aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/OptimizePHIs.cpp
blob: d27cc42319c3faad3e709e89b23af963accb82b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
//===-- OptimizePHIs.cpp - Optimize machine instruction PHIs --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes machine instruction PHIs to take advantage of
// opportunities created during DAG legalization.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "phi-opt"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Function.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumPHICycles, "Number of PHI cycles replaced");
STATISTIC(NumDeadPHICycles, "Number of dead PHI cycles");

namespace {
  class OptimizePHIs : public MachineFunctionPass {
    MachineRegisterInfo *MRI;
    const TargetInstrInfo *TII;

  public:
    static char ID; // Pass identification
    OptimizePHIs() : MachineFunctionPass(&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    typedef SmallPtrSet<MachineInstr*, 16> InstrSet;
    typedef SmallPtrSetIterator<MachineInstr*> InstrSetIterator;

    bool IsSingleValuePHICycle(MachineInstr *MI, unsigned &SingleValReg,
                               InstrSet &PHIsInCycle);
    bool IsDeadPHICycle(MachineInstr *MI, InstrSet &PHIsInCycle);
    bool OptimizeBB(MachineBasicBlock &MBB);
  };
}

char OptimizePHIs::ID = 0;
INITIALIZE_PASS(OptimizePHIs, "opt-phis",
                "Optimize machine instruction PHIs", false, false);

FunctionPass *llvm::createOptimizePHIsPass() { return new OptimizePHIs(); }

bool OptimizePHIs::runOnMachineFunction(MachineFunction &Fn) {
  MRI = &Fn.getRegInfo();
  TII = Fn.getTarget().getInstrInfo();

  // Find dead PHI cycles and PHI cycles that can be replaced by a single
  // value.  InstCombine does these optimizations, but DAG legalization may
  // introduce new opportunities, e.g., when i64 values are split up for
  // 32-bit targets.
  bool Changed = false;
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
    Changed |= OptimizeBB(*I);

  return Changed;
}

/// IsSingleValuePHICycle - Check if MI is a PHI where all the source operands
/// are copies of SingleValReg, possibly via copies through other PHIs.  If
/// SingleValReg is zero on entry, it is set to the register with the single
/// non-copy value.  PHIsInCycle is a set used to keep track of the PHIs that
/// have been scanned.
bool OptimizePHIs::IsSingleValuePHICycle(MachineInstr *MI,
                                         unsigned &SingleValReg,
                                         InstrSet &PHIsInCycle) {
  assert(MI->isPHI() && "IsSingleValuePHICycle expects a PHI instruction");
  unsigned DstReg = MI->getOperand(0).getReg();

  // See if we already saw this register.
  if (!PHIsInCycle.insert(MI))
    return true;

  // Don't scan crazily complex things.
  if (PHIsInCycle.size() == 16)
    return false;

  // Scan the PHI operands.
  for (unsigned i = 1; i != MI->getNumOperands(); i += 2) {
    unsigned SrcReg = MI->getOperand(i).getReg();
    if (SrcReg == DstReg)
      continue;
    MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);

    // Skip over register-to-register moves.
    if (SrcMI && SrcMI->isCopy() &&
        !SrcMI->getOperand(0).getSubReg() &&
        !SrcMI->getOperand(1).getSubReg() &&
        TargetRegisterInfo::isVirtualRegister(SrcMI->getOperand(1).getReg()))
      SrcMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
    if (!SrcMI)
      return false;

    if (SrcMI->isPHI()) {
      if (!IsSingleValuePHICycle(SrcMI, SingleValReg, PHIsInCycle))
        return false;
    } else {
      // Fail if there is more than one non-phi/non-move register.
      if (SingleValReg != 0)
        return false;
      SingleValReg = SrcReg;
    }
  }
  return true;
}

/// IsDeadPHICycle - Check if the register defined by a PHI is only used by
/// other PHIs in a cycle.
bool OptimizePHIs::IsDeadPHICycle(MachineInstr *MI, InstrSet &PHIsInCycle) {
  assert(MI->isPHI() && "IsDeadPHICycle expects a PHI instruction");
  unsigned DstReg = MI->getOperand(0).getReg();
  assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
         "PHI destination is not a virtual register");

  // See if we already saw this register.
  if (!PHIsInCycle.insert(MI))
    return true;

  // Don't scan crazily complex things.
  if (PHIsInCycle.size() == 16)
    return false;

  for (MachineRegisterInfo::use_iterator I = MRI->use_begin(DstReg),
         E = MRI->use_end(); I != E; ++I) {
    MachineInstr *UseMI = &*I;
    if (!UseMI->isPHI() || !IsDeadPHICycle(UseMI, PHIsInCycle))
      return false;
  }

  return true;
}

/// OptimizeBB - Remove dead PHI cycles and PHI cycles that can be replaced by
/// a single value.
bool OptimizePHIs::OptimizeBB(MachineBasicBlock &MBB) {
  bool Changed = false;
  for (MachineBasicBlock::iterator
         MII = MBB.begin(), E = MBB.end(); MII != E; ) {
    MachineInstr *MI = &*MII++;
    if (!MI->isPHI())
      break;

    // Check for single-value PHI cycles.
    unsigned SingleValReg = 0;
    InstrSet PHIsInCycle;
    if (IsSingleValuePHICycle(MI, SingleValReg, PHIsInCycle) &&
        SingleValReg != 0) {
      MRI->replaceRegWith(MI->getOperand(0).getReg(), SingleValReg);
      MI->eraseFromParent();
      ++NumPHICycles;
      Changed = true;
      continue;
    }

    // Check for dead PHI cycles.
    PHIsInCycle.clear();
    if (IsDeadPHICycle(MI, PHIsInCycle)) {
      for (InstrSetIterator PI = PHIsInCycle.begin(), PE = PHIsInCycle.end();
           PI != PE; ++PI) {
        MachineInstr *PhiMI = *PI;
        if (&*MII == PhiMI)
          ++MII;
        PhiMI->eraseFromParent();
      }
      ++NumDeadPHICycles;
      Changed = true;
    }
  }
  return Changed;
}