1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The machine combiner pass uses machine trace metrics to ensure the combined
// instructions does not lengthen the critical path or the resource depth.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-combiner"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
STATISTIC(NumInstCombined, "Number of machineinst combined");
namespace {
class MachineCombiner : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MCSchedModel SchedModel;
MachineRegisterInfo *MRI;
MachineTraceMetrics *Traces;
MachineTraceMetrics::Ensemble *MinInstr;
TargetSchedModel TSchedModel;
/// OptSize - True if optimizing for code size.
bool OptSize;
public:
static char ID;
MachineCombiner() : MachineFunctionPass(ID) {
initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override { return "Machine InstCombiner"; }
private:
bool doSubstitute(unsigned NewSize, unsigned OldSize);
bool combineInstructions(MachineBasicBlock *);
MachineInstr *getOperandDef(const MachineOperand &MO);
unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
MachineTraceMetrics::Trace BlockTrace);
unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
MachineTraceMetrics::Trace BlockTrace);
bool
preservesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg);
bool preservesResourceLen(MachineBasicBlock *MBB,
MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs);
void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
};
}
char MachineCombiner::ID = 0;
char &llvm::MachineCombinerID = MachineCombiner::ID;
INITIALIZE_PASS_BEGIN(MachineCombiner, "machine-combiner",
"Machine InstCombiner", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
INITIALIZE_PASS_END(MachineCombiner, "machine-combiner", "Machine InstCombiner",
false, false)
void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<MachineTraceMetrics>();
AU.addPreserved<MachineTraceMetrics>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
MachineInstr *DefInstr = nullptr;
// We need a virtual register definition.
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
DefInstr = MRI->getUniqueVRegDef(MO.getReg());
// PHI's have no depth etc.
if (DefInstr && DefInstr->isPHI())
DefInstr = nullptr;
return DefInstr;
}
/// getDepth - Computes depth of instructions in vector \InsInstr.
///
/// \param InsInstrs is a vector of machine instructions
/// \param InstrIdxForVirtReg is a dense map of virtual register to index
/// of defining machine instruction in \p InsInstrs
/// \param BlockTrace is a trace of machine instructions
///
/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
unsigned
MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
MachineTraceMetrics::Trace BlockTrace) {
SmallVector<unsigned, 16> InstrDepth;
assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
// Foreach instruction in in the new sequence compute the depth based on the
// operands. Use the trace information when possible. For new operands which
// are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
for (auto *InstrPtr : InsInstrs) { // for each Use
unsigned IDepth = 0;
DEBUG(dbgs() << "NEW INSTR "; InstrPtr->dump(); dbgs() << "\n";);
for (unsigned i = 0, e = InstrPtr->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = InstrPtr->getOperand(i);
// Check for virtual register operand.
if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
continue;
if (!MO.isUse())
continue;
unsigned DepthOp = 0;
unsigned LatencyOp = 0;
DenseMap<unsigned, unsigned>::iterator II =
InstrIdxForVirtReg.find(MO.getReg());
if (II != InstrIdxForVirtReg.end()) {
// Operand is new virtual register not in trace
assert(II->second < InstrDepth.size() && "Bad Index");
MachineInstr *DefInstr = InsInstrs[II->second];
assert(DefInstr &&
"There must be a definition for a new virtual register");
DepthOp = InstrDepth[II->second];
LatencyOp = TSchedModel.computeOperandLatency(
DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
} else {
MachineInstr *DefInstr = getOperandDef(MO);
if (DefInstr) {
DepthOp = BlockTrace.getInstrCycles(DefInstr).Depth;
LatencyOp = TSchedModel.computeOperandLatency(
DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
}
}
IDepth = std::max(IDepth, DepthOp + LatencyOp);
}
InstrDepth.push_back(IDepth);
}
unsigned NewRootIdx = InsInstrs.size() - 1;
return InstrDepth[NewRootIdx];
}
/// getLatency - Computes instruction latency as max of latency of defined
/// operands
///
/// \param Root is a machine instruction that could be replaced by NewRoot.
/// It is used to compute a more accurate latency information for NewRoot in
/// case there is a dependent instruction in the same trace (\p BlockTrace)
/// \param NewRoot is the instruction for which the latency is computed
/// \param BlockTrace is a trace of machine instructions
///
/// \returns Latency of \p NewRoot
unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
MachineTraceMetrics::Trace BlockTrace) {
assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
// Check each definition in NewRoot and compute the latency
unsigned NewRootLatency = 0;
for (unsigned i = 0, e = NewRoot->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = NewRoot->getOperand(i);
// Check for virtual register operand.
if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
continue;
if (!MO.isDef())
continue;
// Get the first instruction that uses MO
MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
RI++;
MachineInstr *UseMO = RI->getParent();
unsigned LatencyOp = 0;
if (UseMO && BlockTrace.isDepInTrace(Root, UseMO)) {
LatencyOp = TSchedModel.computeOperandLatency(
NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
UseMO->findRegisterUseOperandIdx(MO.getReg()));
} else {
LatencyOp = TSchedModel.computeInstrLatency(NewRoot->getOpcode());
}
NewRootLatency = std::max(NewRootLatency, LatencyOp);
}
return NewRootLatency;
}
/// preservesCriticalPathlen - True when the new instruction sequence does not
/// lengthen the critical path. The DAGCombine code sequence ends in MI
/// (Machine Instruction) Root. The new code sequence ends in MI NewRoot. A
/// necessary condition for the new sequence to replace the old sequence is that
/// is cannot lengthen the critical path. This is decided by the formula
/// (NewRootDepth + NewRootLatency) <= (RootDepth + RootLatency + RootSlack)).
/// The slack is the number of cycles Root can be delayed before the critical
/// patch becomes longer.
bool MachineCombiner::preservesCriticalPathLen(
MachineBasicBlock *MBB, MachineInstr *Root,
MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
assert(TSchedModel.hasInstrSchedModel() && "Missing machine model\n");
// NewRoot is the last instruction in the \p InsInstrs vector
// Get depth and latency of NewRoot
unsigned NewRootIdx = InsInstrs.size() - 1;
MachineInstr *NewRoot = InsInstrs[NewRootIdx];
unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
// Get depth, latency and slack of Root
unsigned RootDepth = BlockTrace.getInstrCycles(Root).Depth;
unsigned RootLatency = TSchedModel.computeInstrLatency(Root);
unsigned RootSlack = BlockTrace.getInstrSlack(Root);
DEBUG(dbgs() << "DEPENDENCE DATA FOR " << Root << "\n";
dbgs() << " NewRootDepth: " << NewRootDepth
<< " NewRootLatency: " << NewRootLatency << "\n";
dbgs() << " RootDepth: " << RootDepth << " RootLatency: " << RootLatency
<< " RootSlack: " << RootSlack << "\n";
dbgs() << " NewRootDepth + NewRootLatency "
<< NewRootDepth + NewRootLatency << "\n";
dbgs() << " RootDepth + RootLatency + RootSlack "
<< RootDepth + RootLatency + RootSlack << "\n";);
/// True when the new sequence does not lenghten the critical path.
return ((NewRootDepth + NewRootLatency) <=
(RootDepth + RootLatency + RootSlack));
}
/// helper routine to convert instructions into SC
void MachineCombiner::instr2instrSC(
SmallVectorImpl<MachineInstr *> &Instrs,
SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
for (auto *InstrPtr : Instrs) {
unsigned Opc = InstrPtr->getOpcode();
unsigned Idx = TII->get(Opc).getSchedClass();
const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
InstrsSC.push_back(SC);
}
}
/// preservesResourceLen - True when the new instructions do not increase
/// resource length
bool MachineCombiner::preservesResourceLen(
MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs) {
// Compute current resource length
//ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
SmallVector <const MachineBasicBlock *, 1> MBBarr;
MBBarr.push_back(MBB);
unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
// Deal with SC rather than Instructions.
SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
instr2instrSC(InsInstrs, InsInstrsSC);
instr2instrSC(DelInstrs, DelInstrsSC);
ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
// Compute new resource length
unsigned ResLenAfterCombine =
BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
DEBUG(dbgs() << "RESOURCE DATA: \n";
dbgs() << " resource len before: " << ResLenBeforeCombine
<< " after: " << ResLenAfterCombine << "\n";);
return ResLenAfterCombine <= ResLenBeforeCombine;
}
/// \returns true when new instruction sequence should be generated
/// independent if it lenghtens critical path or not
bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
if (OptSize && (NewSize < OldSize))
return true;
if (!TSchedModel.hasInstrSchedModel())
return true;
return false;
}
/// combineInstructions - substitute a slow code sequence with a faster one by
/// evaluating instruction combining pattern.
/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
/// combining based on machine trace metrics. Only combine a sequence of
/// instructions when this neither lengthens the critical path nor increases
/// resource pressure. When optimizing for codesize always combine when the new
/// sequence is shorter.
bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
bool Changed = false;
DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
auto BlockIter = MBB->begin();
while (BlockIter != MBB->end()) {
auto &MI = *BlockIter++;
DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";);
SmallVector<MachineCombinerPattern::MC_PATTERN, 16> Pattern;
// The motivating example is:
//
// MUL Other MUL_op1 MUL_op2 Other
// \ / \ | /
// ADD/SUB => MADD/MSUB
// (=Root) (=NewRoot)
// The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
// usually beneficial for code size it unfortunately can hurt performance
// when the ADD is on the critical path, but the MUL is not. With the
// substitution the MUL becomes part of the critical path (in form of the
// MADD) and can lengthen it on architectures where the MADD latency is
// longer than the ADD latency.
//
// For each instruction we check if it can be the root of a combiner
// pattern. Then for each pattern the new code sequence in form of MI is
// generated and evaluated. When the efficiency criteria (don't lengthen
// critical path, don't use more resources) is met the new sequence gets
// hooked up into the basic block before the old sequence is removed.
//
// The algorithm does not try to evaluate all patterns and pick the best.
// This is only an artificial restriction though. In practice there is
// mostly one pattern and hasPattern() can order patterns based on an
// internal cost heuristic.
if (TII->hasPattern(MI, Pattern)) {
for (auto P : Pattern) {
SmallVector<MachineInstr *, 16> InsInstrs;
SmallVector<MachineInstr *, 16> DelInstrs;
DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
if (!MinInstr)
MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
Traces->verifyAnalysis();
TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
InstrIdxForVirtReg);
// Found pattern, but did not generate alternative sequence.
// This can happen e.g. when an immediate could not be materialized
// in a single instruction.
if (!InsInstrs.size())
continue;
// Substitute when we optimize for codesize and the new sequence has
// fewer instructions OR
// the new sequence neither lenghten the critical path nor increases
// resource pressure.
if (doSubstitute(InsInstrs.size(), DelInstrs.size()) ||
(preservesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs,
InstrIdxForVirtReg) &&
preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs))) {
for (auto *InstrPtr : InsInstrs)
MBB->insert((MachineBasicBlock::iterator) & MI,
(MachineInstr *)InstrPtr);
for (auto *InstrPtr : DelInstrs)
InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
Changed = true;
++NumInstCombined;
Traces->invalidate(MBB);
Traces->verifyAnalysis();
// Eagerly stop after the first pattern fired
break;
} else {
// Cleanup instructions of the alternative code sequence. There is no
// use for them.
for (auto *InstrPtr : InsInstrs) {
MachineFunction *MF = MBB->getParent();
MF->DeleteMachineInstr((MachineInstr *)InstrPtr);
}
}
InstrIdxForVirtReg.clear();
}
}
}
return Changed;
}
bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
const TargetSubtargetInfo &STI =
MF.getTarget().getSubtarget<TargetSubtargetInfo>();
TII = STI.getInstrInfo();
TRI = STI.getRegisterInfo();
SchedModel = STI.getSchedModel();
TSchedModel.init(SchedModel, &STI, TII);
MRI = &MF.getRegInfo();
Traces = &getAnalysis<MachineTraceMetrics>();
MinInstr = 0;
OptSize = MF.getFunction()->getAttributes().hasAttribute(
AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
if (!TII->useMachineCombiner()) {
DEBUG(dbgs() << " Skipping pass: Target does not support machine combiner\n");
return false;
}
bool Changed = false;
// Try to combine instructions.
for (auto &MBB : MF)
Changed |= combineInstructions(&MBB);
return Changed;
}
|