");
FallthroughBB = *SI;
}
if (!FallthroughBB && canFallThrough()) {
// We fallthrough to the same basic block as the conditional jump
// targets. Remove the conditional jump, leaving unconditional
// fallthrough.
// FIXME: This does not seem like a reasonable pattern to support, but it
// has been seen in the wild coming out of degenerate ARM test cases.
TII->RemoveBranch(*this);
// Finally update the unconditional successor to be reached via a branch
// if it would not be reached by fallthrough.
if (!isLayoutSuccessor(TBB))
TII->InsertBranch(*this, TBB, 0, Cond, dl);
return;
}
// The block has a fallthrough conditional branch.
if (isLayoutSuccessor(TBB)) {
if (TII->ReverseBranchCondition(Cond)) {
// We can't reverse the condition, add an unconditional branch.
Cond.clear();
TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
return;
}
TII->RemoveBranch(*this);
TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
} else if (!isLayoutSuccessor(FallthroughBB)) {
TII->RemoveBranch(*this);
TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
}
}
}
}
void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
// If we see non-zero value for the first time it means we actually use Weight
// list, so we fill all Weights with 0's.
if (weight != 0 && Weights.empty())
Weights.resize(Successors.size());
if (weight != 0 || !Weights.empty())
Weights.push_back(weight);
Successors.push_back(succ);
succ->addPredecessor(this);
}
void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
succ->removePredecessor(this);
succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
assert(I != Successors.end() && "Not a current successor!");
// If Weight list is empty it means we don't use it (disabled optimization).
if (!Weights.empty()) {
weight_iterator WI = getWeightIterator(I);
Weights.erase(WI);
}
Successors.erase(I);
}
MachineBasicBlock::succ_iterator
MachineBasicBlock::removeSuccessor(succ_iterator I) {
assert(I != Successors.end() && "Not a current successor!");
// If Weight list is empty it means we don't use it (disabled optimization).
if (!Weights.empty()) {
weight_iterator WI = getWeightIterator(I);
Weights.erase(WI);
}
(*I)->removePredecessor(this);
return Successors.erase(I);
}
void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
MachineBasicBlock *New) {
if (Old == New)
return;
succ_iterator E = succ_end();
succ_iterator NewI = E;
succ_iterator OldI = E;
for (succ_iterator I = succ_begin(); I != E; ++I) {
if (*I == Old) {
OldI = I;
if (NewI != E)
break;
}
if (*I == New) {
NewI = I;
if (OldI != E)
break;
}
}
assert(OldI != E && "Old is not a successor of this block");
Old->removePredecessor(this);
// If New isn't already a successor, let it take Old's place.
if (NewI == E) {
New->addPredecessor(this);
*OldI = New;
return;
}
// New is already a successor.
// Update its weight instead of adding a duplicate edge.
if (!Weights.empty()) {
weight_iterator OldWI = getWeightIterator(OldI);
*getWeightIterator(NewI) += *OldWI;
Weights.erase(OldWI);
}
Successors.erase(OldI);
}
void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
Predecessors.push_back(pred);
}
void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
Predecessors.erase(I);
}
void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
if (this == fromMBB)
return;
while (!fromMBB->succ_empty()) {
MachineBasicBlock *Succ = *fromMBB->succ_begin();
uint32_t Weight = 0;
// If Weight list is empty it means we don't use it (disabled optimization).
if (!fromMBB->Weights.empty())
Weight = *fromMBB->Weights.begin();
addSuccessor(Succ, Weight);
fromMBB->removeSuccessor(Succ);
}
}
void
MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
if (this == fromMBB)
return;
while (!fromMBB->succ_empty()) {
MachineBasicBlock *Succ = *fromMBB->succ_begin();
uint32_t Weight = 0;
if (!fromMBB->Weights.empty())
Weight = *fromMBB->Weights.begin();
addSuccessor(Succ, Weight);
fromMBB->removeSuccessor(Succ);
// Fix up any PHI nodes in the successor.
for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
MachineOperand &MO = MI->getOperand(i);
if (MO.getMBB() == fromMBB)
MO.setMBB(this);
}
}
}
bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
return std::find(pred_begin(), pred_end(), MBB) != pred_end();
}
bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
return std::find(succ_begin(), succ_end(), MBB) != succ_end();
}
bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
MachineFunction::const_iterator I(this);
return llvm::next(I) == MachineFunction::const_iterator(MBB);
}
bool MachineBasicBlock::canFallThrough() {
MachineFunction::iterator Fallthrough = this;
++Fallthrough;
// If FallthroughBlock is off the end of the function, it can't fall through.
if (Fallthrough == getParent()->end())
return false;
// If FallthroughBlock isn't a successor, no fallthrough is possible.
if (!isSuccessor(Fallthrough))
return false;
// Analyze the branches, if any, at the end of the block.
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
// If we couldn't analyze the branch, examine the last instruction.
// If the block doesn't end in a known control barrier, assume fallthrough
// is possible. The isPredicated check is needed because this code can be
// called during IfConversion, where an instruction which is normally a
// Barrier is predicated and thus no longer an actual control barrier.
return empty() || !back().isBarrier() || TII->isPredicated(&back());
}
// If there is no branch, control always falls through.
if (TBB == 0) return true;
// If there is some explicit branch to the fallthrough block, it can obviously
// reach, even though the branch should get folded to fall through implicitly.
if (MachineFunction::iterator(TBB) == Fallthrough ||
MachineFunction::iterator(FBB) == Fallthrough)
return true;
// If it's an unconditional branch to some block not the fall through, it
// doesn't fall through.
if (Cond.empty()) return false;
// Otherwise, if it is conditional and has no explicit false block, it falls
// through.
return FBB == 0;
}
MachineBasicBlock *
MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
// Splitting the critical edge to a landing pad block is non-trivial. Don't do
// it in this generic function.
if (Succ->isLandingPad())
return NULL;
MachineFunction *MF = getParent();
DebugLoc dl; // FIXME: this is nowhere
// We may need to update this's terminator, but we can't do that if
// AnalyzeBranch fails. If this uses a jump table, we won't touch it.
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
return NULL;
// Avoid bugpoint weirdness: A block may end with a conditional branch but
// jumps to the same MBB is either case. We have duplicate CFG edges in that
// case that we can't handle. Since this never happens in properly optimized
// code, just skip those edges.
if (TBB && TBB == FBB) {
DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
<< getNumber() << '\n');
return NULL;
}
MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
DEBUG(dbgs() << "Splitting critical edge:"
" BB#" << getNumber()
<< " -- BB#" << NMBB->getNumber()
<< " -- BB#" << Succ->getNumber() << '\n');
LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
if (LIS)
LIS->insertMBBInMaps(NMBB);
else if (Indexes)
Indexes->insertMBBInMaps(NMBB);
// On some targets like Mips, branches may kill virtual registers. Make sure
// that LiveVariables is properly updated after updateTerminator replaces the
// terminators.
LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
// Collect a list of virtual registers killed by the terminators.
SmallVector<unsigned, 4> KilledRegs;
if (LV)
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I) {
MachineInstr *MI = I;
for (MachineInstr::mop_iterator OI = MI->operands_begin(),
OE = MI->operands_end(); OI != OE; ++OI) {
if (!OI->isReg() || OI->getReg() == 0 ||
!OI->isUse() || !OI->isKill() || OI->isUndef())
continue;
unsigned Reg = OI->getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
LV->getVarInfo(Reg).removeKill(MI)) {
KilledRegs.push_back(Reg);
DEBUG(dbgs() << "Removing terminator kill: " << *MI);
OI->setIsKill(false);
}
}
}
SmallVector<unsigned, 4> UsedRegs;
if (LIS) {
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I) {
MachineInstr *MI = I;
for (MachineInstr::mop_iterator OI = MI->operands_begin(),
OE = MI->operands_end(); OI != OE; ++OI) {
if (!OI->isReg() || OI->getReg() == 0)
continue;
unsigned Reg = OI->getReg();
if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
UsedRegs.push_back(Reg);
}
}
}
ReplaceUsesOfBlockWith(Succ, NMBB);
// If updateTerminator() removes instructions, we need to remove them from
// SlotIndexes.
SmallVector<MachineInstr*, 4> Terminators;
if (Indexes) {
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I)
Terminators.push_back(I);
}
updateTerminator();
if (Indexes) {
SmallVector<MachineInstr*, 4> NewTerminators;
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I)
NewTerminators.push_back(I);
for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
E = Terminators.end(); I != E; ++I) {
if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
NewTerminators.end())
Indexes->removeMachineInstrFromMaps(*I);
}
}
// Insert unconditional "jump Succ" instruction in NMBB if necessary.
NMBB->addSuccessor(Succ);
if (!NMBB->isLayoutSuccessor(Succ)) {
Cond.clear();
MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
if (Indexes) {
for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
I != E; ++I) {
// Some instructions may have been moved to NMBB by updateTerminator(),
// so we first remove any instruction that already has an index.
if (Indexes->hasIndex(I))
Indexes->removeMachineInstrFromMaps(I);
Indexes->insertMachineInstrInMaps(I);
}
}
}
// Fix PHI nodes in Succ so they refer to NMBB instead of this
for (MachineBasicBlock::instr_iterator
i = Succ->instr_begin(),e = Succ->instr_end();
i != e && i->isPHI(); ++i)
for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
if (i->getOperand(ni+1).getMBB() == this)
i->getOperand(ni+1).setMBB(NMBB);
// Inherit live-ins from the successor
for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
E = Succ->livein_end(); I != E; ++I)
NMBB->addLiveIn(*I);
// Update LiveVariables.
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
if (LV) {
// Restore kills of virtual registers that were killed by the terminators.
while (!KilledRegs.empty()) {
unsigned Reg = KilledRegs.pop_back_val();
for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
continue;
if (TargetRegisterInfo::isVirtualRegister(Reg))
LV->getVarInfo(Reg).Kills.push_back(I);
DEBUG(dbgs() << "Restored terminator kill: " << *I);
break;
}
}
// Update relevant live-through information.
LV->addNewBlock(NMBB, this, Succ);
}
if (LIS) {
// After splitting the edge and updating SlotIndexes, live intervals may be
// in one of two situations, depending on whether this block was the last in
// the function. If the original block was the last in the function, all live
// intervals will end prior to the beginning of the new split block. If the
// original block was not at the end of the function, all live intervals will
// extend to the end of the new split block.
bool isLastMBB =
llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end();
SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
SlotIndex PrevIndex = StartIndex.getPrevSlot();
SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
// Find the registers used from NMBB in PHIs in Succ.
SmallSet<unsigned, 8> PHISrcRegs;
for (MachineBasicBlock::instr_iterator
I = Succ->instr_begin(), E = Succ->instr_end();
I != E && I->isPHI(); ++I) {
for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
if (I->getOperand(ni+1).getMBB() == NMBB) {
MachineOperand &MO = I->getOperand(ni);
unsigned Reg = MO.getReg();
PHISrcRegs.insert(Reg);
if (MO.isUndef())
continue;
LiveInterval &LI = LIS->getInterval(Reg);
VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
assert(VNI && "PHI sources should be live out of their predecessors.");
LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
}
}
}
MachineRegisterInfo *MRI = &getParent()->getRegInfo();
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
continue;
LiveInterval &LI = LIS->getInterval(Reg);
if (!LI.liveAt(PrevIndex))
continue;
bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
if (isLiveOut && isLastMBB) {
VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
assert(VNI && "LiveInterval should have VNInfo where it is live.");
LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
} else if (!isLiveOut && !isLastMBB) {
LI.removeSegment(StartIndex, EndIndex);
}
}
// Update all intervals for registers whose uses may have been modified by
// updateTerminator().
LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
}
if (MachineDominatorTree *MDT =
P->getAnalysisIfAvailable<MachineDominatorTree>()) {
// Update dominator information.
MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
bool IsNewIDom = true;
for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
PI != E; ++PI) {
MachineBasicBlock *PredBB = *PI;
if (PredBB == NMBB)
continue;
if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
IsNewIDom = false;
break;
}
}
// We know "this" dominates the newly created basic block.
MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
// If all the other predecessors of "Succ" are dominated by "Succ" itself
// then the new block is the new immediate dominator of "Succ". Otherwise,
// the new block doesn't dominate anything.
if (IsNewIDom)
MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
}
if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
if (MachineLoop *TIL = MLI->getLoopFor(this)) {
// If one or the other blocks were not in a loop, the new block is not
// either, and thus LI doesn't need to be updated.
if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
if (TIL == DestLoop) {
// Both in the same loop, the NMBB joins loop.
DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
} else if (TIL->contains(DestLoop)) {
// Edge from an outer loop to an inner loop. Add to the outer loop.
TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
} else if (DestLoop->contains(TIL)) {
// Edge from an inner loop to an outer loop. Add to the outer loop.
DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
} else {
// Edge from two loops with no containment relation. Because these
// are natural loops, we know that the destination block must be the
// header of its loop (adding a branch into a loop elsewhere would
// create an irreducible loop).
assert(DestLoop->getHeader() == Succ &&
"Should not create irreducible loops!");
if (MachineLoop *P = DestLoop->getParentLoop())
P->addBasicBlockToLoop(NMBB, MLI->getBase());
}
}
}
return NMBB;
}
/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
/// neighboring instructions so the bundle won't be broken by removing MI.
static void unbundleSingleMI(MachineInstr *MI) {
// Removing the first instruction in a bundle.
if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
MI->unbundleFromSucc();
// Removing the last instruction in a bundle.
if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
MI->unbundleFromPred();
// If MI is not bundled, or if it is internal to a bundle, the neighbor flags
// are already fine.
}
MachineBasicBlock::instr_iterator
MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
unbundleSingleMI(I);
return Insts.erase(I);
}
MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
unbundleSingleMI(MI);
MI->clearFlag(MachineInstr::BundledPred);
MI->clearFlag(MachineInstr::BundledSucc);
return Insts.remove(MI);
}
MachineBasicBlock::instr_iterator
MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
"Cannot insert instruction with bundle flags");
// Set the bundle flags when inserting inside a bundle.
if (I != instr_end() && I->isBundledWithPred()) {
MI->setFlag(MachineInstr::BundledPred);
MI->setFlag(MachineInstr::BundledSucc);
}
return Insts.insert(I, MI);
}
/// removeFromParent - This method unlinks 'this' from the containing function,
/// and returns it, but does not delete it.
MachineBasicBlock *MachineBasicBlock::removeFromParent() {
assert(getParent() && "Not embedded in a function!");
getParent()->remove(this);
return this;
}
/// eraseFromParent - This method unlinks 'this' from the containing function,
/// and deletes it.
void MachineBasicBlock::eraseFromParent() {
assert(getParent() && "Not embedded in a function!");
getParent()->erase(this);
}
/// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
/// 'Old', change the code and CFG so that it branches to 'New' instead.
void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Cannot replace self with self!");
MachineBasicBlock::instr_iterator I = instr_end();
while (I != instr_begin()) {
--I;
if (!I->isTerminator()) break;
// Scan the operands of this machine instruction, replacing any uses of Old
// with New.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (I->getOperand(i).isMBB() &&
I->getOperand(i).getMBB() == Old)
I->getOperand(i).setMBB(New);
}
// Update the successor information.
replaceSuccessor(Old, New);
}
/// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
/// CFG to be inserted. If we have proven that MBB can only branch to DestA and
/// DestB, remove any other MBB successors from the CFG. DestA and DestB can be
/// null.
///
/// Besides DestA and DestB, retain other edges leading to LandingPads
/// (currently there can be only one; we don't check or require that here).
/// Note it is possible that DestA and/or DestB are LandingPads.
bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
MachineBasicBlock *DestB,
bool isCond) {
// The values of DestA and DestB frequently come from a call to the
// 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
// values from there.
//
// 1. If both DestA and DestB are null, then the block ends with no branches
// (it falls through to its successor).
// 2. If DestA is set, DestB is null, and isCond is false, then the block ends
// with only an unconditional branch.
// 3. If DestA is set, DestB is null, and isCond is true, then the block ends
// with a conditional branch that falls through to a successor (DestB).
// 4. If DestA and DestB is set and isCond is true, then the block ends with a
// conditional branch followed by an unconditional branch. DestA is the
// 'true' destination and DestB is the 'false' destination.
bool Changed = false;
MachineFunction::iterator FallThru =
llvm::next(MachineFunction::iterator(this));
if (DestA == 0 && DestB == 0) {
// Block falls through to successor.
DestA = FallThru;
DestB = FallThru;
} else if (DestA != 0 && DestB == 0) {
if (isCond)
// Block ends in conditional jump that falls through to successor.
DestB = FallThru;
} else {
assert(DestA && DestB && isCond &&
"CFG in a bad state. Cannot correct CFG edges");
}
// Remove superfluous edges. I.e., those which aren't destinations of this
// basic block, duplicate edges, or landing pads.
SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
MachineBasicBlock::succ_iterator SI = succ_begin();
while (SI != succ_end()) {
const MachineBasicBlock *MBB = *SI;
if (!SeenMBBs.insert(MBB) ||
(MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
// This is a superfluous edge, remove it.
SI = removeSuccessor(SI);
Changed = true;
} else {
++SI;
}
}
return Changed;
}
/// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
/// any DBG_VALUE instructions. Return UnknownLoc if there is none.
DebugLoc
MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
DebugLoc DL;
instr_iterator E = instr_end();
if (MBBI == E)
return DL;
// Skip debug declarations, we don't want a DebugLoc from them.
while (MBBI != E && MBBI->isDebugValue())
MBBI++;
if (MBBI != E)
DL = MBBI->getDebugLoc();
return DL;
}
/// getSuccWeight - Return weight of the edge from this block to MBB.
///
uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
if (Weights.empty())
return 0;
return *getWeightIterator(Succ);
}
/// getWeightIterator - Return wight iterator corresonding to the I successor
/// iterator
MachineBasicBlock::weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::succ_iterator I) {
assert(Weights.size() == Successors.size() && "Async weight list!");
size_t index = std::distance(Successors.begin(), I);
assert(index < Weights.size() && "Not a current successor!");
return Weights.begin() + index;
}
/// getWeightIterator - Return wight iterator corresonding to the I successor
/// iterator
MachineBasicBlock::const_weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
assert(Weights.size() == Successors.size() && "Async weight list!");
const size_t index = std::distance(Successors.begin(), I);
assert(index < Weights.size() && "Not a current successor!");
return Weights.begin() + index;
}
/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
/// as of just before "MI".
///
/// Search is localised to a neighborhood of
/// Neighborhood instructions before (searching for defs or kills) and N
/// instructions after (searching just for defs) MI.
MachineBasicBlock::LivenessQueryResult
MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
unsigned Reg, MachineInstr *MI,
unsigned Neighborhood) {
unsigned N = Neighborhood;
MachineBasicBlock *MBB = MI->getParent();
// Start by searching backwards from MI, looking for kills, reads or defs.
MachineBasicBlock::iterator I(MI);
// If this is the first insn in the block, don't search backwards.
if (I != MBB->begin()) {
do {
--I;
MachineOperandIteratorBase::PhysRegInfo Analysis =
MIOperands(I).analyzePhysReg(Reg, TRI);
if (Analysis.Defines)
// Outputs happen after inputs so they take precedence if both are
// present.
return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
if (Analysis.Kills || Analysis.Clobbers)
// Register killed, so isn't live.
return LQR_Dead;
else if (Analysis.ReadsOverlap)
// Defined or read without a previous kill - live.
return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
} while (I != MBB->begin() && --N > 0);
}
// Did we get to the start of the block?
if (I == MBB->begin()) {
// If so, the register's state is definitely defined by the live-in state.
for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
RAI.isValid(); ++RAI) {
if (MBB->isLiveIn(*RAI))
return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
}
return LQR_Dead;
}
N = Neighborhood;
// Try searching forwards from MI, looking for reads or defs.
I = MachineBasicBlock::iterator(MI);
// If this is the last insn in the block, don't search forwards.
if (I != MBB->end()) {
for (++I; I != MBB->end() && N > 0; ++I, --N) {
MachineOperandIteratorBase::PhysRegInfo Analysis =
MIOperands(I).analyzePhysReg(Reg, TRI);
if (Analysis.ReadsOverlap)
// Used, therefore must have been live.
return (Analysis.Reads) ?
LQR_Live : LQR_OverlappingLive;
else if (Analysis.Clobbers || Analysis.Defines)
// Defined (but not read) therefore cannot have been live.
return LQR_Dead;
}
}
// At this point we have no idea of the liveness of the register.
return LQR_Unknown;
}
void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
bool t) {
OS << "BB#" << MBB->getNumber();
}
|