1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
//===-- PBQPMath.h - PBQP Vector and Matrix classes ------------*- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_PBQPMATH_H
#define LLVM_CODEGEN_PBQP_PBQPMATH_H
#include <cassert>
#include <algorithm>
#include <functional>
namespace PBQP {
typedef double PBQPNum;
/// \brief PBQP Vector class.
class Vector {
public:
/// \brief Construct a PBQP vector of the given size.
explicit Vector(unsigned length) :
length(length), data(new PBQPNum[length]) {
}
/// \brief Construct a PBQP vector with initializer.
Vector(unsigned length, PBQPNum initVal) :
length(length), data(new PBQPNum[length]) {
std::fill(data, data + length, initVal);
}
/// \brief Copy construct a PBQP vector.
Vector(const Vector &v) :
length(v.length), data(new PBQPNum[length]) {
std::copy(v.data, v.data + length, data);
}
/// \brief Destroy this vector, return its memory.
~Vector() { delete[] data; }
/// \brief Assignment operator.
Vector& operator=(const Vector &v) {
delete[] data;
length = v.length;
data = new PBQPNum[length];
std::copy(v.data, v.data + length, data);
return *this;
}
/// \brief Return the length of the vector
unsigned getLength() const throw () {
return length;
}
/// \brief Element access.
PBQPNum& operator[](unsigned index) {
assert(index < length && "Vector element access out of bounds.");
return data[index];
}
/// \brief Const element access.
const PBQPNum& operator[](unsigned index) const {
assert(index < length && "Vector element access out of bounds.");
return data[index];
}
/// \brief Add another vector to this one.
Vector& operator+=(const Vector &v) {
assert(length == v.length && "Vector length mismatch.");
std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
return *this;
}
/// \brief Subtract another vector from this one.
Vector& operator-=(const Vector &v) {
assert(length == v.length && "Vector length mismatch.");
std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
return *this;
}
/// \brief Returns the index of the minimum value in this vector
unsigned minIndex() const {
return std::min_element(data, data + length) - data;
}
private:
unsigned length;
PBQPNum *data;
};
/// \brief Output a textual representation of the given vector on the given
/// output stream.
template <typename OStream>
OStream& operator<<(OStream &os, const Vector &v) {
assert((v.getLength() != 0) && "Zero-length vector badness.");
os << "[ " << v[0];
for (unsigned i = 1; i < v.getLength(); ++i) {
os << ", " << v[i];
}
os << " ]";
return os;
}
/// \brief PBQP Matrix class
class Matrix {
public:
/// \brief Construct a PBQP Matrix with the given dimensions.
Matrix(unsigned rows, unsigned cols) :
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
}
/// \brief Construct a PBQP Matrix with the given dimensions and initial
/// value.
Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
std::fill(data, data + (rows * cols), initVal);
}
/// \brief Copy construct a PBQP matrix.
Matrix(const Matrix &m) :
rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
std::copy(m.data, m.data + (rows * cols), data);
}
/// \brief Destroy this matrix, return its memory.
~Matrix() { delete[] data; }
/// \brief Assignment operator.
Matrix& operator=(const Matrix &m) {
delete[] data;
rows = m.rows; cols = m.cols;
data = new PBQPNum[rows * cols];
std::copy(m.data, m.data + (rows * cols), data);
return *this;
}
/// \brief Return the number of rows in this matrix.
unsigned getRows() const throw () { return rows; }
/// \brief Return the number of cols in this matrix.
unsigned getCols() const throw () { return cols; }
/// \brief Matrix element access.
PBQPNum* operator[](unsigned r) {
assert(r < rows && "Row out of bounds.");
return data + (r * cols);
}
/// \brief Matrix element access.
const PBQPNum* operator[](unsigned r) const {
assert(r < rows && "Row out of bounds.");
return data + (r * cols);
}
/// \brief Returns the given row as a vector.
Vector getRowAsVector(unsigned r) const {
Vector v(cols);
for (unsigned c = 0; c < cols; ++c)
v[c] = (*this)[r][c];
return v;
}
/// \brief Returns the given column as a vector.
Vector getColAsVector(unsigned c) const {
Vector v(rows);
for (unsigned r = 0; r < rows; ++r)
v[r] = (*this)[r][c];
return v;
}
/// \brief Reset the matrix to the given value.
Matrix& reset(PBQPNum val = 0) {
std::fill(data, data + (rows * cols), val);
return *this;
}
/// \brief Set a single row of this matrix to the given value.
Matrix& setRow(unsigned r, PBQPNum val) {
assert(r < rows && "Row out of bounds.");
std::fill(data + (r * cols), data + ((r + 1) * cols), val);
return *this;
}
/// \brief Set a single column of this matrix to the given value.
Matrix& setCol(unsigned c, PBQPNum val) {
assert(c < cols && "Column out of bounds.");
for (unsigned r = 0; r < rows; ++r)
(*this)[r][c] = val;
return *this;
}
/// \brief Matrix transpose.
Matrix transpose() const {
Matrix m(cols, rows);
for (unsigned r = 0; r < rows; ++r)
for (unsigned c = 0; c < cols; ++c)
m[c][r] = (*this)[r][c];
return m;
}
/// \brief Returns the diagonal of the matrix as a vector.
///
/// Matrix must be square.
Vector diagonalize() const {
assert(rows == cols && "Attempt to diagonalize non-square matrix.");
Vector v(rows);
for (unsigned r = 0; r < rows; ++r)
v[r] = (*this)[r][r];
return v;
}
/// \brief Add the given matrix to this one.
Matrix& operator+=(const Matrix &m) {
assert(rows == m.rows && cols == m.cols &&
"Matrix dimensions mismatch.");
std::transform(data, data + (rows * cols), m.data, data,
std::plus<PBQPNum>());
return *this;
}
/// \brief Returns the minimum of the given row
PBQPNum getRowMin(unsigned r) const {
assert(r < rows && "Row out of bounds");
return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
}
/// \brief Returns the minimum of the given column
PBQPNum getColMin(unsigned c) const {
PBQPNum minElem = (*this)[0][c];
for (unsigned r = 1; r < rows; ++r)
if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
return minElem;
}
/// \brief Subtracts the given scalar from the elements of the given row.
Matrix& subFromRow(unsigned r, PBQPNum val) {
assert(r < rows && "Row out of bounds");
std::transform(data + (r * cols), data + ((r + 1) * cols),
data + (r * cols),
std::bind2nd(std::minus<PBQPNum>(), val));
return *this;
}
/// \brief Subtracts the given scalar from the elements of the given column.
Matrix& subFromCol(unsigned c, PBQPNum val) {
for (unsigned r = 0; r < rows; ++r)
(*this)[r][c] -= val;
return *this;
}
/// \brief Returns true if this is a zero matrix.
bool isZero() const {
return find_if(data, data + (rows * cols),
std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
data + (rows * cols);
}
private:
unsigned rows, cols;
PBQPNum *data;
};
/// \brief Output a textual representation of the given matrix on the given
/// output stream.
template <typename OStream>
OStream& operator<<(OStream &os, const Matrix &m) {
assert((m.getRows() != 0) && "Zero-row matrix badness.");
for (unsigned i = 0; i < m.getRows(); ++i) {
os << m.getRowAsVector(i);
}
return os;
}
}
#endif // LLVM_CODEGEN_PBQP_PBQPMATH_HPP
|