1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
|
#include <math.h>
#include "ModuloSchedGraph.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <iostream>
#include <swig.h>
#include "llvm/iOperators.h"
#include "llvm/iOther.h"
#include "llvm/iPHINode.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MachineSchedInfo.h"
#define UNIDELAY 1
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) < (b) ? (b) : (a))
using std::vector;
using std::pair;
//using std::hash_map;
using std::cerr;
extern std::ostream modSched_os;
extern ModuloSchedDebugLevel_t ModuloSchedDebugLevel;
//*********************** Internal Data Structures *************************/
// The following two types need to be classes, not typedefs, so we can use
// opaque declarations in SchedGraph.h
//
struct RefVec: public vector< pair<ModuloSchedGraphNode*, int> > {
typedef vector< pair<ModuloSchedGraphNode*, int> >:: iterator iterator;
typedef vector< pair<ModuloSchedGraphNode*, int> >::const_iterator const_iterator;
};
struct RegToRefVecMap: public hash_map<int, RefVec> {
typedef hash_map<int, RefVec>:: iterator iterator;
typedef hash_map<int, RefVec>::const_iterator const_iterator;
};
struct ValueToDefVecMap: public hash_map<const Instruction*, RefVec> {
typedef hash_map<const Instruction*, RefVec>:: iterator iterator;
typedef hash_map<const Instruction*, RefVec>::const_iterator const_iterator;
};
// class Modulo SchedGraphNode
/*ctor*/
ModuloSchedGraphNode::ModuloSchedGraphNode(unsigned int _nodeId,
const BasicBlock* _bb,
const Instruction* _inst,
int indexInBB,
const TargetMachine& target)
:
SchedGraphNodeCommon(_nodeId, _bb, indexInBB),
inst(_inst)
{
if(inst)
{
//FIXME: find the latency
//currently setthe latency to zero
latency =0;
}
}
//class ModuloScheGraph
void
ModuloSchedGraph::addDummyEdges()
{
assert(graphRoot->outEdges.size() == 0);
for (const_iterator I=begin(); I != end(); ++I)
{
ModuloSchedGraphNode* node = (ModuloSchedGraphNode*)( (*I).second);
assert(node != graphRoot && node != graphLeaf);
if (node->beginInEdges() == node->endInEdges())
(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
if (node->beginOutEdges() == node->endOutEdges())
(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
bool isDefinition(const Instruction* I)
{
//if(TerminatorInst::classof(I)||FreeInst::classof(I) || StoreInst::classof(I) || CallInst::classof(I))
if(!I->hasName())
return false;
else
return true;
}
void ModuloSchedGraph::addDefUseEdges(const BasicBlock* bb)
{
//collect def instructions, store them in vector
const MachineInstrInfo& mii = target.getInstrInfo();
typedef std::vector<ModuloSchedGraphNode*> DefVec;
DefVec defVec;
//find those def instructions
for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I !=E; I++)
if(I->getType() != Type::VoidTy)
{
defVec.push_back(this->getGraphNodeForInst(I)) ;
}
for(unsigned int i=0; i < defVec.size();i++)
for(Value::use_const_iterator I=defVec[i]->getInst()->use_begin();I !=defVec[i]->getInst()->use_end() ;I++)
{
//for each use of a def, add a flow edge from the def instruction to the ref instruction
const Instruction* value=defVec[i]->getInst();
Instruction *inst=(Instruction*)(*I);
ModuloSchedGraphNode* node=NULL;
for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I !=E; I++)
if((const Instruction*)I == inst)
{
node=(*this)[inst];
break;
}
assert(inst != NULL &&" Use not an Instruction ?" );
if(node == NULL) //inst is not an instruction in this block
{}
else
{
//add a flow edge from the def instruction to the ref instruction
//self loop will not happen in SSA form
assert(defVec[i] != node && "same node?");
//this is a true dependence, so the delay is equal to the delay of the pred node.
int delay=0;
MachineCodeForInstruction& tempMvec= MachineCodeForInstruction::get(value);
for(unsigned j=0;j< tempMvec.size();j++)
{
MachineInstr* temp=tempMvec[j];
//delay +=mii.minLatency(temp->getOpCode());
delay = max(delay, mii.minLatency(temp->getOpCode()));
}
SchedGraphEdge* trueEdge=new SchedGraphEdge(defVec[i],node,value, SchedGraphEdge::TrueDep,delay);
//if the ref instruction is before the def instrution
//then the def instruction must be a phi instruction
//add an anti-dependence edge to from the ref instruction to the def instruction
if( node->getOrigIndexInBB() < defVec[i]->getOrigIndexInBB())
{
assert(PHINode::classof(inst) && "the ref instruction befre def is not PHINode?");
trueEdge->setIteDiff(1);
}
}
}
}
void ModuloSchedGraph::addCDEdges(const BasicBlock* bb)
{
//find the last instruction in the basic block
//see if it is an branch instruction.
//If yes, then add an edge from each node expcept the last node to the last node
const Instruction* inst=&(bb->back());
ModuloSchedGraphNode* lastNode=(*this)[inst];
if( TerminatorInst::classof(inst))
for(BasicBlock::const_iterator I=bb->begin(),E=bb->end(); I != E; I++)
{
if(inst != I)
{
ModuloSchedGraphNode* node = (*this)[I];
//use latency of 0
(void) new SchedGraphEdge(node,lastNode,SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep,0);
}
}
}
static const int SG_LOAD_REF = 0;
static const int SG_STORE_REF = 1;
static const int SG_CALL_REF = 2;
static const unsigned int SG_DepOrderArray[][3] = {
{ SchedGraphEdge::NonDataDep,
SchedGraphEdge::AntiDep,
SchedGraphEdge::AntiDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
| SchedGraphEdge::OutputDep }
};
// Add a dependence edge between every pair of machine load/store/call
// instructions, where at least one is a store or a call.
// Use latency 1 just to ensure that memory operations are ordered;
// latency does not otherwise matter (true dependences enforce that).
//
void
ModuloSchedGraph::addMemEdges(const BasicBlock* bb)
{
vector<ModuloSchedGraphNode*> memNodeVec;
//construct the memNodeVec
for( BasicBlock::const_iterator I=bb->begin(), E=bb->end();I != E; I++)
if(LoadInst::classof(I) ||StoreInst::classof(I) || CallInst::classof(I))
{
ModuloSchedGraphNode* node =(*this)[(const Instruction*)I];
memNodeVec.push_back(node);
}
// Instructions in memNodeVec are in execution order within the basic block,
// so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
//
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
{
const Instruction* fromInst = memNodeVec[im]->getInst();
int fromType = CallInst::classof(fromInst)? SG_CALL_REF
: LoadInst::classof(fromInst)? SG_LOAD_REF
: SG_STORE_REF;
for (unsigned jm=im+1; jm < NM; jm++)
{
const Instruction* toInst=memNodeVec[jm]->getInst();
int toType = CallInst::classof(toInst)? SG_CALL_REF
: LoadInst::classof(toInst)? SG_LOAD_REF
: SG_STORE_REF;
if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
{
(void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
SchedGraphEdge::MemoryDep,
SG_DepOrderArray[fromType][toType], 1);
SchedGraphEdge* edge=new SchedGraphEdge(memNodeVec[jm],memNodeVec[im],
SchedGraphEdge::MemoryDep,
SG_DepOrderArray[toType][fromType],1);
edge->setIteDiff(1);
}
}
}
}
void ModuloSchedGraph::buildNodesforBB (const TargetMachine& target,
const BasicBlock* bb,
std::vector<ModuloSchedGraphNode*>& memNode,
RegToRefVecMap& regToRefVecMap,
ValueToDefVecMap& valueToDefVecMap)
{
//const MachineInstrInfo& mii=target.getInstrInfo();
//Build graph nodes for each LLVM instruction and gather def/use info.
//Do both together in a single pass over all machine instructions.
int i=0;
for(BasicBlock::const_iterator I=bb->begin(), E=bb->end(); I!=E; I++)
{
ModuloSchedGraphNode* node=new ModuloSchedGraphNode(getNumNodes(), bb,I,i, target);
i++;
this->noteModuloSchedGraphNodeForInst(I,node);
}
//this function finds some info about instruction in basic block for later use
//findDefUseInfoAtInstr(target, node, memNode,regToRefVecMap,valueToDefVecMap);
}
bool ModuloSchedGraph::isLoop(const BasicBlock* bb)
{
//only if the last instruction in the basicblock is branch instruction and
//there is at least an option to branch itself
const Instruction* inst=&(bb->back());
if( BranchInst::classof(inst))
for(unsigned i=0;i < ((BranchInst*)inst)->getNumSuccessors();i++)
{
BasicBlock* sb=((BranchInst*)inst)->getSuccessor(i);
if(sb ==bb) return true;
}
return false;
}
bool ModuloSchedGraph::isLoop()
{
//only if the last instruction in the basicblock is branch instruction and
//there is at least an option to branch itself
assert(bbVec.size() ==1 &&"only 1 basicblock in a graph");
const BasicBlock* bb=bbVec[0];
const Instruction* inst=&(bb->back());
if( BranchInst::classof(inst))
for(unsigned i=0;i < ((BranchInst*)inst)->getNumSuccessors();i++)
{
BasicBlock* sb=((BranchInst*)inst)->getSuccessor(i);
if(sb ==bb) return true;
}
return false;
}
void ModuloSchedGraph::computeNodeASAP(const BasicBlock* bb)
{
//FIXME: now assume the only backward edges come from the edges from other nodes to the phi Node
//so i will ignore all edges to the phi node; after this, there shall be no recurrence.
unsigned numNodes=bb->size();
for(unsigned i=2;i < numNodes+2;i++)
{
ModuloSchedGraphNode* node=getNode(i);
node->setPropertyComputed(false);
}
for(unsigned i=2;i < numNodes+2; i++)
{
ModuloSchedGraphNode* node=getNode(i);
node->ASAP=0;
if(i==2 ||node->getNumInEdges() ==0)
{ node->setPropertyComputed(true);continue;}
for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges();I !=E; I++)
{
SchedGraphEdge* edge=*I;
ModuloSchedGraphNode* pred=(ModuloSchedGraphNode*)(edge->getSrc());
assert(pred->getPropertyComputed()&&"pred node property is not computed!");
int temp=pred->ASAP + edge->getMinDelay() - edge->getIteDiff()*this->MII;
node->ASAP= max(node->ASAP,temp);
}
node->setPropertyComputed(true);
}
}
void ModuloSchedGraph::computeNodeALAP(const BasicBlock* bb)
{
unsigned numNodes=bb->size();
int maxASAP=0;
for(unsigned i=numNodes+1;i >= 2;i--)
{
ModuloSchedGraphNode* node=getNode(i);
node->setPropertyComputed(false);
//cerr<< " maxASAP= " <<maxASAP<<" node->ASAP= "<< node->ASAP<<"\n";
maxASAP=max(maxASAP,node->ASAP);
}
//cerr<<"maxASAP is "<<maxASAP<<"\n";
for(unsigned i=numNodes+1;i >= 2; i--)
{
ModuloSchedGraphNode* node=getNode(i);
node->ALAP=maxASAP;
for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I!=E; I++)
{
SchedGraphEdge* edge= *I;
ModuloSchedGraphNode* succ=(ModuloSchedGraphNode*) (edge->getSink());
if(PHINode::classof(succ->getInst()))continue;
assert(succ->getPropertyComputed()&&"succ node property is not computed!");
int temp=succ->ALAP - edge->getMinDelay()+edge->getIteDiff()*this->MII;
node->ALAP =min(node->ALAP,temp);
}
node->setPropertyComputed(true);
}
}
void ModuloSchedGraph::computeNodeMov(const BasicBlock* bb)
{
unsigned numNodes=bb->size();
for(unsigned i =2;i < numNodes +2 ;i++)
{
ModuloSchedGraphNode* node=getNode(i);
node->mov=node->ALAP-node->ASAP;
assert(node->mov >=0 &&"move freedom for this node is less than zero? ");
}
}
void ModuloSchedGraph::computeNodeDepth(const BasicBlock* bb)
{
unsigned numNodes=bb->size();
for(unsigned i=2;i < numNodes+2;i++)
{
ModuloSchedGraphNode* node=getNode(i);
node->setPropertyComputed(false);
}
for(unsigned i=2;i < numNodes+2; i++)
{
ModuloSchedGraphNode* node=getNode(i);
node->depth=0;
if(i==2 ||node->getNumInEdges() ==0)
{ node->setPropertyComputed(true);continue;}
for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges();I !=E; I++)
{
SchedGraphEdge* edge=*I;
ModuloSchedGraphNode* pred=(ModuloSchedGraphNode*)(edge->getSrc());
assert(pred->getPropertyComputed()&&"pred node property is not computed!");
int temp=pred->depth + edge->getMinDelay();
node->depth= max(node->depth,temp);
}
node->setPropertyComputed(true);
}
}
void ModuloSchedGraph::computeNodeHeight(const BasicBlock* bb)
{
unsigned numNodes=bb->size();
for(unsigned i=numNodes+1;i >= 2;i--)
{
ModuloSchedGraphNode* node=getNode(i);
node->setPropertyComputed(false);
}
for(unsigned i=numNodes+1;i >= 2; i--)
{
ModuloSchedGraphNode* node=getNode(i);
node->height=0;
for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I!=E; I++)
{
SchedGraphEdge* edge= *I;
ModuloSchedGraphNode* succ=(ModuloSchedGraphNode*)(edge->getSink());
if(PHINode::classof(succ->getInst())) continue;
assert(succ->getPropertyComputed()&&"succ node property is not computed!");
node->height=max(node->height, succ->height+edge->getMinDelay());
}
node->setPropertyComputed(true);
}
}
void ModuloSchedGraph::computeNodeProperty(const BasicBlock* bb)
{
//FIXME: now assume the only backward edges come from the edges from other nodes to the phi Node
//so i will ignore all edges to the phi node; after this, there shall be no recurrence.
this->computeNodeASAP(bb);
this->computeNodeALAP(bb);
this->computeNodeMov(bb);
this->computeNodeDepth(bb);
this->computeNodeHeight(bb);
}
//do not consider the backedge in these two functions:
// i.e. don't consider the edge with destination in phi node
std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(std::vector<ModuloSchedGraphNode*> set, unsigned backEdgeSrc, unsigned backEdgeSink)
{
std::vector<ModuloSchedGraphNode*> predS;
for(unsigned i=0; i < set.size(); i++)
{
ModuloSchedGraphNode* node = set[i];
for(ModuloSchedGraphNode::const_iterator I=node->beginInEdges(), E=node->endInEdges(); I !=E; I++)
{
SchedGraphEdge* edge= *I;
if(edge->getSrc()->getNodeId() ==backEdgeSrc && edge->getSink()->getNodeId() == backEdgeSink) continue;
ModuloSchedGraphNode* pred= (ModuloSchedGraphNode*)(edge->getSrc());
//if pred is not in the predSet, push it in vector
bool alreadyInset=false;
for(unsigned j=0; j < predS.size(); j++)
if(predS[j]->getNodeId() == pred->getNodeId() )
{alreadyInset=true;break;}
for(unsigned j=0; j < set.size(); j++)
if(set[j]->getNodeId() == pred->getNodeId() )
{alreadyInset=true; break;}
if(! alreadyInset)
predS.push_back(pred);
}
}
return predS;
}
ModuloSchedGraph::NodeVec ModuloSchedGraph::predSet(NodeVec set)
{
//node number increases from 2
return predSet(set,0, 0);
}
std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(ModuloSchedGraphNode* _node, unsigned backEdgeSrc, unsigned backEdgeSink)
{
std::vector<ModuloSchedGraphNode*> set;
set.push_back(_node);
return predSet(set, backEdgeSrc, backEdgeSink);
}
std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::predSet(ModuloSchedGraphNode* _node)
{
return predSet(_node,0,0);
}
std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(std::vector<ModuloSchedGraphNode*> set,unsigned src, unsigned sink)
{
vector<ModuloSchedGraphNode*> succS;
for(unsigned i=0; i < set.size(); i++)
{
ModuloSchedGraphNode* node = set[i];
for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges(); I !=E; I++)
{
SchedGraphEdge* edge= *I;
if(edge->getSrc()->getNodeId() == src && edge->getSink()->getNodeId() == sink) continue;
ModuloSchedGraphNode* succ= (ModuloSchedGraphNode*)(edge->getSink());
//if pred is not in the predSet, push it in vector
bool alreadyInset=false;
for(unsigned j=0; j < succS.size(); j++)
if(succS[j]->getNodeId() == succ->getNodeId() )
{alreadyInset=true;break;}
for(unsigned j=0; j < set.size(); j++)
if(set[j]->getNodeId() == succ->getNodeId() )
{alreadyInset=true;break;}
if(! alreadyInset)
succS.push_back(succ);
}
}
return succS;
}
ModuloSchedGraph::NodeVec ModuloSchedGraph::succSet(NodeVec set)
{
return succSet(set,0,0);
}
std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(ModuloSchedGraphNode* _node,unsigned src, unsigned sink)
{
std::vector<ModuloSchedGraphNode*> set;
set.push_back(_node);
return succSet(set, src, sink);
}
std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::succSet(ModuloSchedGraphNode* _node)
{
return succSet(_node, 0, 0);
}
SchedGraphEdge* ModuloSchedGraph::getMaxDelayEdge(unsigned srcId, unsigned sinkId)
{
ModuloSchedGraphNode* node =getNode(srcId);
SchedGraphEdge* maxDelayEdge=NULL;
int maxDelay=-1;
for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges();I !=E; I++)
{
SchedGraphEdge* edge= *I;
if(edge->getSink()->getNodeId() == sinkId)
if(edge->getMinDelay() > maxDelay){
maxDelayEdge=edge;
maxDelay=edge->getMinDelay();
}
}
assert(maxDelayEdge != NULL&&"no edge between the srcId and sinkId?");
return maxDelayEdge;
}
void ModuloSchedGraph::dumpCircuits()
{
modSched_os<<"dumping circuits for graph: "<<"\n";
int j=-1;
while(circuits[++j][0] !=0){
int k=-1;
while(circuits[j][++k] !=0)
modSched_os<< circuits[j][k]<<"\t";
modSched_os<<"\n";
}
}
void ModuloSchedGraph::dumpSet(std::vector<ModuloSchedGraphNode*> set)
{
for(unsigned i=0;i < set.size() ; i++)
modSched_os<< set[i]->getNodeId()<<"\t";
modSched_os<<"\n";
}
std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::vectorUnion(std::vector<ModuloSchedGraphNode*> set1,std::vector<ModuloSchedGraphNode*> set2 )
{
std::vector<ModuloSchedGraphNode*> unionVec;
for(unsigned i=0;i<set1.size();i++)
unionVec.push_back(set1[i]);
for(unsigned j=0;j < set2.size();j++){
bool inset=false;
for(unsigned i=0;i < unionVec.size();i++)
if(set2[j]==unionVec[i]) inset=true;
if(!inset)unionVec.push_back(set2[j]);
}
return unionVec;
}
std::vector<ModuloSchedGraphNode*> ModuloSchedGraph::vectorConj(std::vector<ModuloSchedGraphNode*> set1,std::vector<ModuloSchedGraphNode*> set2 )
{
std::vector<ModuloSchedGraphNode*> conjVec;
for(unsigned i=0;i<set1.size();i++)
for(unsigned j=0;j < set2.size();j++)
if(set1[i]==set2[j]) conjVec.push_back(set1[i]);
return conjVec;
}
ModuloSchedGraph::NodeVec ModuloSchedGraph::vectorSub(NodeVec set1, NodeVec set2)
{
NodeVec newVec;
for(NodeVec::iterator I=set1.begin(); I != set1.end(); I++){
bool inset=false;
for(NodeVec::iterator II=set2.begin(); II!=set2.end(); II++)
if( (*I)->getNodeId() ==(*II)->getNodeId())
{inset=true;break;}
if(!inset) newVec.push_back(*I);
}
return newVec;
}
void ModuloSchedGraph::orderNodes(){
oNodes.clear();
std::vector<ModuloSchedGraphNode*> set;
const BasicBlock* bb=bbVec[0];
unsigned numNodes = bb->size();
//first order all the sets
int j=-1;
int totalDelay=-1;
int preDelay=-1;
while(circuits[++j][0] !=0){
int k=-1;
preDelay=totalDelay;
while(circuits[j][++k] !=0){
ModuloSchedGraphNode* node =getNode(circuits[j][k]);
unsigned nextNodeId;
nextNodeId =circuits[j][k+1] !=0? circuits[j][k+1]:circuits[j][0];
SchedGraphEdge* edge = getMaxDelayEdge(circuits[j][k], nextNodeId);
totalDelay += edge->getMinDelay();
}
if(preDelay != -1 && totalDelay > preDelay){
//swap circuits[j][] and cuicuits[j-1][]
unsigned temp[MAXNODE];
for(int k=0;k<MAXNODE;k++){
temp[k]=circuits[j-1][k];
circuits[j-1][k]=circuits[j][k];
circuits[j][k]=temp[k];
}
//restart
j=-1;
}
}
//build the first set
int backEdgeSrc;
int backEdgeSink;
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"building the first set"<<"\n";
int setSeq=-1;
int k=-1;
setSeq++;
while(circuits[setSeq][++k]!=0)
set.push_back(getNode(circuits[setSeq][k]));
if(circuits[setSeq][0]!=0){
backEdgeSrc=circuits[setSeq][k-1];
backEdgeSink=circuits[setSeq][0];
}
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
modSched_os<<"the first set is:";
dumpSet(set);
}
//implement the ordering algorithm
enum OrderSeq{ bottom_up, top_down};
OrderSeq order;
std::vector<ModuloSchedGraphNode*> R;
while(!set.empty())
{
std::vector<ModuloSchedGraphNode*> pset=predSet(oNodes);
std::vector<ModuloSchedGraphNode*> sset=succSet(oNodes);
if(!pset.empty() && !vectorConj(pset,set).empty())
{R=vectorConj(pset,set);order=bottom_up;}
else if( !sset.empty() && !vectorConj(sset,set).empty())
{R=vectorConj(sset,set);order=top_down;}
else
{
int maxASAP=-1;
int position=-1;
for(unsigned i=0;i<set.size();i++){
int temp= set[i]->getASAP();
if(temp>maxASAP ) {
maxASAP=temp;
position=i;
}
}
R.push_back(set[position]);
order=bottom_up;
}
while(!R.empty()){
if(order== top_down){
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"in top_down round"<<"\n";
while(!R.empty()){
int maxHeight=-1;
NodeVec::iterator chosenI;
for(NodeVec::iterator I=R.begin();I != R.end();I++){
int temp=(*I)->height;
if( (temp > maxHeight) || ( temp == maxHeight && (*I)->mov <= (*chosenI)->mov ) ){
if((temp > maxHeight) || ( temp == maxHeight && (*I)->mov < (*chosenI)->mov )){
maxHeight=temp;
chosenI=I;
continue;
}
//possible case: instruction A and B has the same height and mov, but A has dependence to B
//e.g B is the branch instruction in the end, or A is the phi instruction at the beginning
if((*I)->mov == (*chosenI)->mov)
for(ModuloSchedGraphNode::const_iterator oe=(*I)->beginOutEdges(), end=(*I)->endOutEdges();oe !=end; oe++){
if((*oe)->getSink() == (*chosenI)){
maxHeight=temp;
chosenI=I;
continue;
}
}
}
}
ModuloSchedGraphNode* mu= *chosenI;
oNodes.push_back(mu);
R.erase(chosenI);
std::vector<ModuloSchedGraphNode*> succ_mu= succSet(mu,backEdgeSrc,backEdgeSink);
std::vector<ModuloSchedGraphNode*> comm=vectorConj(succ_mu,set);
comm=vectorSub(comm,oNodes);
R = vectorUnion(comm, R);
}
order=bottom_up;
R= vectorConj(predSet(oNodes), set);
} else{
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"in bottom up round"<<"\n";
while(!R.empty()){
int maxDepth=-1;
NodeVec::iterator chosenI;
for(NodeVec::iterator I=R.begin();I != R.end();I++){
int temp=(*I)->depth;
if( (temp > maxDepth) || ( temp == maxDepth && (*I)->mov < (*chosenI)->mov )){
maxDepth=temp;
chosenI=I;
}
}
ModuloSchedGraphNode* mu=*chosenI;
oNodes.push_back(mu);
R.erase(chosenI);
std::vector<ModuloSchedGraphNode*> pred_mu= predSet(mu,backEdgeSrc,backEdgeSink);
std::vector<ModuloSchedGraphNode*> comm=vectorConj(pred_mu,set);
comm=vectorSub(comm,oNodes);
R = vectorUnion(comm, R);
}
order=top_down;
R= vectorConj(succSet(oNodes), set);
}
}
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
modSched_os<<"order finished"<<"\n";
modSched_os<<"dumping the ordered nodes: "<<"\n";
dumpSet(oNodes);
dumpCircuits();
}
//create a new set
//FIXME: the nodes between onodes and this circuit should also be include in this set
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"building the next set"<<"\n";
set.clear();
int k=-1;
setSeq++;
while(circuits[setSeq][++k]!=0)
set.push_back(getNode(circuits[setSeq][k]));
if(circuits[setSeq][0]!=0){
backEdgeSrc=circuits[setSeq][k-1];
backEdgeSink=circuits[setSeq][0];
}
if(set.empty()){
//no circuits any more
//collect all other nodes
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"no circuits any more, collect the rest nodes"<<"\n";
for(unsigned i=2;i<numNodes+2;i++){
bool inset=false;
for(unsigned j=0;j< oNodes.size();j++)
if(oNodes[j]->getNodeId() == i)
{inset=true;break;}
if(!inset)set.push_back(getNode(i));
}
}
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
modSched_os<<"next set is: "<<"\n";
dumpSet(set);
}
}//while(!set.empty())
}
void ModuloSchedGraph::buildGraph (const TargetMachine& target)
{
const BasicBlock* bb=bbVec[0];
assert(bbVec.size() ==1 &&"only handling a single basic block here");
// Use this data structure to note all machine operands that compute
// ordinary LLVM values. These must be computed defs (i.e., instructions).
// Note that there may be multiple machine instructions that define
// each Value.
ValueToDefVecMap valueToDefVecMap;
// Use this data structure to note all memory instructions.
// We use this to add memory dependence edges without a second full walk.
//
// vector<const Instruction*> memVec;
vector<ModuloSchedGraphNode*> memNodeVec;
// Use this data structure to note any uses or definitions of
// machine registers so we can add edges for those later without
// extra passes over the nodes.
// The vector holds an ordered list of references to the machine reg,
// ordered according to control-flow order. This only works for a
// single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>.
//
RegToRefVecMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new ModuloSchedGraphNode(0, NULL, NULL, -1,target);
graphLeaf = new ModuloSchedGraphNode(1, NULL, NULL, -1,target);
//----------------------------------------------------------------
// First add nodes for all the LLVM instructions in the basic block
// because this greatly simplifies identifying which edges to add.
// Do this one VM instruction at a time since the ModuloSchedGraphNode needs that.
// Also, remember the load/store instructions to add memory deps later.
//----------------------------------------------------------------
//FIXME:if there is call instruction, then we shall quit somewhere
// currently we leave call instruction and continue construct graph
//dump only the blocks which are from loops
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
this->dump(bb);
if(!isLoop(bb)){
modSched_os <<" dumping non-loop BB:"<<endl;
dump(bb);
}
if( isLoop(bb))
{
buildNodesforBB(target, bb, memNodeVec, regToRefVecMap, valueToDefVecMap);
this->addDefUseEdges(bb);
this->addCDEdges(bb);
this->addMemEdges(bb);
//this->dump();
int ResII=this->computeResII(bb);
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os << "ResII is " << ResII<<"\n";;
int RecII=this->computeRecII(bb);
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os << "RecII is " <<RecII<<"\n";
this->MII=max(ResII, RecII);
this->computeNodeProperty(bb);
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
this->dumpNodeProperty();
this->orderNodes();
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
this->dump();
//this->instrScheduling();
//this->dumpScheduling();
}
}
ModuloSchedGraphNode* ModuloSchedGraph::getNode (const unsigned nodeId) const
{
for(const_iterator I=begin(), E=end();I !=E;I++)
if((*I).second->getNodeId() ==nodeId)
return (ModuloSchedGraphNode*)(*I).second;
return NULL;
}
int ModuloSchedGraph::computeRecII(const BasicBlock* bb)
{
int RecII=0;
//os<<"begining computerRecII()"<<"\n";
//FIXME: only deal with circuits starting at the first node: the phi node nodeId=2;
//search all elementary circuits in the dependance graph
//assume maximum number of nodes is MAXNODE
unsigned path[MAXNODE];
unsigned stack[MAXNODE][MAXNODE];
for(int j=0;j<MAXNODE;j++)
{path[j]=0;
for(int k=0;k<MAXNODE;k++)
stack[j][k]=0;
}
//in our graph, the node number starts at 2
//number of nodes, because each instruction will result in one node
const unsigned numNodes= bb->size();
int i=0;
path[i]=2;
ModuloSchedGraphNode* initNode=getNode(path[0]);
unsigned initNodeId=initNode->getNodeId();
ModuloSchedGraphNode* currentNode=initNode;
while(currentNode != NULL)
{
unsigned currentNodeId=currentNode->getNodeId();
// modSched_os<<"current node is "<<currentNodeId<<"\n";
ModuloSchedGraphNode* nextNode=NULL;
for(ModuloSchedGraphNode::const_iterator I=currentNode->beginOutEdges(), E=currentNode->endOutEdges(); I !=E; I++)
{
//modSched_os <<" searching in outgoint edges of node "<<currentNodeId<<"\n";
unsigned nodeId=((SchedGraphEdge*) *I)->getSink()->getNodeId();
bool inpath=false,instack=false;
int k;
//modSched_os<<"nodeId is "<<nodeId<<"\n";
k=-1;
while(path[++k] !=0)
if(nodeId == path[k])
{inpath=true;break;}
k=-1;
while(stack[i][++k] !=0 )
if(nodeId == stack[i][k])
{instack =true; break;}
if( nodeId > currentNodeId && !inpath && !instack)
{nextNode=(ModuloSchedGraphNode*) ((SchedGraphEdge*)*I)->getSink();break;}
}
if(nextNode != NULL)
{
//modSched_os<<"find the next Node "<<nextNode->getNodeId()<<"\n";
int j=0;
while( stack[i][j] !=0) j++;
stack[i][j]=nextNode->getNodeId();
i++;
path[i]=nextNode->getNodeId();
currentNode=nextNode;
}
else
{
//modSched_os<<"no expansion any more"<<"\n";
//confirmCircuit();
for(ModuloSchedGraphNode::const_iterator I=currentNode->beginOutEdges(), E=currentNode->endOutEdges() ; I != E; I++)
{
unsigned nodeId=((SchedGraphEdge*)*I)->getSink()->getNodeId();
if(nodeId == initNodeId)
{
int j=-1;
while(circuits[++j][0] !=0);
for(int k=0;k<MAXNODE;k++)circuits[j][k]=path[k];
}
}
//remove this node in the path and clear the corresponding entries in the stack
path[i]=0;
int j=0;
for(j=0;j<MAXNODE;j++)stack[i][j]=0;
i--;
currentNode=getNode(path[i]);
}
if(i==0)
{
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"circuits found are: "<<"\n";
int j=-1;
while(circuits[++j][0] !=0){
int k=-1;
while(circuits[j][++k] !=0)
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<< circuits[j][k]<<"\t";
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"\n";
//for this circuit, compute the sum of all edge delay
int sumDelay=0;
k=-1;
while(circuits[j][++k] !=0)
{
//ModuloSchedGraphNode* node =getNode(circuits[j][k]);
unsigned nextNodeId;
nextNodeId =circuits[j][k+1] !=0? circuits[j][k+1]:circuits[j][0];
/*
for(ModuloSchedGraphNode::const_iterator I=node->beginOutEdges(), E=node->endOutEdges();I !=E; I++)
{
SchedGraphEdge* edge= *I;
if(edge->getSink()->getNodeId() == nextNodeId)
{sumDelay += edge->getMinDelay();break;}
}
*/
sumDelay += getMaxDelayEdge(circuits[j][k],nextNodeId)->getMinDelay();
}
// assume we have distance 1, in this case the sumDelay is RecII
// this is correct for SSA form only
//
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"The total Delay in the circuit is " <<sumDelay<<"\n";
RecII= RecII > sumDelay? RecII: sumDelay;
}
return RecII;
}
}
return -1;
}
void ModuloSchedGraph::addResourceUsage(std::vector<pair<int,int> >& ruVec, int rid){
//modSched_os<<"\nadding a resouce , current resouceUsage vector size is "<<ruVec.size()<<"\n";
bool alreadyExists=false;
for(unsigned i=0;i <ruVec.size() ; i++){
if(rid == ruVec[i].first) {
ruVec[i].second++;
alreadyExists=true;
break;
}
}
if( !alreadyExists) ruVec.push_back(std::make_pair(rid, 1));
//modSched_os<<"current resouceUsage vector size is "<<ruVec.size()<<"\n";
}
void ModuloSchedGraph::dumpResourceUsage(std::vector< pair<int,int> > &ru)
{
MachineSchedInfo& msi = (MachineSchedInfo&)target.getSchedInfo();
std::vector<pair<int,int> > resourceNumVector = msi.resourceNumVector;
modSched_os <<"resourceID\t"<<"resourceNum"<<"\n";
for(unsigned i=0;i<resourceNumVector.size();i++)
modSched_os <<resourceNumVector[i].first<<"\t"<<resourceNumVector[i].second<<"\n";
modSched_os <<" maxNumIssueTotal(issue slot in one cycle) = "<<msi.maxNumIssueTotal<<"\n";
modSched_os<<"resourceID\t resourceUsage\t ResourceNum"<<"\n";
for(unsigned i=0;i<ru.size();i++){
modSched_os<<ru[i].first<<"\t"<<ru[i].second;
const unsigned resNum=msi.getCPUResourceNum(ru[i].first);
modSched_os<<"\t"<<resNum<<"\n";
}
}
int ModuloSchedGraph::computeResII(const BasicBlock* bb)
{
const MachineInstrInfo& mii = target.getInstrInfo();
const MachineSchedInfo& msi = target.getSchedInfo();
int ResII;
std::vector<pair<int,int> > resourceUsage; //pair<int resourceid, int resourceUsageTimes_in_the_whole_block>
//FIXME: number of functional units the target machine can provide should be get from Target
// here I temporary hardcode it
for(BasicBlock::const_iterator I=bb->begin(),E=bb->end(); I !=E; I++)
{
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){
modSched_os<<"machine instruction for llvm instruction( node "<<getGraphNodeForInst(I)->getNodeId()<<")" <<"\n";
modSched_os<<"\t"<<*I;
}
MachineCodeForInstruction& tempMvec= MachineCodeForInstruction::get(I);
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os <<"size =" <<tempMvec.size()<<"\n";
for(unsigned i=0;i< tempMvec.size();i++)
{
MachineInstr* minstr=tempMvec[i];
unsigned minDelay=mii.minLatency(minstr->getOpCode());
InstrRUsage rUsage=msi.getInstrRUsage(minstr->getOpCode());
InstrClassRUsage classRUsage=msi.getClassRUsage(mii.getSchedClass(minstr->getOpCode()));
unsigned totCycles= classRUsage.totCycles;
std::vector<std::vector<resourceId_t> > resources
=rUsage.resourcesByCycle;
assert(totCycles == resources.size());
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os <<"resources Usage for this Instr(totCycles=" << totCycles << ",mindLatency="<<mii.minLatency(minstr->getOpCode())<<"): "<< *minstr <<"\n";
for(unsigned j=0;j< resources.size();j++){
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"cycle "<<j<<": ";
for(unsigned k=0;k< resources[j].size(); k++){
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"\t"<<resources[j][k];
addResourceUsage(resourceUsage,resources[j][k]);
}
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
modSched_os<<"\n";
}
}
}
if(ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess)
this->dumpResourceUsage(resourceUsage);
//compute ResII
ResII=0;
int issueSlots=msi.maxNumIssueTotal;
for(unsigned i=0;i<resourceUsage.size();i++){
int resourceNum=msi.getCPUResourceNum(resourceUsage[i].first);
int useNum=resourceUsage[i].second;
double tempII;
if(resourceNum <= issueSlots)
tempII=ceil(1.0*useNum/resourceNum);
else
tempII=ceil(1.0*useNum/issueSlots);
ResII=max((int)tempII,ResII);
}
return ResII;
}
ModuloSchedGraphSet::ModuloSchedGraphSet(const Function* function, const TargetMachine& target)
:method(function)
{
buildGraphsForMethod(method,target);
}
ModuloSchedGraphSet::~ModuloSchedGraphSet()
{
//delete all the graphs
for(iterator I=begin(), E=end();I !=E; ++I)
delete *I;
}
void ModuloSchedGraphSet::dump() const
{
modSched_os << " ====== ModuloSched graphs for function `" <<method->getName()
<< "' =========\n\n";
for(const_iterator I=begin(); I != end(); ++I)
(*I)->dump();
modSched_os << "\n=========End graphs for funtion` "<<method->getName()
<< "' ==========\n\n";
}
void ModuloSchedGraph::dump(const BasicBlock* bb)
{
modSched_os<<"dumping basic block:";
modSched_os<<(bb->hasName()?bb->getName(): "block")
<<" (" << bb << ")"<<"\n";
}
void ModuloSchedGraph::dump(const BasicBlock* bb, std::ostream& os)
{
os<<"dumping basic block:";
os<<(bb->hasName()?bb->getName(): "block")
<<" (" << bb << ")"<<"\n";
}
void
ModuloSchedGraph::dump() const
{
modSched_os << " ModuloSchedGraph for basic Blocks:";
for(unsigned i=0, N =bbVec.size(); i< N; i++)
{
modSched_os<<(bbVec[i]->hasName()?bbVec[i]->getName(): "block")
<<" (" << bbVec[i] << ")"
<< ((i==N-1)?"":", ");
}
modSched_os <<"\n\n Actual Root nodes : ";
for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
modSched_os << graphRoot->outEdges[i]->getSink()->getNodeId()
<< ((i == N-1)? "" : ", ");
modSched_os << "\n Graph Nodes:\n";
//for (const_iterator I=begin(); I != end(); ++I)
//modSched_os << "\n" << *I->second;
unsigned numNodes=bbVec[0]->size();
for(unsigned i=2;i< numNodes+2;i++)
{
ModuloSchedGraphNode* node= getNode(i);
modSched_os << "\n" << *node;
}
modSched_os << "\n";
}
void
ModuloSchedGraph::dumpNodeProperty() const
{
const BasicBlock* bb=bbVec[0];
unsigned numNodes=bb->size();
for(unsigned i=2;i < numNodes+2;i++)
{
ModuloSchedGraphNode* node=getNode(i);
modSched_os<<"NodeId "<<node->getNodeId()<<"\t";
modSched_os<<"ASAP "<<node->getASAP()<<"\t";
modSched_os<<"ALAP "<<node->getALAP()<<"\t";
modSched_os<<"mov " <<node->getMov() <<"\t";
modSched_os<<"depth "<<node->getDepth()<<"\t";
modSched_os<<"height "<<node->getHeight()<<"\t";
modSched_os<<"\n";
}
}
void ModuloSchedGraphSet::buildGraphsForMethod (const Function *F, const TargetMachine& target)
{
for(Function::const_iterator BI = F->begin(); BI != F->end(); ++BI)
addGraph(new ModuloSchedGraph(BI,target));
}
std::ostream &operator<<(std::ostream &os, const ModuloSchedGraphNode& node)
{
os << std::string(8, ' ')
<< "Node " << node.nodeId << " : "
<< "latency = " << node.latency << "\n" << std::string(12, ' ');
if (node.getInst() == NULL)
os << "(Dummy node)\n";
else
{
os << *node.getInst() << "\n" << std::string(12, ' ');
os << node.inEdges.size() << " Incoming Edges:\n";
for (unsigned i=0, N=node.inEdges.size(); i < N; i++)
os << std::string(16, ' ') << *node.inEdges[i];
os << std::string(12, ' ') << node.outEdges.size()
<< " Outgoing Edges:\n";
for (unsigned i=0, N=node.outEdges.size(); i < N; i++)
os << std::string(16, ' ') << *node.outEdges[i];
}
return os;
}
|