aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/MachineSink.cpp
blob: b117f8c3a206c9982e14fc79c41a638cea57fd4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass moves instructions into successor blocks when possible, so that
// they aren't executed on paths where their results aren't needed.
//
// This pass is not intended to be a replacement or a complete alternative
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

static cl::opt<bool>
SplitEdges("machine-sink-split",
           cl::desc("Split critical edges during machine sinking"),
           cl::init(true), cl::Hidden);

STATISTIC(NumSunk,      "Number of machine instructions sunk");
STATISTIC(NumSplit,     "Number of critical edges split");
STATISTIC(NumCoalesces, "Number of copies coalesced");

namespace {
  class MachineSinking : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    MachineRegisterInfo  *MRI;  // Machine register information
    MachineDominatorTree *DT;   // Machine dominator tree
    MachineLoopInfo *LI;
    AliasAnalysis *AA;

    // Remember which edges have been considered for breaking.
    SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
    CEBCandidates;

  public:
    static char ID; // Pass identification
    MachineSinking() : MachineFunctionPass(ID) {
      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
    }

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addPreserved<MachineLoopInfo>();
    }

    virtual void releaseMemory() {
      CEBCandidates.clear();
    }

  private:
    bool ProcessBlock(MachineBasicBlock &MBB);
    bool isWorthBreakingCriticalEdge(MachineInstr *MI,
                                     MachineBasicBlock *From,
                                     MachineBasicBlock *To);
    MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
                                         MachineBasicBlock *From,
                                         MachineBasicBlock *To,
                                         bool BreakPHIEdge);
    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
                                 MachineBasicBlock *DefMBB,
                                 bool &BreakPHIEdge, bool &LocalUse) const;
    MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
               bool &BreakPHIEdge);
    bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
                              MachineBasicBlock *MBB,
                              MachineBasicBlock *SuccToSinkTo);

    bool PerformTrivialForwardCoalescing(MachineInstr *MI,
                                         MachineBasicBlock *MBB);
  };

  // SuccessorSorter - Sort Successors according to their loop depth. 
  struct SuccessorSorter {
    SuccessorSorter(MachineLoopInfo *LoopInfo) : LI(LoopInfo) {}
    bool operator()(const MachineBasicBlock *LHS,
                    const MachineBasicBlock *RHS) const {
      return LI->getLoopDepth(LHS) < LI->getLoopDepth(RHS);
    }
    MachineLoopInfo *LI;
  };
} // end anonymous namespace

char MachineSinking::ID = 0;
char &llvm::MachineSinkingID = MachineSinking::ID;
INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
                "Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(MachineSinking, "machine-sink",
                "Machine code sinking", false, false)

bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
                                                     MachineBasicBlock *MBB) {
  if (!MI->isCopy())
    return false;

  unsigned SrcReg = MI->getOperand(1).getReg();
  unsigned DstReg = MI->getOperand(0).getReg();
  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
      !MRI->hasOneNonDBGUse(SrcReg))
    return false;

  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
  if (SRC != DRC)
    return false;

  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
  if (DefMI->isCopyLike())
    return false;
  DEBUG(dbgs() << "Coalescing: " << *DefMI);
  DEBUG(dbgs() << "*** to: " << *MI);
  MRI->replaceRegWith(DstReg, SrcReg);
  MI->eraseFromParent();
  ++NumCoalesces;
  return true;
}

/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block. If any use is in the
/// definition block, then return false since it is never legal to move def
/// after uses.
bool
MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
                                        MachineBasicBlock *MBB,
                                        MachineBasicBlock *DefMBB,
                                        bool &BreakPHIEdge,
                                        bool &LocalUse) const {
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
         "Only makes sense for vregs");

  // Ignore debug uses because debug info doesn't affect the code.
  if (MRI->use_nodbg_empty(Reg))
    return true;

  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
  // into and they are all PHI nodes. In this case, machine-sink must break
  // the critical edge first. e.g.
  //
  // BB#1: derived from LLVM BB %bb4.preheader
  //   Predecessors according to CFG: BB#0
  //     ...
  //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
  //     ...
  //     JE_4 <BB#37>, %EFLAGS<imp-use>
  //   Successors according to CFG: BB#37 BB#2
  //
  // BB#2: derived from LLVM BB %bb.nph
  //   Predecessors according to CFG: BB#0 BB#1
  //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
  BreakPHIEdge = true;
  for (MachineRegisterInfo::use_nodbg_iterator
         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
       I != E; ++I) {
    MachineInstr *UseInst = &*I;
    MachineBasicBlock *UseBlock = UseInst->getParent();
    if (!(UseBlock == MBB && UseInst->isPHI() &&
          UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
      BreakPHIEdge = false;
      break;
    }
  }
  if (BreakPHIEdge)
    return true;

  for (MachineRegisterInfo::use_nodbg_iterator
         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
       I != E; ++I) {
    // Determine the block of the use.
    MachineInstr *UseInst = &*I;
    MachineBasicBlock *UseBlock = UseInst->getParent();
    if (UseInst->isPHI()) {
      // PHI nodes use the operand in the predecessor block, not the block with
      // the PHI.
      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
    } else if (UseBlock == DefMBB) {
      LocalUse = true;
      return false;
    }

    // Check that it dominates.
    if (!DT->dominates(MBB, UseBlock))
      return false;
  }

  return true;
}

bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
  DEBUG(dbgs() << "******** Machine Sinking ********\n");

  const TargetMachine &TM = MF.getTarget();
  TII = TM.getInstrInfo();
  TRI = TM.getRegisterInfo();
  MRI = &MF.getRegInfo();
  DT = &getAnalysis<MachineDominatorTree>();
  LI = &getAnalysis<MachineLoopInfo>();
  AA = &getAnalysis<AliasAnalysis>();

  bool EverMadeChange = false;

  while (1) {
    bool MadeChange = false;

    // Process all basic blocks.
    CEBCandidates.clear();
    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
         I != E; ++I)
      MadeChange |= ProcessBlock(*I);

    // If this iteration over the code changed anything, keep iterating.
    if (!MadeChange) break;
    EverMadeChange = true;
  }
  return EverMadeChange;
}

bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
  // Can't sink anything out of a block that has less than two successors.
  if (MBB.succ_size() <= 1 || MBB.empty()) return false;

  // Don't bother sinking code out of unreachable blocks. In addition to being
  // unprofitable, it can also lead to infinite looping, because in an
  // unreachable loop there may be nowhere to stop.
  if (!DT->isReachableFromEntry(&MBB)) return false;

  bool MadeChange = false;

  // Walk the basic block bottom-up.  Remember if we saw a store.
  MachineBasicBlock::iterator I = MBB.end();
  --I;
  bool ProcessedBegin, SawStore = false;
  do {
    MachineInstr *MI = I;  // The instruction to sink.

    // Predecrement I (if it's not begin) so that it isn't invalidated by
    // sinking.
    ProcessedBegin = I == MBB.begin();
    if (!ProcessedBegin)
      --I;

    if (MI->isDebugValue())
      continue;

    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
    if (Joined) {
      MadeChange = true;
      continue;
    }

    if (SinkInstruction(MI, SawStore))
      ++NumSunk, MadeChange = true;

    // If we just processed the first instruction in the block, we're done.
  } while (!ProcessedBegin);

  return MadeChange;
}

bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
                                                 MachineBasicBlock *From,
                                                 MachineBasicBlock *To) {
  // FIXME: Need much better heuristics.

  // If the pass has already considered breaking this edge (during this pass
  // through the function), then let's go ahead and break it. This means
  // sinking multiple "cheap" instructions into the same block.
  if (!CEBCandidates.insert(std::make_pair(From, To)))
    return true;

  if (!MI->isCopy() && !MI->isAsCheapAsAMove())
    return true;

  // MI is cheap, we probably don't want to break the critical edge for it.
  // However, if this would allow some definitions of its source operands
  // to be sunk then it's probably worth it.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    if (MRI->hasOneNonDBGUse(Reg))
      return true;
  }

  return false;
}

MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
                                                     MachineBasicBlock *FromBB,
                                                     MachineBasicBlock *ToBB,
                                                     bool BreakPHIEdge) {
  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
    return 0;

  // Avoid breaking back edge. From == To means backedge for single BB loop.
  if (!SplitEdges || FromBB == ToBB)
    return 0;

  // Check for backedges of more "complex" loops.
  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
      LI->isLoopHeader(ToBB))
    return 0;

  // It's not always legal to break critical edges and sink the computation
  // to the edge.
  //
  // BB#1:
  // v1024
  // Beq BB#3
  // <fallthrough>
  // BB#2:
  // ... no uses of v1024
  // <fallthrough>
  // BB#3:
  // ...
  //       = v1024
  //
  // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
  //
  // BB#1:
  // ...
  // Bne BB#2
  // BB#4:
  // v1024 =
  // B BB#3
  // BB#2:
  // ... no uses of v1024
  // <fallthrough>
  // BB#3:
  // ...
  //       = v1024
  //
  // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
  // flow. We need to ensure the new basic block where the computation is
  // sunk to dominates all the uses.
  // It's only legal to break critical edge and sink the computation to the
  // new block if all the predecessors of "To", except for "From", are
  // not dominated by "From". Given SSA property, this means these
  // predecessors are dominated by "To".
  //
  // There is no need to do this check if all the uses are PHI nodes. PHI
  // sources are only defined on the specific predecessor edges.
  if (!BreakPHIEdge) {
    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
           E = ToBB->pred_end(); PI != E; ++PI) {
      if (*PI == FromBB)
        continue;
      if (!DT->dominates(ToBB, *PI))
        return 0;
    }
  }

  return FromBB->SplitCriticalEdge(ToBB, this);
}

static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
  return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
}

/// collectDebgValues - Scan instructions following MI and collect any
/// matching DBG_VALUEs.
static void collectDebugValues(MachineInstr *MI,
                               SmallVector<MachineInstr *, 2> & DbgValues) {
  DbgValues.clear();
  if (!MI->getOperand(0).isReg())
    return;

  MachineBasicBlock::iterator DI = MI; ++DI;
  for (MachineBasicBlock::iterator DE = MI->getParent()->end();
       DI != DE; ++DI) {
    if (!DI->isDebugValue())
      return;
    if (DI->getOperand(0).isReg() &&
        DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
      DbgValues.push_back(DI);
  }
}

/// isPostDominatedBy - Return true if A is post dominated by B.
static bool isPostDominatedBy(MachineBasicBlock *A, MachineBasicBlock *B) {

  // FIXME - Use real post dominator.
  if (A->succ_size() != 2)
    return false;
  MachineBasicBlock::succ_iterator I = A->succ_begin();
  if (B == *I)
    ++I;
  MachineBasicBlock *OtherSuccBlock = *I;
  if (OtherSuccBlock->succ_size() != 1 ||
      *(OtherSuccBlock->succ_begin()) != B)
    return false;

  return true;
}

/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
                                          MachineBasicBlock *MBB,
                                          MachineBasicBlock *SuccToSinkTo) {
  assert (MI && "Invalid MachineInstr!");
  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");

  if (MBB == SuccToSinkTo)
    return false;

  // It is profitable if SuccToSinkTo does not post dominate current block.
  if (!isPostDominatedBy(MBB, SuccToSinkTo))
      return true;

  // Check if only use in post dominated block is PHI instruction.
  bool NonPHIUse = false;
  for (MachineRegisterInfo::use_nodbg_iterator
         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
       I != E; ++I) {
    MachineInstr *UseInst = &*I;
    MachineBasicBlock *UseBlock = UseInst->getParent();
    if (UseBlock == SuccToSinkTo && !UseInst->isPHI())
      NonPHIUse = true;
  }
  if (!NonPHIUse)
    return true;

  // If SuccToSinkTo post dominates then also it may be profitable if MI
  // can further profitably sinked into another block in next round.
  bool BreakPHIEdge = false;
  // FIXME - If finding successor is compile time expensive then catch results.
  if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);

  // If SuccToSinkTo is final destination and it is a post dominator of current
  // block then it is not profitable to sink MI into SuccToSinkTo block.
  return false;
}

/// FindSuccToSinkTo - Find a successor to sink this instruction to.
MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
                                   MachineBasicBlock *MBB,
                                   bool &BreakPHIEdge) {

  assert (MI && "Invalid MachineInstr!");
  assert (MBB && "Invalid MachineBasicBlock!");

  // Loop over all the operands of the specified instruction.  If there is
  // anything we can't handle, bail out.

  // SuccToSinkTo - This is the successor to sink this instruction to, once we
  // decide.
  MachineBasicBlock *SuccToSinkTo = 0;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;  // Ignore non-register operands.

    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
          return NULL;
      } else if (!MO.isDead()) {
        // A def that isn't dead. We can't move it.
        return NULL;
      }
    } else {
      // Virtual register uses are always safe to sink.
      if (MO.isUse()) continue;

      // If it's not safe to move defs of the register class, then abort.
      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
        return NULL;

      // FIXME: This picks a successor to sink into based on having one
      // successor that dominates all the uses.  However, there are cases where
      // sinking can happen but where the sink point isn't a successor.  For
      // example:
      //
      //   x = computation
      //   if () {} else {}
      //   use x
      //
      // the instruction could be sunk over the whole diamond for the
      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
      // after that.

      // Virtual register defs can only be sunk if all their uses are in blocks
      // dominated by one of the successors.
      if (SuccToSinkTo) {
        // If a previous operand picked a block to sink to, then this operand
        // must be sinkable to the same block.
        bool LocalUse = false;
        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
                                     BreakPHIEdge, LocalUse))
          return NULL;

        continue;
      }

      // Otherwise, we should look at all the successors and decide which one
      // we should sink to.
      // We give successors with smaller loop depth higher priority.
      SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(), MBB->succ_end());
      std::stable_sort(Succs.begin(), Succs.end(), SuccessorSorter(LI));
      for (SmallVector<MachineBasicBlock*, 4>::iterator SI = Succs.begin(),
           E = Succs.end(); SI != E; ++SI) {
        MachineBasicBlock *SuccBlock = *SI;
        bool LocalUse = false;
        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
                                    BreakPHIEdge, LocalUse)) {
          SuccToSinkTo = SuccBlock;
          break;
        }
        if (LocalUse)
          // Def is used locally, it's never safe to move this def.
          return NULL;
      }

      // If we couldn't find a block to sink to, ignore this instruction.
      if (SuccToSinkTo == 0)
        return NULL;
      else if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo))
        return NULL;
    }
  }

  // It is not possible to sink an instruction into its own block.  This can
  // happen with loops.
  if (MBB == SuccToSinkTo)
    return NULL;

  // It's not safe to sink instructions to EH landing pad. Control flow into
  // landing pad is implicitly defined.
  if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
    return NULL;

  return SuccToSinkTo;
}

/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
  // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
  // be close to the source to make it easier to coalesce.
  if (AvoidsSinking(MI, MRI))
    return false;

  // Check if it's safe to move the instruction.
  if (!MI->isSafeToMove(TII, AA, SawStore))
    return false;

  // FIXME: This should include support for sinking instructions within the
  // block they are currently in to shorten the live ranges.  We often get
  // instructions sunk into the top of a large block, but it would be better to
  // also sink them down before their first use in the block.  This xform has to
  // be careful not to *increase* register pressure though, e.g. sinking
  // "x = y + z" down if it kills y and z would increase the live ranges of y
  // and z and only shrink the live range of x.

  bool BreakPHIEdge = false;
  MachineBasicBlock *ParentBlock = MI->getParent();
  MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge);

  // If there are no outputs, it must have side-effects.
  if (SuccToSinkTo == 0)
    return false;


  // If the instruction to move defines a dead physical register which is live
  // when leaving the basic block, don't move it because it could turn into a
  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    if (SuccToSinkTo->isLiveIn(Reg))
      return false;
  }

  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);

  // If the block has multiple predecessors, this would introduce computation on
  // a path that it doesn't already exist.  We could split the critical edge,
  // but for now we just punt.
  if (SuccToSinkTo->pred_size() > 1) {
    // We cannot sink a load across a critical edge - there may be stores in
    // other code paths.
    bool TryBreak = false;
    bool store = true;
    if (!MI->isSafeToMove(TII, AA, store)) {
      DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
      TryBreak = true;
    }

    // We don't want to sink across a critical edge if we don't dominate the
    // successor. We could be introducing calculations to new code paths.
    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
      DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
      TryBreak = true;
    }

    // Don't sink instructions into a loop.
    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
      DEBUG(dbgs() << " *** NOTE: Loop header found\n");
      TryBreak = true;
    }

    // Otherwise we are OK with sinking along a critical edge.
    if (!TryBreak)
      DEBUG(dbgs() << "Sinking along critical edge.\n");
    else {
      MachineBasicBlock *NewSucc =
        SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
      if (!NewSucc) {
        DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
                        "break critical edge\n");
        return false;
      } else {
        DEBUG(dbgs() << " *** Splitting critical edge:"
              " BB#" << ParentBlock->getNumber()
              << " -- BB#" << NewSucc->getNumber()
              << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
        SuccToSinkTo = NewSucc;
        ++NumSplit;
        BreakPHIEdge = false;
      }
    }
  }

  if (BreakPHIEdge) {
    // BreakPHIEdge is true if all the uses are in the successor MBB being
    // sunken into and they are all PHI nodes. In this case, machine-sink must
    // break the critical edge first.
    MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
                                                   SuccToSinkTo, BreakPHIEdge);
    if (!NewSucc) {
      DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
            "break critical edge\n");
      return false;
    }

    DEBUG(dbgs() << " *** Splitting critical edge:"
          " BB#" << ParentBlock->getNumber()
          << " -- BB#" << NewSucc->getNumber()
          << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
    SuccToSinkTo = NewSucc;
    ++NumSplit;
  }

  // Determine where to insert into. Skip phi nodes.
  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
    ++InsertPos;

  // collect matching debug values.
  SmallVector<MachineInstr *, 2> DbgValuesToSink;
  collectDebugValues(MI, DbgValuesToSink);

  // Move the instruction.
  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
                       ++MachineBasicBlock::iterator(MI));

  // Move debug values.
  for (SmallVector<MachineInstr *, 2>::iterator DBI = DbgValuesToSink.begin(),
         DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
    MachineInstr *DbgMI = *DBI;
    SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
                         ++MachineBasicBlock::iterator(DbgMI));
  }

  // Conservatively, clear any kill flags, since it's possible that they are no
  // longer correct.
  MI->clearKillInfo();

  return true;
}