1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
//===-- lib/CodeGen/MachineInstrBundle.cpp --------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
namespace {
class UnpackMachineBundles : public MachineFunctionPass {
public:
static char ID; // Pass identification
UnpackMachineBundles() : MachineFunctionPass(ID) {
initializeUnpackMachineBundlesPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &MF);
};
} // end anonymous namespace
char UnpackMachineBundles::ID = 0;
char &llvm::UnpackMachineBundlesID = UnpackMachineBundles::ID;
INITIALIZE_PASS(UnpackMachineBundles, "unpack-mi-bundles",
"Unpack machine instruction bundles", false, false)
bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = &*I;
for (MachineBasicBlock::instr_iterator MII = MBB->instr_begin(),
MIE = MBB->instr_end(); MII != MIE; ) {
MachineInstr *MI = &*MII;
// Remove BUNDLE instruction and the InsideBundle flags from bundled
// instructions.
if (MI->isBundle()) {
while (++MII != MIE && MII->isInsideBundle()) {
MII->setIsInsideBundle(false);
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MII->getOperand(i);
if (MO.isReg() && MO.isInternalRead())
MO.setIsInternalRead(false);
}
}
MI->eraseFromParent();
Changed = true;
continue;
}
++MII;
}
}
return Changed;
}
namespace {
class FinalizeMachineBundles : public MachineFunctionPass {
public:
static char ID; // Pass identification
FinalizeMachineBundles() : MachineFunctionPass(ID) {
initializeFinalizeMachineBundlesPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &MF);
};
} // end anonymous namespace
char FinalizeMachineBundles::ID = 0;
char &llvm::FinalizeMachineBundlesID = FinalizeMachineBundles::ID;
INITIALIZE_PASS(FinalizeMachineBundles, "finalize-mi-bundles",
"Finalize machine instruction bundles", false, false)
bool FinalizeMachineBundles::runOnMachineFunction(MachineFunction &MF) {
return llvm::finalizeBundles(MF);
}
/// finalizeBundle - Finalize a machine instruction bundle which includes
/// a sequence of instructions starting from FirstMI to LastMI (exclusive).
/// This routine adds a BUNDLE instruction to represent the bundle, it adds
/// IsInternalRead markers to MachineOperands which are defined inside the
/// bundle, and it copies externally visible defs and uses to the BUNDLE
/// instruction.
void llvm::finalizeBundle(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator FirstMI,
MachineBasicBlock::instr_iterator LastMI) {
assert(FirstMI != LastMI && "Empty bundle?");
const TargetMachine &TM = MBB.getParent()->getTarget();
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
MachineInstrBuilder MIB = BuildMI(MBB, FirstMI, FirstMI->getDebugLoc(),
TII->get(TargetOpcode::BUNDLE));
SmallVector<unsigned, 8> LocalDefs;
SmallSet<unsigned, 8> LocalDefSet;
SmallSet<unsigned, 8> DeadDefSet;
SmallSet<unsigned, 8> KilledDefSet;
SmallVector<unsigned, 8> ExternUses;
SmallSet<unsigned, 8> ExternUseSet;
SmallSet<unsigned, 8> KilledUseSet;
SmallSet<unsigned, 8> UndefUseSet;
SmallVector<MachineOperand*, 4> Defs;
for (; FirstMI != LastMI; ++FirstMI) {
for (unsigned i = 0, e = FirstMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = FirstMI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isDef()) {
Defs.push_back(&MO);
continue;
}
unsigned Reg = MO.getReg();
if (!Reg)
continue;
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
if (LocalDefSet.count(Reg)) {
MO.setIsInternalRead();
if (MO.isKill())
// Internal def is now killed.
KilledDefSet.insert(Reg);
} else {
if (ExternUseSet.insert(Reg)) {
ExternUses.push_back(Reg);
if (MO.isUndef())
UndefUseSet.insert(Reg);
}
if (MO.isKill())
// External def is now killed.
KilledUseSet.insert(Reg);
}
}
for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
MachineOperand &MO = *Defs[i];
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (LocalDefSet.insert(Reg)) {
LocalDefs.push_back(Reg);
if (MO.isDead()) {
DeadDefSet.insert(Reg);
}
} else {
// Re-defined inside the bundle, it's no longer killed.
KilledDefSet.erase(Reg);
if (!MO.isDead())
// Previously defined but dead.
DeadDefSet.erase(Reg);
}
if (!MO.isDead()) {
for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs) {
if (LocalDefSet.insert(SubReg))
LocalDefs.push_back(SubReg);
}
}
}
FirstMI->setIsInsideBundle();
Defs.clear();
}
SmallSet<unsigned, 8> Added;
for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
unsigned Reg = LocalDefs[i];
if (Added.insert(Reg)) {
// If it's not live beyond end of the bundle, mark it dead.
bool isDead = DeadDefSet.count(Reg) || KilledDefSet.count(Reg);
MIB.addReg(Reg, getDefRegState(true) | getDeadRegState(isDead) |
getImplRegState(true));
}
}
for (unsigned i = 0, e = ExternUses.size(); i != e; ++i) {
unsigned Reg = ExternUses[i];
bool isKill = KilledUseSet.count(Reg);
bool isUndef = UndefUseSet.count(Reg);
MIB.addReg(Reg, getKillRegState(isKill) | getUndefRegState(isUndef) |
getImplRegState(true));
}
}
/// finalizeBundle - Same functionality as the previous finalizeBundle except
/// the last instruction in the bundle is not provided as an input. This is
/// used in cases where bundles are pre-determined by marking instructions
/// with 'InsideBundle' marker. It returns the MBB instruction iterator that
/// points to the end of the bundle.
MachineBasicBlock::instr_iterator
llvm::finalizeBundle(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator FirstMI) {
MachineBasicBlock::instr_iterator E = MBB.instr_end();
MachineBasicBlock::instr_iterator LastMI = llvm::next(FirstMI);
while (LastMI != E && LastMI->isInsideBundle())
++LastMI;
finalizeBundle(MBB, FirstMI, LastMI);
return LastMI;
}
/// finalizeBundles - Finalize instruction bundles in the specified
/// MachineFunction. Return true if any bundles are finalized.
bool llvm::finalizeBundles(MachineFunction &MF) {
bool Changed = false;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock &MBB = *I;
MachineBasicBlock::instr_iterator MII = MBB.instr_begin();
assert(!MII->isInsideBundle() &&
"First instr cannot be inside bundle before finalization!");
MachineBasicBlock::instr_iterator MIE = MBB.instr_end();
if (MII == MIE)
continue;
for (++MII; MII != MIE; ) {
if (!MII->isInsideBundle())
++MII;
else {
MII = finalizeBundle(MBB, llvm::prior(MII));
Changed = true;
}
}
}
return Changed;
}
//===----------------------------------------------------------------------===//
// MachineOperand iterator
//===----------------------------------------------------------------------===//
MachineOperandIteratorBase::RegInfo
MachineOperandIteratorBase::analyzeVirtReg(unsigned Reg,
SmallVectorImpl<std::pair<MachineInstr*, unsigned> > *Ops) {
RegInfo RI = { false, false, false };
for(; isValid(); ++*this) {
MachineOperand &MO = deref();
if (!MO.isReg() || MO.getReg() != Reg)
continue;
// Remember each (MI, OpNo) that refers to Reg.
if (Ops)
Ops->push_back(std::make_pair(MO.getParent(), getOperandNo()));
// Both defs and uses can read virtual registers.
if (MO.readsReg()) {
RI.Reads = true;
if (MO.isDef())
RI.Tied = true;
}
// Only defs can write.
if (MO.isDef())
RI.Writes = true;
else if (!RI.Tied && MO.getParent()->isRegTiedToDefOperand(getOperandNo()))
RI.Tied = true;
}
return RI;
}
|