aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp
blob: 29f4a4131e426b6be1f3cb301e0e83007bf5b48a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
//===- ModuloScheduling.cpp - Modulo Software Pipelining ------------------===//
//
// Implements the llvm/CodeGen/ModuloScheduling.h interface
//
//===----------------------------------------------------------------------===//

//#include "llvm/CodeGen/MachineCodeForBasicBlock.h"
//#include "llvm/CodeGen/MachineCodeForMethod.h"
//#include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h" // FIXME: Remove when modularized better
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instruction.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/Target/TargetSchedInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
#include "ModuloSchedGraph.h"
#include "ModuloScheduling.h"
#include <algorithm>
#include <fstream>
#include <iostream>

using std::endl;
using std::cerr;

//************************************************************
// printing Debug information
// ModuloSchedDebugLevel stores the value of debug level
// modsched_os is the ostream to dump debug information, which is written into
// the file 'moduloSchedDebugInfo.output'
// see ModuloSchedulingPass::runOnFunction()
//************************************************************

ModuloSchedDebugLevel_t ModuloSchedDebugLevel;

cl::opt<ModuloSchedDebugLevel_t,true>
SDL_opt("modsched", cl::Hidden, cl::location(ModuloSchedDebugLevel),
	cl::desc("enable modulo scheduling debugging information"),
	cl::values(clEnumValN(ModuloSchedDebugLevel_NoDebugInfo,
			      "none", "disable debug output"),
		   clEnumValN(ModuloSchedDebugLevel_PrintSchedule,
			      "psched", "print original and new schedule"),
		   clEnumValN(ModuloSchedDebugLevel_PrintScheduleProcess,
			      "pschedproc",
			      "print how the new schdule is produced"),
		   0));

// Computes the schedule and inserts epilogue and prologue
//
void 
ModuloScheduling::instrScheduling(){


  if (ModuloScheduling::printScheduleProcess())
    DEBUG_PRINT(std::cerr << "************ computing modulo schedule ***********\n");

  const TargetSchedInfo & msi = target.getSchedInfo();

  //number of issue slots in the in each cycle
  int numIssueSlots = msi.maxNumIssueTotal;

  //compute the schedule
  bool success = false;
  while (!success) {
    //clear memory from the last round and initialize if necessary
    clearInitMem(msi);

    //compute schedule and coreSchedule with the current II
    success = computeSchedule();

    if (!success) {
      II++;
      if (ModuloScheduling::printScheduleProcess())
        DEBUG_PRINT(std::cerr << "increase II  to " << II << "\n");
    }
  }

  //print the final schedule
  dumpFinalSchedule();
  
  //the schedule has been computed
  //create epilogue, prologue and kernel BasicBlock

  //find the successor for this BasicBlock
  BasicBlock *succ_bb = getSuccBB(bb);

  //print the original BasicBlock if necessary
  if (ModuloScheduling::printSchedule()) {
    DEBUG_PRINT(std::cerr << "dumping the orginal block\n");
    graph.dump(bb);
  }
  //construction of prologue, kernel and epilogue
  
  /*
  BasicBlock *kernel = bb->splitBasicBlock(bb->begin());
  BasicBlock *prologue = bb;
  BasicBlock *epilogue = kernel->splitBasicBlock(kernel->begin());
  */

  // Construct prologue
  /*constructPrologue(prologue);*/

  // Construct kernel
  
  /*constructKernel(prologue, kernel, epilogue);*/

  // Construct epilogue

  /*constructEpilogue(epilogue, succ_bb);*/
  
  //print the BasicBlocks if necessary
//    if (0){
//      DEBUG_PRINT(std::cerr << "dumping the prologue block:\n");
//      graph.dump(prologue);
//      DEBUG_PRINT(std::cerr << "dumping the kernel block\n");
//      graph.dump(kernel);
//      DEBUG_PRINT(std::cerr << "dumping the epilogue block\n");
//      graph.dump(epilogue);
//    }

}


// Clear memory from the last round and initialize if necessary
//

void 
ModuloScheduling::clearInitMem(const TargetSchedInfo & msi){

  unsigned numIssueSlots = msi.maxNumIssueTotal;
  // clear nodeScheduled from the last round
  if (ModuloScheduling::printScheduleProcess()) {
    DEBUG_PRINT(std::cerr << "***** new round  with II= " << II << " ***********\n");
    DEBUG_PRINT(std::cerr <<
        " ************clear the vector nodeScheduled*************\n");
  }
  nodeScheduled.clear();

  // clear resourceTable from the last round and reset it 
  resourceTable.clear();
  for (unsigned i = 0; i < II; ++i)
    resourceTable.push_back(msi.resourceNumVector);

  // clear the schdule and coreSchedule from the last round 
  schedule.clear();
  coreSchedule.clear();

  // create a coreSchedule of size II*numIssueSlots
  // each entry is NULL
  while (coreSchedule.size() < II) {
    std::vector < ModuloSchedGraphNode * >*newCycle =
        new std::vector < ModuloSchedGraphNode * >();
    for (unsigned k = 0; k < numIssueSlots; ++k)
      newCycle->push_back(NULL);
    coreSchedule.push_back(*newCycle);
  }
}

// Compute schedule and coreSchedule with the current II
//
bool 
ModuloScheduling::computeSchedule(){


  if (ModuloScheduling::printScheduleProcess())
    DEBUG_PRINT(std::cerr << "start to compute schedule\n");

  // Loop over the ordered nodes
  for (NodeVec::const_iterator I = oNodes.begin(); I != oNodes.end(); ++I) {
    // Try to schedule for node I
    if (ModuloScheduling::printScheduleProcess())
      dumpScheduling();
    ModuloSchedGraphNode *node = *I;

    // Compute whether this node has successor(s)
    bool succ = true;

    // Compute whether this node has predessor(s)
    bool pred = true;

    NodeVec schSucc = graph.vectorConj(nodeScheduled, graph.succSet(node));
    if (schSucc.empty())
      succ = false;
    NodeVec schPred = graph.vectorConj(nodeScheduled, graph.predSet(node));
    if (schPred.empty())
      pred = false;

    //startTime: the earliest time we will try to schedule this node
    //endTime: the latest time we will try to schedule this node
    int startTime, endTime;

    //node's earlyStart: possible earliest time to schedule this node
    //node's lateStart: possible latest time to schedule this node
    node->setEarlyStart(-1);
    node->setLateStart(9999);

    //this node has predessor but no successor
    if (!succ && pred) {
      // This node's earlyStart is it's predessor's schedule time + the edge
      // delay - the iteration difference* II
      for (unsigned i = 0; i < schPred.size(); i++) {
        ModuloSchedGraphNode *predNode = schPred[i];
        SchedGraphEdge *edge =
            graph.getMaxDelayEdge(predNode->getNodeId(),
                                  node->getNodeId());
        int temp =
            predNode->getSchTime() + edge->getMinDelay() -
            edge->getIteDiff() * II;
        node->setEarlyStart(std::max(node->getEarlyStart(), temp));
      }
      startTime = node->getEarlyStart();
      endTime = node->getEarlyStart() + II - 1;
    }
    // This node has a successor but no predecessor
    if (succ && !pred) {
      for (unsigned i = 0; i < schSucc.size(); ++i) {
        ModuloSchedGraphNode *succNode = schSucc[i];
        SchedGraphEdge *edge =
            graph.getMaxDelayEdge(succNode->getNodeId(),
                                  node->getNodeId());
        int temp =
            succNode->getSchTime() - edge->getMinDelay() +
            edge->getIteDiff() * II;
        node->setLateStart(std::min(node->getEarlyStart(), temp));
      }
      startTime = node->getLateStart() - II + 1;
      endTime = node->getLateStart();
    }
    // This node has both successors and predecessors
    if (succ && pred) {
      for (unsigned i = 0; i < schPred.size(); ++i) {
        ModuloSchedGraphNode *predNode = schPred[i];
        SchedGraphEdge *edge =
            graph.getMaxDelayEdge(predNode->getNodeId(),
                                  node->getNodeId());
        int temp =
            predNode->getSchTime() + edge->getMinDelay() -
            edge->getIteDiff() * II;
        node->setEarlyStart(std::max(node->getEarlyStart(), temp));
      }
      for (unsigned i = 0; i < schSucc.size(); ++i) {
        ModuloSchedGraphNode *succNode = schSucc[i];
        SchedGraphEdge *edge =
            graph.getMaxDelayEdge(succNode->getNodeId(),
                                  node->getNodeId());
        int temp =
            succNode->getSchTime() - edge->getMinDelay() +
            edge->getIteDiff() * II;
        node->setLateStart(std::min(node->getEarlyStart(), temp));
      }
      startTime = node->getEarlyStart();
      endTime = std::min(node->getLateStart(),
                         node->getEarlyStart() + ((int) II) - 1);
    }
    //this node has no successor or predessor
    if (!succ && !pred) {
      node->setEarlyStart(node->getASAP());
      startTime = node->getEarlyStart();
      endTime = node->getEarlyStart() + II - 1;
    }
    //try to schedule this node based on the startTime and endTime
    if (ModuloScheduling::printScheduleProcess())
      DEBUG_PRINT(std::cerr << "scheduling the node " << (*I)->getNodeId() << "\n");

    bool success =
        this->ScheduleNode(node, startTime, endTime, nodeScheduled);
    if (!success)
      return false;
  }
  return true;
}


// Get the successor of the BasicBlock
//
BasicBlock *
ModuloScheduling::getSuccBB(BasicBlock *bb){

  BasicBlock *succ_bb;
  for (unsigned i = 0; i < II; ++i)
    for (unsigned j = 0; j < coreSchedule[i].size(); ++j)
      if (coreSchedule[i][j]) {
        const Instruction *ist = coreSchedule[i][j]->getInst();

        //we can get successor from the BranchInst instruction
        //assume we only have one successor (besides itself) here
        if (BranchInst::classof(ist)) {
          BranchInst *bi = (BranchInst *) ist;
          assert(bi->isConditional() &&
                 "the branchInst is not a conditional one");
          assert(bi->getNumSuccessors() == 2
                 && " more than two successors?");
          BasicBlock *bb1 = bi->getSuccessor(0);
          BasicBlock *bb2 = bi->getSuccessor(1);
          assert((bb1 == bb || bb2 == bb) &&
                 " None of its successors is itself?");
          if (bb1 == bb)
            succ_bb = bb2;
          else
            succ_bb = bb1;
          return succ_bb;
        }
      }
  assert(0 && "NO Successor?");
  return NULL;
}


// Get the predecessor of the BasicBlock
//
BasicBlock *
ModuloScheduling::getPredBB(BasicBlock *bb){

  BasicBlock *pred_bb;
  for (unsigned i = 0; i < II; ++i)
    for (unsigned j = 0; j < coreSchedule[i].size(); ++j)
      if (coreSchedule[i][j]) {
        const Instruction *ist = coreSchedule[i][j]->getInst();

        //we can get predecessor from the PHINode instruction
        //assume we only have one predecessor (besides itself) here
        if (PHINode::classof(ist)) {
          PHINode *phi = (PHINode *) ist;
          assert(phi->getNumIncomingValues() == 2 &&
                 " the number of incoming value is not equal to two? ");
          BasicBlock *bb1 = phi->getIncomingBlock(0);
          BasicBlock *bb2 = phi->getIncomingBlock(1);
          assert((bb1 == bb || bb2 == bb) &&
                 " None of its predecessor is itself?");
          if (bb1 == bb)
            pred_bb = bb2;
          else
            pred_bb = bb1;
          return pred_bb;
        }
      }
  assert(0 && " no predecessor?");
  return NULL;
}


// Construct the prologue
//
void 
ModuloScheduling::constructPrologue(BasicBlock *prologue){

  InstListType & prologue_ist = prologue->getInstList();
  vvNodeType & tempSchedule_prologue =
      *(new std::vector<std::vector<ModuloSchedGraphNode*> >(schedule));

  //compute the schedule for prologue
  unsigned round = 0;
  unsigned scheduleSize = schedule.size();
  while (round < scheduleSize / II) {
    round++;
    for (unsigned i = 0; i < scheduleSize; ++i) {
      if (round * II + i >= scheduleSize)
        break;
      for (unsigned j = 0; j < schedule[i].size(); ++j) {
        if (schedule[i][j]) {
          assert(tempSchedule_prologue[round * II + i][j] == NULL &&
                 "table not consitent with core table");
          // move the schedule one iteration ahead and overlap with the original
          tempSchedule_prologue[round * II + i][j] = schedule[i][j];
        }
      }
    }
  }

  // Clear the clone memory in the core schedule instructions
  clearCloneMemory();

  // Fill in the prologue
  for (unsigned i = 0; i < ceil(1.0 * scheduleSize / II - 1) * II; ++i)
    for (unsigned j = 0; j < tempSchedule_prologue[i].size(); ++j)
      if (tempSchedule_prologue[i][j]) {

        //get the instruction
        Instruction *orn =
            (Instruction *) tempSchedule_prologue[i][j]->getInst();

        //made a clone of it
        Instruction *cln = cloneInstSetMemory(orn);

        //insert the instruction
        prologue_ist.insert(prologue_ist.back(), cln);

        //if there is PHINode in the prologue, the incoming value from itself
        //should be removed because it is not a loop any longer
        if (PHINode::classof(cln)) {
          PHINode *phi = (PHINode *) cln;
          phi->removeIncomingValue(phi->getParent());
        }
      }
}


// Construct the kernel BasicBlock
//
void 
ModuloScheduling::constructKernel(BasicBlock *prologue,
                                       BasicBlock *kernel,
                                       BasicBlock *epilogue){

  //*************fill instructions in the kernel****************
  InstListType & kernel_ist = kernel->getInstList();
  BranchInst *brchInst;
  PHINode *phiInst, *phiCln;

  for (unsigned i = 0; i < coreSchedule.size(); ++i)
    for (unsigned j = 0; j < coreSchedule[i].size(); ++j)
      if (coreSchedule[i][j]) {

        // Take care of branch instruction differently with normal instructions
        if (BranchInst::classof(coreSchedule[i][j]->getInst())) {
          brchInst = (BranchInst *) coreSchedule[i][j]->getInst();
          continue;
        }
        // Take care of PHINode instruction differently with normal instructions
        if (PHINode::classof(coreSchedule[i][j]->getInst())) {
          phiInst = (PHINode *) coreSchedule[i][j]->getInst();
          Instruction *cln = cloneInstSetMemory(phiInst);
          kernel_ist.insert(kernel_ist.back(), cln);
          phiCln = (PHINode *) cln;
          continue;
        }
        //for normal instructions: made a clone and insert it in the kernel_ist
        Instruction *cln =
            cloneInstSetMemory((Instruction *) coreSchedule[i][j]->
                               getInst());
        kernel_ist.insert(kernel_ist.back(), cln);
      }
  // The two incoming BasicBlock for PHINode is the prologue and the kernel
  // (itself)
  phiCln->setIncomingBlock(0, prologue);
  phiCln->setIncomingBlock(1, kernel);

  // The incoming value for the kernel (itself) is the new value which is
  // computed in the kernel
  Instruction *originalVal = (Instruction *) phiInst->getIncomingValue(1);
  phiCln->setIncomingValue(1, originalVal->getClone());

  // Make a clone of the branch instruction and insert it in the end
  BranchInst *cln = (BranchInst *) cloneInstSetMemory(brchInst);
  kernel_ist.insert(kernel_ist.back(), cln);

  // delete the unconditional branch instruction, which is generated when
  // splitting the basicBlock
  kernel_ist.erase(--kernel_ist.end());

  // set the first successor to itself
  ((BranchInst *) cln)->setSuccessor(0, kernel);
  // set the second successor to eiplogue
  ((BranchInst *) cln)->setSuccessor(1, epilogue);

  //*****change the condition*******

  //get the condition instruction
  Instruction *cond = (Instruction *) cln->getCondition();

  //get the condition's second operand, it should be a constant
  Value *operand = cond->getOperand(1);
  assert(ConstantSInt::classof(operand));

  //change the constant in the condtion instruction
  ConstantSInt *iteTimes =
      ConstantSInt::get(operand->getType(),
                        ((ConstantSInt *) operand)->getValue() - II + 1);
  cond->setOperand(1, iteTimes);

}


// Construct the epilogue 
//
void 
ModuloScheduling::constructEpilogue(BasicBlock *epilogue,
                                         BasicBlock *succ_bb){

  //compute the schedule for epilogue
  vvNodeType &tempSchedule_epilogue =
      *(new std::vector<std::vector<ModuloSchedGraphNode*> >(schedule));
  unsigned scheduleSize = schedule.size();
  int round = 0;
  while (round < ceil(1.0 * scheduleSize / II) - 1) {
    round++;
    for (unsigned i = 0; i < scheduleSize; i++) {
      if (i + round * II >= scheduleSize)
        break;
      for (unsigned j = 0; j < schedule[i].size(); j++)
        if (schedule[i + round * II][j]) {
          assert(tempSchedule_epilogue[i][j] == NULL
                 && "table not consitant with core table");

          //move the schdule one iteration behind and overlap
          tempSchedule_epilogue[i][j] = schedule[i + round * II][j];
        }
    }
  }

  //fill in the epilogue
  InstListType & epilogue_ist = epilogue->getInstList();
  for (unsigned i = II; i < scheduleSize; i++)
    for (unsigned j = 0; j < tempSchedule_epilogue[i].size(); j++)
      if (tempSchedule_epilogue[i][j]) {
        Instruction *inst =
            (Instruction *) tempSchedule_epilogue[i][j]->getInst();

        //BranchInst and PHINode should be treated differently
        //BranchInst:unecessary, simly omitted
        //PHINode: omitted
        if (!BranchInst::classof(inst) && !PHINode::classof(inst)) {
          //make a clone instruction and insert it into the epilogue
          Instruction *cln = cloneInstSetMemory(inst);
          epilogue_ist.push_front(cln);
        }
      }

  //*************delete the original instructions****************//
  //to delete the original instructions, we have to make sure their use is zero

  //update original core instruction's uses, using its clone instread
  for (unsigned i = 0; i < II; i++)
    for (unsigned j = 0; j < coreSchedule[i].size(); j++) {
      if (coreSchedule[i][j])
        updateUseWithClone((Instruction *) coreSchedule[i][j]->getInst());
    }

  //erase these instructions
  for (unsigned i = 0; i < II; i++)
    for (unsigned j = 0; j < coreSchedule[i].size(); j++)
      if (coreSchedule[i][j]) {
        Instruction *ist = (Instruction *) coreSchedule[i][j]->getInst();
        ist->getParent()->getInstList().erase(ist);
      }



  //finally, insert an unconditional branch instruction at the end
  epilogue_ist.push_back(new BranchInst(succ_bb));

}


//------------------------------------------------------------------------------
//this function replace the value(instruction) ist in other instructions with
//its latest clone i.e. after this function is called, the ist is not used
//anywhere and it can be erased.
//------------------------------------------------------------------------------
void 
ModuloScheduling::updateUseWithClone(Instruction * ist){


  while (ist->use_size() > 0) {
    bool destroyed = false;

    //other instruction is using this value ist
    assert(Instruction::classof(*ist->use_begin()));
    Instruction *inst = (Instruction *) (*ist->use_begin());

    for (unsigned i = 0; i < inst->getNumOperands(); i++)
      if (inst->getOperand(i) == ist && ist->getClone()) {
        // if the instruction is TmpInstruction, simly delete it because it has
        // no parent and it does not belongs to any BasicBlock
        if (TmpInstruction::classof(inst)) {
          delete inst;
          destroyed = true;
          break;
        }

        //otherwise, set the instruction's operand to the value's clone
        inst->setOperand(i, ist->getClone());

        //the use from the original value ist is destroyed
        destroyed = true;
        break;
      }
    if (!destroyed) {
      //if the use can not be destroyed , something is wrong
      inst->dump();
      assert(0 && "this use can not be destroyed");
    }
  }

}


//********************************************************
//this function clear all clone mememoy
//i.e. set all instruction's clone memory to NULL
//*****************************************************
void 
ModuloScheduling::clearCloneMemory(){

  for (unsigned i = 0; i < coreSchedule.size(); i++)
    for (unsigned j = 0; j < coreSchedule[i].size(); j++)
      if (coreSchedule[i][j])
        ((Instruction *) coreSchedule[i][j]->getInst())->clearClone();

}


//******************************************************************************
// this function make a clone of the instruction orn the cloned instruction will
// use the orn's operands' latest clone as its operands it is done this way
// because LLVM is in SSA form and we should use the correct value
//this fuction also update the instruction orn's latest clone memory
//******************************************************************************
Instruction *
ModuloScheduling::cloneInstSetMemory(Instruction * orn){

  // make a clone instruction
  Instruction *cln = orn->clone();

  // update the operands
  for (unsigned k = 0; k < orn->getNumOperands(); k++) {
    const Value *op = orn->getOperand(k);
    if (Instruction::classof(op) && ((Instruction *) op)->getClone()) {
      Instruction *op_inst = (Instruction *) op;
      cln->setOperand(k, op_inst->getClone());
    }
  }

  // update clone memory
  orn->setClone(cln);
  return cln;
}



bool 
ModuloScheduling::ScheduleNode(ModuloSchedGraphNode * node,
                                    unsigned start, unsigned end,
                                    NodeVec & nodeScheduled){

  const TargetSchedInfo & msi = target.getSchedInfo();
  unsigned int numIssueSlots = msi.maxNumIssueTotal;

  if (ModuloScheduling::printScheduleProcess())
    DEBUG_PRINT(std::cerr << "startTime= " << start << " endTime= " << end << "\n");
  bool isScheduled = false;
  for (unsigned i = start; i <= end; i++) {
    if (ModuloScheduling::printScheduleProcess())
      DEBUG_PRINT(std::cerr << " now try cycle " << i << ":" << "\n");
    for (unsigned j = 0; j < numIssueSlots; j++) {
      unsigned int core_i = i % II;
      unsigned int core_j = j;
      if (ModuloScheduling::printScheduleProcess())
        DEBUG_PRINT(std::cerr << "\t Trying slot " << j << "...........");
      //check the resouce table, make sure there is no resource conflicts
      const Instruction *instr = node->getInst();
      MachineCodeForInstruction & tempMvec =
          MachineCodeForInstruction::get(instr);
      bool resourceConflict = false;
      const TargetInstrInfo & mii = msi.getInstrInfo();

      if (coreSchedule.size() < core_i + 1
          || !coreSchedule[core_i][core_j]) {
        //this->dumpResourceUsageTable();
        int latency = 0;
        for (unsigned k = 0; k < tempMvec.size(); k++) {
          MachineInstr *minstr = tempMvec[k];
          InstrRUsage rUsage = msi.getInstrRUsage(minstr->getOpCode());
          std::vector < std::vector < resourceId_t > >resources
              = rUsage.resourcesByCycle;
          updateResourceTable(resources, i + latency);
          latency += std::max(mii.minLatency(minstr->getOpCode()), 1);
        }

        //this->dumpResourceUsageTable();

        latency = 0;
        if (resourceTableNegative()) {

          //undo-update the resource table
          for (unsigned k = 0; k < tempMvec.size(); k++) {
            MachineInstr *minstr = tempMvec[k];
            InstrRUsage rUsage = msi.getInstrRUsage(minstr->getOpCode());
            std::vector < std::vector < resourceId_t > >resources
                = rUsage.resourcesByCycle;
            undoUpdateResourceTable(resources, i + latency);
            latency += std::max(mii.minLatency(minstr->getOpCode()), 1);
          }
          resourceConflict = true;
        }
      }
      if (!resourceConflict && !coreSchedule[core_i][core_j]) {
        if (ModuloScheduling::printScheduleProcess()) {
          DEBUG_PRINT(std::cerr << " OK!" << "\n");
          DEBUG_PRINT(std::cerr << "Node " << node->getNodeId() << " scheduled.\n");
        }
        //schedule[i][j]=node;
        while (schedule.size() <= i) {
          std::vector < ModuloSchedGraphNode * >*newCycle =
              new std::vector < ModuloSchedGraphNode * >();
          for (unsigned k = 0; k < numIssueSlots; k++)
            newCycle->push_back(NULL);
          schedule.push_back(*newCycle);
        }
        std::vector<ModuloSchedGraphNode*>::iterator startIterator;
        startIterator = schedule[i].begin();
        schedule[i].insert(startIterator + j, node);
        startIterator = schedule[i].begin();
        schedule[i].erase(startIterator + j + 1);

        //update coreSchedule
        //coreSchedule[core_i][core_j]=node;
        while (coreSchedule.size() <= core_i) {
          std::vector<ModuloSchedGraphNode*> *newCycle =
              new std::vector<ModuloSchedGraphNode*>();
          for (unsigned k = 0; k < numIssueSlots; k++)
            newCycle->push_back(NULL);
          coreSchedule.push_back(*newCycle);
        }

        startIterator = coreSchedule[core_i].begin();
        coreSchedule[core_i].insert(startIterator + core_j, node);
        startIterator = coreSchedule[core_i].begin();
        coreSchedule[core_i].erase(startIterator + core_j + 1);

        node->setSchTime(i);
        isScheduled = true;
        nodeScheduled.push_back(node);

        break;
      } else if (coreSchedule[core_i][core_j]) {
        if (ModuloScheduling::printScheduleProcess())
          DEBUG_PRINT(std::cerr << " Slot not available\n");
      } else {
        if (ModuloScheduling::printScheduleProcess())
          DEBUG_PRINT(std::cerr << " Resource conflicts\n");
      }
    }
    if (isScheduled)
      break;
  }
  //assert(nodeScheduled &&"this node can not be scheduled?");
  return isScheduled;
}


void 
ModuloScheduling::updateResourceTable(Resources useResources,
                                           int startCycle){

  for (unsigned i = 0; i < useResources.size(); i++) {
    int absCycle = startCycle + i;
    int coreCycle = absCycle % II;
    std::vector<std::pair<int,int> > &resourceRemained =
        resourceTable[coreCycle];
    std::vector < unsigned int >&resourceUsed = useResources[i];
    for (unsigned j = 0; j < resourceUsed.size(); j++) {
      for (unsigned k = 0; k < resourceRemained.size(); k++)
        if ((int) resourceUsed[j] == resourceRemained[k].first) {
          resourceRemained[k].second--;
        }
    }
  }
}

void 
ModuloScheduling::undoUpdateResourceTable(Resources useResources,
                                               int startCycle){

  for (unsigned i = 0; i < useResources.size(); i++) {
    int absCycle = startCycle + i;
    int coreCycle = absCycle % II;
    std::vector<std::pair<int,int> > &resourceRemained =
        resourceTable[coreCycle];
    std::vector < unsigned int >&resourceUsed = useResources[i];
    for (unsigned j = 0; j < resourceUsed.size(); j++) {
      for (unsigned k = 0; k < resourceRemained.size(); k++)
        if ((int) resourceUsed[j] == resourceRemained[k].first) {
          resourceRemained[k].second++;
        }
    }
  }
}


//-----------------------------------------------------------------------
// Function: resourceTableNegative
// return value:
//   return false if any element in the resouceTable is negative
//   otherwise return true
// Purpose:

//   this function is used to determine if an instruction is eligible for
//   schedule at certain cycle
//-----------------------------------------------------------------------


bool 
ModuloScheduling::resourceTableNegative(){

  assert(resourceTable.size() == (unsigned) II
         && "resouceTable size must be equal to II");
  bool isNegative = false;
  for (unsigned i = 0; i < resourceTable.size(); i++)
    for (unsigned j = 0; j < resourceTable[i].size(); j++) {
      if (resourceTable[i][j].second < 0) {
        isNegative = true;
        break;
      }
    }
  return isNegative;
}


//----------------------------------------------------------------------
// Function: dumpResouceUsageTable
// Purpose:
//   print out ResouceTable for debug
//
//------------------------------------------------------------------------

void 
ModuloScheduling::dumpResourceUsageTable(){

  DEBUG_PRINT(std::cerr << "dumping resource usage table\n");
  for (unsigned i = 0; i < resourceTable.size(); i++) {
    for (unsigned j = 0; j < resourceTable[i].size(); j++)
      DEBUG_PRINT(std::cerr << resourceTable[i][j].first 
            << ":" << resourceTable[i][j].second << " ");
    DEBUG_PRINT(std::cerr << "\n");
  }

}

//----------------------------------------------------------------------
//Function: dumpSchedule
//Purpose:
//       print out thisSchedule for debug
//
//-----------------------------------------------------------------------
void 
ModuloScheduling::dumpSchedule(vvNodeType thisSchedule){

  const TargetSchedInfo & msi = target.getSchedInfo();
  unsigned numIssueSlots = msi.maxNumIssueTotal;
  for (unsigned i = 0; i < numIssueSlots; i++)
    DEBUG_PRINT(std::cerr << "\t#");
  DEBUG_PRINT(std::cerr << "\n");
  for (unsigned i = 0; i < thisSchedule.size(); i++) {
    DEBUG_PRINT(std::cerr << "cycle" << i << ": ");
    for (unsigned j = 0; j < thisSchedule[i].size(); j++)
      if (thisSchedule[i][j] != NULL)
        DEBUG_PRINT(std::cerr << thisSchedule[i][j]->getNodeId() << "\t");
      else
        DEBUG_PRINT(std::cerr << "\t");
    DEBUG_PRINT(std::cerr << "\n");
  }
}


//----------------------------------------------------
//Function: dumpScheduling
//Purpose:
//   print out the schedule and coreSchedule for debug      
//
//-------------------------------------------------------

void 
ModuloScheduling::dumpScheduling(){

  DEBUG_PRINT(std::cerr << "dump schedule:" << "\n");
  const TargetSchedInfo & msi = target.getSchedInfo();
  unsigned numIssueSlots = msi.maxNumIssueTotal;
  for (unsigned i = 0; i < numIssueSlots; i++)
    DEBUG_PRINT(std::cerr << "\t#");
  DEBUG_PRINT(std::cerr << "\n");
  for (unsigned i = 0; i < schedule.size(); i++) {
    DEBUG_PRINT(std::cerr << "cycle" << i << ": ");
    for (unsigned j = 0; j < schedule[i].size(); j++)
      if (schedule[i][j] != NULL)
        DEBUG_PRINT(std::cerr << schedule[i][j]->getNodeId() << "\t");
      else
        DEBUG_PRINT(std::cerr << "\t");
    DEBUG_PRINT(std::cerr << "\n");
  }

  DEBUG_PRINT(std::cerr << "dump coreSchedule:" << "\n");
  for (unsigned i = 0; i < numIssueSlots; i++)
    DEBUG_PRINT(std::cerr << "\t#");
  DEBUG_PRINT(std::cerr << "\n");
  for (unsigned i = 0; i < coreSchedule.size(); i++) {
    DEBUG_PRINT(std::cerr << "cycle" << i << ": ");
    for (unsigned j = 0; j < coreSchedule[i].size(); j++)
      if (coreSchedule[i][j] != NULL)
        DEBUG_PRINT(std::cerr << coreSchedule[i][j]->getNodeId() << "\t");
      else
        DEBUG_PRINT(std::cerr << "\t");
    DEBUG_PRINT(std::cerr << "\n");
  }
}

/*
  print out final schedule
*/

void 
ModuloScheduling::dumpFinalSchedule(){

  cerr << "dump schedule:" << endl;
  const TargetSchedInfo & msi = target.getSchedInfo();
  unsigned numIssueSlots = msi.maxNumIssueTotal;

  for (unsigned i = 0; i < numIssueSlots; i++)
    cerr << "\t#";
  cerr << endl;

  for (unsigned i = 0; i < schedule.size(); i++) {
    cerr << "cycle" << i << ": ";
    
    for (unsigned j = 0; j < schedule[i].size(); j++)
      if (schedule[i][j] != NULL)
        cerr << schedule[i][j]->getNodeId() << "\t";
      else
        cerr << "\t";
    cerr << endl;
  }
  
  cerr << "dump coreSchedule:" << endl;
  for (unsigned i = 0; i < numIssueSlots; i++)
    cerr << "\t#";
  cerr << endl;
  
  for (unsigned i = 0; i < coreSchedule.size(); i++) {
    cerr << "cycle" << i << ": ";
    for (unsigned j = 0; j < coreSchedule[i].size(); j++)
      if (coreSchedule[i][j] != NULL)
        cerr << coreSchedule[i][j]->getNodeId() << "\t";
      else
        cerr << "\t";
    cerr << endl;
  }
}

//---------------------------------------------------------------------------
// Function: ModuloSchedulingPass
// 
// Purpose:
//   Entry point for Modulo Scheduling
//   Schedules LLVM instruction
//   
//---------------------------------------------------------------------------

namespace {
  class ModuloSchedulingPass:public FunctionPass {
    const TargetMachine &target;

  public:
    ModuloSchedulingPass(const TargetMachine &T):target(T) {}

    const char *getPassName() const {
      return "Modulo Scheduling";
    }

    // getAnalysisUsage - We use LiveVarInfo...
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      //AU.addRequired(FunctionLiveVarInfo::ID);
    }
    
    bool runOnFunction(Function & F);
  };
}                               // end anonymous namespace


bool
ModuloSchedulingPass::runOnFunction(Function &F){
  
  ModuloSchedGraphSet *graphSet = new ModuloSchedGraphSet(&F, target);

  ModuloSchedulingSet ModuloSchedulingSet(*graphSet);
  
  DEBUG_PRINT(cerr<<"runOnFunction  in ModuloSchedulingPass returns\n"<<endl);
  return false;
}


Pass *
createModuloSchedulingPass(const TargetMachine & tgt){
  DEBUG_PRINT(cerr<<"creating modulo scheduling "<<endl);
  return new ModuloSchedulingPass(tgt);
}