1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
|
//===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Perform peephole optimizations on the machine code:
//
// - Optimize Extensions
//
// Optimization of sign / zero extension instructions. It may be extended to
// handle other instructions with similar properties.
//
// On some targets, some instructions, e.g. X86 sign / zero extension, may
// leave the source value in the lower part of the result. This optimization
// will replace some uses of the pre-extension value with uses of the
// sub-register of the results.
//
// - Optimize Comparisons
//
// Optimization of comparison instructions. For instance, in this code:
//
// sub r1, 1
// cmp r1, 0
// bz L1
//
// If the "sub" instruction all ready sets (or could be modified to set) the
// same flag that the "cmp" instruction sets and that "bz" uses, then we can
// eliminate the "cmp" instruction.
//
// Another instance, in this code:
//
// sub r1, r3 | sub r1, imm
// cmp r3, r1 or cmp r1, r3 | cmp r1, imm
// bge L1
//
// If the branch instruction can use flag from "sub", then we can replace
// "sub" with "subs" and eliminate the "cmp" instruction.
//
// - Optimize Loads:
//
// Loads that can be folded into a later instruction. A load is foldable
// if it loads to virtual registers and the virtual register defined has
// a single use.
//
// - Optimize Copies and Bitcast (more generally, target specific copies):
//
// Rewrite copies and bitcasts to avoid cross register bank copies
// when possible.
// E.g., Consider the following example, where capital and lower
// letters denote different register file:
// b = copy A <-- cross-bank copy
// C = copy b <-- cross-bank copy
// =>
// b = copy A <-- cross-bank copy
// C = copy A <-- same-bank copy
//
// E.g., for bitcast:
// b = bitcast A <-- cross-bank copy
// C = bitcast b <-- cross-bank copy
// =>
// b = bitcast A <-- cross-bank copy
// C = copy A <-- same-bank copy
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "peephole-opt"
// Optimize Extensions
static cl::opt<bool>
Aggressive("aggressive-ext-opt", cl::Hidden,
cl::desc("Aggressive extension optimization"));
static cl::opt<bool>
DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
cl::desc("Disable the peephole optimizer"));
static cl::opt<bool>
DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
cl::desc("Disable advanced copy optimization"));
STATISTIC(NumReuse, "Number of extension results reused");
STATISTIC(NumCmps, "Number of compares eliminated");
STATISTIC(NumImmFold, "Number of move immediate folded");
STATISTIC(NumLoadFold, "Number of loads folded");
STATISTIC(NumSelects, "Number of selects optimized");
STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
namespace {
class PeepholeOptimizer : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
MachineDominatorTree *DT; // Machine dominator tree
public:
static char ID; // Pass identification
PeepholeOptimizer() : MachineFunctionPass(ID) {
initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
if (Aggressive) {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
}
private:
bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
SmallPtrSetImpl<MachineInstr*> &LocalMIs);
bool optimizeSelect(MachineInstr *MI,
SmallPtrSetImpl<MachineInstr *> &LocalMIs);
bool optimizeCondBranch(MachineInstr *MI);
bool optimizeCopyOrBitcast(MachineInstr *MI);
bool optimizeCoalescableCopy(MachineInstr *MI);
bool optimizeUncoalescableCopy(MachineInstr *MI,
SmallPtrSetImpl<MachineInstr *> &LocalMIs);
bool findNextSource(unsigned &Reg, unsigned &SubReg);
bool isMoveImmediate(MachineInstr *MI,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
bool isLoadFoldable(MachineInstr *MI,
SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
/// \brief Check whether \p MI is understood by the register coalescer
/// but may require some rewriting.
bool isCoalescableCopy(const MachineInstr &MI) {
// SubregToRegs are not interesting, because they are already register
// coalescer friendly.
return MI.isCopy() || (!DisableAdvCopyOpt &&
(MI.isRegSequence() || MI.isInsertSubreg() ||
MI.isExtractSubreg()));
}
/// \brief Check whether \p MI is a copy like instruction that is
/// not recognized by the register coalescer.
bool isUncoalescableCopy(const MachineInstr &MI) {
return MI.isBitcast() ||
(!DisableAdvCopyOpt &&
(MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
MI.isExtractSubregLike()));
}
};
/// \brief Helper class to track the possible sources of a value defined by
/// a (chain of) copy related instructions.
/// Given a definition (instruction and definition index), this class
/// follows the use-def chain to find successive suitable sources.
/// The given source can be used to rewrite the definition into
/// def = COPY src.
///
/// For instance, let us consider the following snippet:
/// v0 =
/// v2 = INSERT_SUBREG v1, v0, sub0
/// def = COPY v2.sub0
///
/// Using a ValueTracker for def = COPY v2.sub0 will give the following
/// suitable sources:
/// v2.sub0 and v0.
/// Then, def can be rewritten into def = COPY v0.
class ValueTracker {
private:
/// The current point into the use-def chain.
const MachineInstr *Def;
/// The index of the definition in Def.
unsigned DefIdx;
/// The sub register index of the definition.
unsigned DefSubReg;
/// The register where the value can be found.
unsigned Reg;
/// Specifiy whether or not the value tracking looks through
/// complex instructions. When this is false, the value tracker
/// bails on everything that is not a copy or a bitcast.
///
/// Note: This could have been implemented as a specialized version of
/// the ValueTracker class but that would have complicated the code of
/// the users of this class.
bool UseAdvancedTracking;
/// MachineRegisterInfo used to perform tracking.
const MachineRegisterInfo &MRI;
/// Optional TargetInstrInfo used to perform some complex
/// tracking.
const TargetInstrInfo *TII;
/// \brief Dispatcher to the right underlying implementation of
/// getNextSource.
bool getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for Copy instructions.
bool getNextSourceFromCopy(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for Bitcast instructions.
bool getNextSourceFromBitcast(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for RegSequence
/// instructions.
bool getNextSourceFromRegSequence(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for InsertSubreg
/// instructions.
bool getNextSourceFromInsertSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for ExtractSubreg
/// instructions.
bool getNextSourceFromExtractSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Specialized version of getNextSource for SubregToReg
/// instructions.
bool getNextSourceFromSubregToReg(unsigned &SrcReg, unsigned &SrcSubReg);
public:
/// \brief Create a ValueTracker instance for the value defined by \p Reg.
/// \p DefSubReg represents the sub register index the value tracker will
/// track. It does not need to match the sub register index used in the
/// definition of \p Reg.
/// \p UseAdvancedTracking specifies whether or not the value tracker looks
/// through complex instructions. By default (false), it handles only copy
/// and bitcast instructions.
/// If \p Reg is a physical register, a value tracker constructed with
/// this constructor will not find any alternative source.
/// Indeed, when \p Reg is a physical register that constructor does not
/// know which definition of \p Reg it should track.
/// Use the next constructor to track a physical register.
ValueTracker(unsigned Reg, unsigned DefSubReg,
const MachineRegisterInfo &MRI,
bool UseAdvancedTracking = false,
const TargetInstrInfo *TII = nullptr)
: Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
Def = MRI.getVRegDef(Reg);
DefIdx = MRI.def_begin(Reg).getOperandNo();
}
}
/// \brief Create a ValueTracker instance for the value defined by
/// the pair \p MI, \p DefIdx.
/// Unlike the other constructor, the value tracker produced by this one
/// may be able to find a new source when the definition is a physical
/// register.
/// This could be useful to rewrite target specific instructions into
/// generic copy instructions.
ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
const MachineRegisterInfo &MRI,
bool UseAdvancedTracking = false,
const TargetInstrInfo *TII = nullptr)
: Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
assert(DefIdx < Def->getDesc().getNumDefs() &&
Def->getOperand(DefIdx).isReg() && "Invalid definition");
Reg = Def->getOperand(DefIdx).getReg();
}
/// \brief Following the use-def chain, get the next available source
/// for the tracked value.
/// When the returned value is not nullptr, \p SrcReg gives the register
/// that contain the tracked value.
/// \note The sub register index returned in \p SrcSubReg must be used
/// on \p SrcReg to access the actual value.
/// \return Unless the returned value is nullptr (i.e., no source found),
/// \p SrcReg gives the register of the next source used in the returned
/// instruction and \p SrcSubReg the sub-register index to be used on that
/// source to get the tracked value. When nullptr is returned, no
/// alternative source has been found.
const MachineInstr *getNextSource(unsigned &SrcReg, unsigned &SrcSubReg);
/// \brief Get the last register where the initial value can be found.
/// Initially this is the register of the definition.
/// Then, after each successful call to getNextSource, this is the
/// register of the last source.
unsigned getReg() const { return Reg; }
};
}
char PeepholeOptimizer::ID = 0;
char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
"Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
"Peephole Optimizations", false, false)
/// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
/// a single register and writes a single register and it does not modify the
/// source, and if the source value is preserved as a sub-register of the
/// result, then replace all reachable uses of the source with the subreg of the
/// result.
///
/// Do not generate an EXTRACT that is used only in a debug use, as this changes
/// the code. Since this code does not currently share EXTRACTs, just ignore all
/// debug uses.
bool PeepholeOptimizer::
optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
unsigned SrcReg, DstReg, SubIdx;
if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
return false;
if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
TargetRegisterInfo::isPhysicalRegister(SrcReg))
return false;
if (MRI->hasOneNonDBGUse(SrcReg))
// No other uses.
return false;
// Ensure DstReg can get a register class that actually supports
// sub-registers. Don't change the class until we commit.
const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
if (!DstRC)
return false;
// The ext instr may be operating on a sub-register of SrcReg as well.
// PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
// register.
// If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
// SrcReg:SubIdx should be replaced.
bool UseSrcSubIdx =
TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
// The source has other uses. See if we can replace the other uses with use of
// the result of the extension.
SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
ReachedBBs.insert(UI.getParent());
// Uses that are in the same BB of uses of the result of the instruction.
SmallVector<MachineOperand*, 8> Uses;
// Uses that the result of the instruction can reach.
SmallVector<MachineOperand*, 8> ExtendedUses;
bool ExtendLife = true;
for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
MachineInstr *UseMI = UseMO.getParent();
if (UseMI == MI)
continue;
if (UseMI->isPHI()) {
ExtendLife = false;
continue;
}
// Only accept uses of SrcReg:SubIdx.
if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
continue;
// It's an error to translate this:
//
// %reg1025 = <sext> %reg1024
// ...
// %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
//
// into this:
//
// %reg1025 = <sext> %reg1024
// ...
// %reg1027 = COPY %reg1025:4
// %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
//
// The problem here is that SUBREG_TO_REG is there to assert that an
// implicit zext occurs. It doesn't insert a zext instruction. If we allow
// the COPY here, it will give us the value after the <sext>, not the
// original value of %reg1024 before <sext>.
if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
continue;
MachineBasicBlock *UseMBB = UseMI->getParent();
if (UseMBB == MBB) {
// Local uses that come after the extension.
if (!LocalMIs.count(UseMI))
Uses.push_back(&UseMO);
} else if (ReachedBBs.count(UseMBB)) {
// Non-local uses where the result of the extension is used. Always
// replace these unless it's a PHI.
Uses.push_back(&UseMO);
} else if (Aggressive && DT->dominates(MBB, UseMBB)) {
// We may want to extend the live range of the extension result in order
// to replace these uses.
ExtendedUses.push_back(&UseMO);
} else {
// Both will be live out of the def MBB anyway. Don't extend live range of
// the extension result.
ExtendLife = false;
break;
}
}
if (ExtendLife && !ExtendedUses.empty())
// Extend the liveness of the extension result.
std::copy(ExtendedUses.begin(), ExtendedUses.end(),
std::back_inserter(Uses));
// Now replace all uses.
bool Changed = false;
if (!Uses.empty()) {
SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
// Look for PHI uses of the extended result, we don't want to extend the
// liveness of a PHI input. It breaks all kinds of assumptions down
// stream. A PHI use is expected to be the kill of its source values.
for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
if (UI.isPHI())
PHIBBs.insert(UI.getParent());
const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
MachineOperand *UseMO = Uses[i];
MachineInstr *UseMI = UseMO->getParent();
MachineBasicBlock *UseMBB = UseMI->getParent();
if (PHIBBs.count(UseMBB))
continue;
// About to add uses of DstReg, clear DstReg's kill flags.
if (!Changed) {
MRI->clearKillFlags(DstReg);
MRI->constrainRegClass(DstReg, DstRC);
}
unsigned NewVR = MRI->createVirtualRegister(RC);
MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
TII->get(TargetOpcode::COPY), NewVR)
.addReg(DstReg, 0, SubIdx);
// SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
if (UseSrcSubIdx) {
Copy->getOperand(0).setSubReg(SubIdx);
Copy->getOperand(0).setIsUndef();
}
UseMO->setReg(NewVR);
++NumReuse;
Changed = true;
}
}
return Changed;
}
/// optimizeCmpInstr - If the instruction is a compare and the previous
/// instruction it's comparing against all ready sets (or could be modified to
/// set) the same flag as the compare, then we can remove the comparison and use
/// the flag from the previous instruction.
bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
MachineBasicBlock *MBB) {
// If this instruction is a comparison against zero and isn't comparing a
// physical register, we can try to optimize it.
unsigned SrcReg, SrcReg2;
int CmpMask, CmpValue;
if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
(SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
return false;
// Attempt to optimize the comparison instruction.
if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
++NumCmps;
return true;
}
return false;
}
/// Optimize a select instruction.
bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
unsigned TrueOp = 0;
unsigned FalseOp = 0;
bool Optimizable = false;
SmallVector<MachineOperand, 4> Cond;
if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
return false;
if (!Optimizable)
return false;
if (!TII->optimizeSelect(MI, LocalMIs))
return false;
MI->eraseFromParent();
++NumSelects;
return true;
}
/// \brief Check if a simpler conditional branch can be
// generated
bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
return TII->optimizeCondBranch(MI);
}
/// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
/// share the same register file.
static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) {
// Same register class.
if (DefRC == SrcRC)
return true;
// Both operands are sub registers. Check if they share a register class.
unsigned SrcIdx, DefIdx;
if (SrcSubReg && DefSubReg)
return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
SrcIdx, DefIdx) != nullptr;
// At most one of the register is a sub register, make it Src to avoid
// duplicating the test.
if (!SrcSubReg) {
std::swap(DefSubReg, SrcSubReg);
std::swap(DefRC, SrcRC);
}
// One of the register is a sub register, check if we can get a superclass.
if (SrcSubReg)
return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
// Plain copy.
return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
}
/// \brief Try to find the next source that share the same register file
/// for the value defined by \p Reg and \p SubReg.
/// When true is returned, \p Reg and \p SubReg are updated with the
/// register number and sub-register index of the new source.
/// \return False if no alternative sources are available. True otherwise.
bool PeepholeOptimizer::findNextSource(unsigned &Reg, unsigned &SubReg) {
// Do not try to find a new source for a physical register.
// So far we do not have any motivating example for doing that.
// Thus, instead of maintaining untested code, we will revisit that if
// that changes at some point.
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return false;
const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
unsigned DefSubReg = SubReg;
unsigned Src;
unsigned SrcSubReg;
bool ShouldRewrite = false;
// Follow the chain of copies until we reach the top of the use-def chain
// or find a more suitable source.
ValueTracker ValTracker(Reg, DefSubReg, *MRI, !DisableAdvCopyOpt, TII);
do {
unsigned CopySrcReg, CopySrcSubReg;
if (!ValTracker.getNextSource(CopySrcReg, CopySrcSubReg))
break;
Src = CopySrcReg;
SrcSubReg = CopySrcSubReg;
// Do not extend the live-ranges of physical registers as they add
// constraints to the register allocator.
// Moreover, if we want to extend the live-range of a physical register,
// unlike SSA virtual register, we will have to check that they are not
// redefine before the related use.
if (TargetRegisterInfo::isPhysicalRegister(Src))
break;
const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
// If this source does not incur a cross register bank copy, use it.
ShouldRewrite = shareSameRegisterFile(*TRI, DefRC, DefSubReg, SrcRC,
SrcSubReg);
} while (!ShouldRewrite);
// If we did not find a more suitable source, there is nothing to optimize.
if (!ShouldRewrite || Src == Reg)
return false;
Reg = Src;
SubReg = SrcSubReg;
return true;
}
namespace {
/// \brief Helper class to rewrite the arguments of a copy-like instruction.
class CopyRewriter {
protected:
/// The copy-like instruction.
MachineInstr &CopyLike;
/// The index of the source being rewritten.
unsigned CurrentSrcIdx;
public:
CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
virtual ~CopyRewriter() {}
/// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
/// the related value that it affects (TrackReg, TrackSubReg).
/// A source is considered rewritable if its register class and the
/// register class of the related TrackReg may not be register
/// coalescer friendly. In other words, given a copy-like instruction
/// not all the arguments may be returned at rewritable source, since
/// some arguments are none to be register coalescer friendly.
///
/// Each call of this method moves the current source to the next
/// rewritable source.
/// For instance, let CopyLike be the instruction to rewrite.
/// CopyLike has one definition and one source:
/// dst.dstSubIdx = CopyLike src.srcSubIdx.
///
/// The first call will give the first rewritable source, i.e.,
/// the only source this instruction has:
/// (SrcReg, SrcSubReg) = (src, srcSubIdx).
/// This source defines the whole definition, i.e.,
/// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
///
/// The second and subsequent calls will return false, has there is only one
/// rewritable source.
///
/// \return True if a rewritable source has been found, false otherwise.
/// The output arguments are valid if and only if true is returned.
virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
unsigned &TrackReg,
unsigned &TrackSubReg) {
// If CurrentSrcIdx == 1, this means this function has already been
// called once. CopyLike has one defintiion and one argument, thus,
// there is nothing else to rewrite.
if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
return false;
// This is the first call to getNextRewritableSource.
// Move the CurrentSrcIdx to remember that we made that call.
CurrentSrcIdx = 1;
// The rewritable source is the argument.
const MachineOperand &MOSrc = CopyLike.getOperand(1);
SrcReg = MOSrc.getReg();
SrcSubReg = MOSrc.getSubReg();
// What we track are the alternative sources of the definition.
const MachineOperand &MODef = CopyLike.getOperand(0);
TrackReg = MODef.getReg();
TrackSubReg = MODef.getSubReg();
return true;
}
/// \brief Rewrite the current source with \p NewReg and \p NewSubReg
/// if possible.
/// \return True if the rewritting was possible, false otherwise.
virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
return false;
MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
MOSrc.setReg(NewReg);
MOSrc.setSubReg(NewSubReg);
return true;
}
};
/// \brief Specialized rewriter for INSERT_SUBREG instruction.
class InsertSubregRewriter : public CopyRewriter {
public:
InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
assert(MI.isInsertSubreg() && "Invalid instruction");
}
/// \brief See CopyRewriter::getNextRewritableSource.
/// Here CopyLike has the following form:
/// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
/// Src1 has the same register class has dst, hence, there is
/// nothing to rewrite.
/// Src2.src2SubIdx, may not be register coalescer friendly.
/// Therefore, the first call to this method returns:
/// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
/// (TrackReg, TrackSubReg) = (dst, subIdx).
///
/// Subsequence calls will return false.
bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
unsigned &TrackReg,
unsigned &TrackSubReg) override {
// If we already get the only source we can rewrite, return false.
if (CurrentSrcIdx == 2)
return false;
// We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
CurrentSrcIdx = 2;
const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
SrcReg = MOInsertedReg.getReg();
SrcSubReg = MOInsertedReg.getSubReg();
const MachineOperand &MODef = CopyLike.getOperand(0);
// We want to track something that is compatible with the
// partial definition.
TrackReg = MODef.getReg();
if (MODef.getSubReg())
// Bails if we have to compose sub-register indices.
return false;
TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
return true;
}
bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
if (CurrentSrcIdx != 2)
return false;
// We are rewriting the inserted reg.
MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
MO.setReg(NewReg);
MO.setSubReg(NewSubReg);
return true;
}
};
/// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
class ExtractSubregRewriter : public CopyRewriter {
const TargetInstrInfo &TII;
public:
ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
: CopyRewriter(MI), TII(TII) {
assert(MI.isExtractSubreg() && "Invalid instruction");
}
/// \brief See CopyRewriter::getNextRewritableSource.
/// Here CopyLike has the following form:
/// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
/// There is only one rewritable source: Src.subIdx,
/// which defines dst.dstSubIdx.
bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
unsigned &TrackReg,
unsigned &TrackSubReg) override {
// If we already get the only source we can rewrite, return false.
if (CurrentSrcIdx == 1)
return false;
// We are looking at v1 = EXTRACT_SUBREG v0, sub0.
CurrentSrcIdx = 1;
const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
SrcReg = MOExtractedReg.getReg();
// If we have to compose sub-register indices, bails out.
if (MOExtractedReg.getSubReg())
return false;
SrcSubReg = CopyLike.getOperand(2).getImm();
// We want to track something that is compatible with the definition.
const MachineOperand &MODef = CopyLike.getOperand(0);
TrackReg = MODef.getReg();
TrackSubReg = MODef.getSubReg();
return true;
}
bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
// The only source we can rewrite is the input register.
if (CurrentSrcIdx != 1)
return false;
CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
// If we find a source that does not require to extract something,
// rewrite the operation with a copy.
if (!NewSubReg) {
// Move the current index to an invalid position.
// We do not want another call to this method to be able
// to do any change.
CurrentSrcIdx = -1;
// Rewrite the operation as a COPY.
// Get rid of the sub-register index.
CopyLike.RemoveOperand(2);
// Morph the operation into a COPY.
CopyLike.setDesc(TII.get(TargetOpcode::COPY));
return true;
}
CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
return true;
}
};
/// \brief Specialized rewriter for REG_SEQUENCE instruction.
class RegSequenceRewriter : public CopyRewriter {
public:
RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
assert(MI.isRegSequence() && "Invalid instruction");
}
/// \brief See CopyRewriter::getNextRewritableSource.
/// Here CopyLike has the following form:
/// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
/// Each call will return a different source, walking all the available
/// source.
///
/// The first call returns:
/// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
/// (TrackReg, TrackSubReg) = (dst, subIdx1).
///
/// The second call returns:
/// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
/// (TrackReg, TrackSubReg) = (dst, subIdx2).
///
/// And so on, until all the sources have been traversed, then
/// it returns false.
bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
unsigned &TrackReg,
unsigned &TrackSubReg) override {
// We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
// If this is the first call, move to the first argument.
if (CurrentSrcIdx == 0) {
CurrentSrcIdx = 1;
} else {
// Otherwise, move to the next argument and check that it is valid.
CurrentSrcIdx += 2;
if (CurrentSrcIdx >= CopyLike.getNumOperands())
return false;
}
const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
SrcReg = MOInsertedReg.getReg();
// If we have to compose sub-register indices, bails out.
if ((SrcSubReg = MOInsertedReg.getSubReg()))
return false;
// We want to track something that is compatible with the related
// partial definition.
TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
const MachineOperand &MODef = CopyLike.getOperand(0);
TrackReg = MODef.getReg();
// If we have to compose sub-registers, bails.
return MODef.getSubReg() == 0;
}
bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
// We cannot rewrite out of bound operands.
// Moreover, rewritable sources are at odd positions.
if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
return false;
MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
MO.setReg(NewReg);
MO.setSubReg(NewSubReg);
return true;
}
};
} // End namespace.
/// \brief Get the appropriated CopyRewriter for \p MI.
/// \return A pointer to a dynamically allocated CopyRewriter or nullptr
/// if no rewriter works for \p MI.
static CopyRewriter *getCopyRewriter(MachineInstr &MI,
const TargetInstrInfo &TII) {
switch (MI.getOpcode()) {
default:
return nullptr;
case TargetOpcode::COPY:
return new CopyRewriter(MI);
case TargetOpcode::INSERT_SUBREG:
return new InsertSubregRewriter(MI);
case TargetOpcode::EXTRACT_SUBREG:
return new ExtractSubregRewriter(MI, TII);
case TargetOpcode::REG_SEQUENCE:
return new RegSequenceRewriter(MI);
}
llvm_unreachable(nullptr);
}
/// \brief Optimize generic copy instructions to avoid cross
/// register bank copy. The optimization looks through a chain of
/// copies and tries to find a source that has a compatible register
/// class.
/// Two register classes are considered to be compatible if they share
/// the same register bank.
/// New copies issued by this optimization are register allocator
/// friendly. This optimization does not remove any copy as it may
/// overconstraint the register allocator, but replaces some operands
/// when possible.
/// \pre isCoalescableCopy(*MI) is true.
/// \return True, when \p MI has been rewritten. False otherwise.
bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
assert(MI->getDesc().getNumDefs() == 1 &&
"Coalescer can understand multiple defs?!");
const MachineOperand &MODef = MI->getOperand(0);
// Do not rewrite physical definitions.
if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
return false;
bool Changed = false;
// Get the right rewriter for the current copy.
std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII));
// If none exists, bails out.
if (!CpyRewriter)
return false;
// Rewrite each rewritable source.
unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
TrackSubReg)) {
unsigned NewSrc = TrackReg;
unsigned NewSubReg = TrackSubReg;
// Try to find a more suitable source.
// If we failed to do so, or get the actual source,
// move to the next source.
if (!findNextSource(NewSrc, NewSubReg) || SrcReg == NewSrc)
continue;
// Rewrite source.
if (CpyRewriter->RewriteCurrentSource(NewSrc, NewSubReg)) {
// We may have extended the live-range of NewSrc, account for that.
MRI->clearKillFlags(NewSrc);
Changed = true;
}
}
// TODO: We could have a clean-up method to tidy the instruction.
// E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
// => v0 = COPY v1
// Currently we haven't seen motivating example for that and we
// want to avoid untested code.
NumRewrittenCopies += Changed == true;
return Changed;
}
/// \brief Optimize copy-like instructions to create
/// register coalescer friendly instruction.
/// The optimization tries to kill-off the \p MI by looking
/// through a chain of copies to find a source that has a compatible
/// register class.
/// If such a source is found, it replace \p MI by a generic COPY
/// operation.
/// \pre isUncoalescableCopy(*MI) is true.
/// \return True, when \p MI has been optimized. In that case, \p MI has
/// been removed from its parent.
/// All COPY instructions created, are inserted in \p LocalMIs.
bool PeepholeOptimizer::optimizeUncoalescableCopy(
MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
// Check if we can rewrite all the values defined by this instruction.
SmallVector<
std::pair<TargetInstrInfo::RegSubRegPair, TargetInstrInfo::RegSubRegPair>,
4> RewritePairs;
for (const MachineOperand &MODef : MI->defs()) {
if (MODef.isDead())
// We can ignore those.
continue;
// If a physical register is here, this is probably for a good reason.
// Do not rewrite that.
if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
return false;
// If we do not know how to rewrite this definition, there is no point
// in trying to kill this instruction.
TargetInstrInfo::RegSubRegPair Def(MODef.getReg(), MODef.getSubReg());
TargetInstrInfo::RegSubRegPair Src = Def;
if (!findNextSource(Src.Reg, Src.SubReg))
return false;
RewritePairs.push_back(std::make_pair(Def, Src));
}
// The change is possible for all defs, do it.
for (const auto &PairDefSrc : RewritePairs) {
const auto &Def = PairDefSrc.first;
const auto &Src = PairDefSrc.second;
// Rewrite the "copy" in a way the register coalescer understands.
assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
"We do not rewrite physical registers");
const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
unsigned NewVR = MRI->createVirtualRegister(DefRC);
MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
TII->get(TargetOpcode::COPY),
NewVR).addReg(Src.Reg, 0, Src.SubReg);
NewCopy->getOperand(0).setSubReg(Def.SubReg);
if (Def.SubReg)
NewCopy->getOperand(0).setIsUndef();
LocalMIs.insert(NewCopy);
MRI->replaceRegWith(Def.Reg, NewVR);
MRI->clearKillFlags(NewVR);
// We extended the lifetime of Src.
// Clear the kill flags to account for that.
MRI->clearKillFlags(Src.Reg);
}
// MI is now dead.
MI->eraseFromParent();
++NumUncoalescableCopies;
return true;
}
/// isLoadFoldable - Check whether MI is a candidate for folding into a later
/// instruction. We only fold loads to virtual registers and the virtual
/// register defined has a single use.
bool PeepholeOptimizer::isLoadFoldable(
MachineInstr *MI,
SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
if (!MI->canFoldAsLoad() || !MI->mayLoad())
return false;
const MCInstrDesc &MCID = MI->getDesc();
if (MCID.getNumDefs() != 1)
return false;
unsigned Reg = MI->getOperand(0).getReg();
// To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
// loads. It should be checked when processing uses of the load, since
// uses can be removed during peephole.
if (!MI->getOperand(0).getSubReg() &&
TargetRegisterInfo::isVirtualRegister(Reg) &&
MRI->hasOneNonDBGUse(Reg)) {
FoldAsLoadDefCandidates.insert(Reg);
return true;
}
return false;
}
bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
const MCInstrDesc &MCID = MI->getDesc();
if (!MI->isMoveImmediate())
return false;
if (MCID.getNumDefs() != 1)
return false;
unsigned Reg = MI->getOperand(0).getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
ImmDefMIs.insert(std::make_pair(Reg, MI));
ImmDefRegs.insert(Reg);
return true;
}
return false;
}
/// foldImmediate - Try folding register operands that are defined by move
/// immediate instructions, i.e. a trivial constant folding optimization, if
/// and only if the def and use are in the same BB.
bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
SmallSet<unsigned, 4> &ImmDefRegs,
DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (ImmDefRegs.count(Reg) == 0)
continue;
DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
assert(II != ImmDefMIs.end());
if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
++NumImmFold;
return true;
}
}
return false;
}
bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
if (skipOptnoneFunction(*MF.getFunction()))
return false;
DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
if (DisablePeephole)
return false;
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
bool Changed = false;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = &*I;
bool SeenMoveImm = false;
// During this forward scan, at some point it needs to answer the question
// "given a pointer to an MI in the current BB, is it located before or
// after the current instruction".
// To perform this, the following set keeps track of the MIs already seen
// during the scan, if a MI is not in the set, it is assumed to be located
// after. Newly created MIs have to be inserted in the set as well.
SmallPtrSet<MachineInstr*, 16> LocalMIs;
SmallSet<unsigned, 4> ImmDefRegs;
DenseMap<unsigned, MachineInstr*> ImmDefMIs;
SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
for (MachineBasicBlock::iterator
MII = I->begin(), MIE = I->end(); MII != MIE; ) {
MachineInstr *MI = &*MII;
// We may be erasing MI below, increment MII now.
++MII;
LocalMIs.insert(MI);
// Skip debug values. They should not affect this peephole optimization.
if (MI->isDebugValue())
continue;
// If there exists an instruction which belongs to the following
// categories, we will discard the load candidates.
if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
MI->isKill() || MI->isInlineAsm() ||
MI->hasUnmodeledSideEffects()) {
FoldAsLoadDefCandidates.clear();
continue;
}
if (MI->mayStore() || MI->isCall())
FoldAsLoadDefCandidates.clear();
if ((isUncoalescableCopy(*MI) &&
optimizeUncoalescableCopy(MI, LocalMIs)) ||
(MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
(MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
// MI is deleted.
LocalMIs.erase(MI);
Changed = true;
continue;
}
if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
Changed = true;
continue;
}
if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
// MI is just rewritten.
Changed = true;
continue;
}
if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
SeenMoveImm = true;
} else {
Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
// optimizeExtInstr might have created new instructions after MI
// and before the already incremented MII. Adjust MII so that the
// next iteration sees the new instructions.
MII = MI;
++MII;
if (SeenMoveImm)
Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
}
// Check whether MI is a load candidate for folding into a later
// instruction. If MI is not a candidate, check whether we can fold an
// earlier load into MI.
if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
!FoldAsLoadDefCandidates.empty()) {
const MCInstrDesc &MIDesc = MI->getDesc();
for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
++i) {
const MachineOperand &MOp = MI->getOperand(i);
if (!MOp.isReg())
continue;
unsigned FoldAsLoadDefReg = MOp.getReg();
if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
// We need to fold load after optimizeCmpInstr, since
// optimizeCmpInstr can enable folding by converting SUB to CMP.
// Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
// we need it for markUsesInDebugValueAsUndef().
unsigned FoldedReg = FoldAsLoadDefReg;
MachineInstr *DefMI = nullptr;
MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
FoldAsLoadDefReg,
DefMI);
if (FoldMI) {
// Update LocalMIs since we replaced MI with FoldMI and deleted
// DefMI.
DEBUG(dbgs() << "Replacing: " << *MI);
DEBUG(dbgs() << " With: " << *FoldMI);
LocalMIs.erase(MI);
LocalMIs.erase(DefMI);
LocalMIs.insert(FoldMI);
MI->eraseFromParent();
DefMI->eraseFromParent();
MRI->markUsesInDebugValueAsUndef(FoldedReg);
FoldAsLoadDefCandidates.erase(FoldedReg);
++NumLoadFold;
// MI is replaced with FoldMI.
Changed = true;
break;
}
}
}
}
}
}
return Changed;
}
bool ValueTracker::getNextSourceFromCopy(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert(Def->isCopy() && "Invalid definition");
// Copy instruction are supposed to be: Def = Src.
// If someone breaks this assumption, bad things will happen everywhere.
assert(Def->getNumOperands() == 2 && "Invalid number of operands");
if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
// If we look for a different subreg, it means we want a subreg of src.
// Bails as we do not support composing subreg yet.
return false;
// Otherwise, we want the whole source.
const MachineOperand &Src = Def->getOperand(1);
SrcReg = Src.getReg();
SrcSubReg = Src.getSubReg();
return true;
}
bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert(Def->isBitcast() && "Invalid definition");
// Bail if there are effects that a plain copy will not expose.
if (Def->hasUnmodeledSideEffects())
return false;
// Bitcasts with more than one def are not supported.
if (Def->getDesc().getNumDefs() != 1)
return false;
if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
// If we look for a different subreg, it means we want a subreg of the src.
// Bails as we do not support composing subreg yet.
return false;
unsigned SrcIdx = Def->getNumOperands();
for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
++OpIdx) {
const MachineOperand &MO = Def->getOperand(OpIdx);
if (!MO.isReg() || !MO.getReg())
continue;
assert(!MO.isDef() && "We should have skipped all the definitions by now");
if (SrcIdx != EndOpIdx)
// Multiple sources?
return false;
SrcIdx = OpIdx;
}
const MachineOperand &Src = Def->getOperand(SrcIdx);
SrcReg = Src.getReg();
SrcSubReg = Src.getSubReg();
return true;
}
bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
"Invalid definition");
if (Def->getOperand(DefIdx).getSubReg())
// If we are composing subreg, bails out.
// The case we are checking is Def.<subreg> = REG_SEQUENCE.
// This should almost never happen as the SSA property is tracked at
// the register level (as opposed to the subreg level).
// I.e.,
// Def.sub0 =
// Def.sub1 =
// is a valid SSA representation for Def.sub0 and Def.sub1, but not for
// Def. Thus, it must not be generated.
// However, some code could theoretically generates a single
// Def.sub0 (i.e, not defining the other subregs) and we would
// have this case.
// If we can ascertain (or force) that this never happens, we could
// turn that into an assertion.
return false;
if (!TII)
// We could handle the REG_SEQUENCE here, but we do not want to
// duplicate the code from the generic TII.
return false;
SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
return false;
// We are looking at:
// Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
// Check if one of the operand defines the subreg we are interested in.
for (auto &RegSeqInput : RegSeqInputRegs) {
if (RegSeqInput.SubIdx == DefSubReg) {
if (RegSeqInput.SubReg)
// Bails if we have to compose sub registers.
return false;
SrcReg = RegSeqInput.Reg;
SrcSubReg = RegSeqInput.SubReg;
return true;
}
}
// If the subreg we are tracking is super-defined by another subreg,
// we could follow this value. However, this would require to compose
// the subreg and we do not do that for now.
return false;
}
bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
"Invalid definition");
if (Def->getOperand(DefIdx).getSubReg())
// If we are composing subreg, bails out.
// Same remark as getNextSourceFromRegSequence.
// I.e., this may be turned into an assert.
return false;
if (!TII)
// We could handle the REG_SEQUENCE here, but we do not want to
// duplicate the code from the generic TII.
return false;
TargetInstrInfo::RegSubRegPair BaseReg;
TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
return false;
// We are looking at:
// Def = INSERT_SUBREG v0, v1, sub1
// There are two cases:
// 1. DefSubReg == sub1, get v1.
// 2. DefSubReg != sub1, the value may be available through v0.
// #1 Check if the inserted register matches the required sub index.
if (InsertedReg.SubIdx == DefSubReg) {
SrcReg = InsertedReg.Reg;
SrcSubReg = InsertedReg.SubReg;
return true;
}
// #2 Otherwise, if the sub register we are looking for is not partial
// defined by the inserted element, we can look through the main
// register (v0).
const MachineOperand &MODef = Def->getOperand(DefIdx);
// If the result register (Def) and the base register (v0) do not
// have the same register class or if we have to compose
// subregisters, bails out.
if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
BaseReg.SubReg)
return false;
// Get the TRI and check if the inserted sub-register overlaps with the
// sub-register we are tracking.
const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
if (!TRI ||
(TRI->getSubRegIndexLaneMask(DefSubReg) &
TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
return false;
// At this point, the value is available in v0 via the same subreg
// we used for Def.
SrcReg = BaseReg.Reg;
SrcSubReg = DefSubReg;
return true;
}
bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert((Def->isExtractSubreg() ||
Def->isExtractSubregLike()) && "Invalid definition");
// We are looking at:
// Def = EXTRACT_SUBREG v0, sub0
// Bails if we have to compose sub registers.
// Indeed, if DefSubReg != 0, we would have to compose it with sub0.
if (DefSubReg)
return false;
if (!TII)
// We could handle the EXTRACT_SUBREG here, but we do not want to
// duplicate the code from the generic TII.
return false;
TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
return false;
// Bails if we have to compose sub registers.
// Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
if (ExtractSubregInputReg.SubReg)
return false;
// Otherwise, the value is available in the v0.sub0.
SrcReg = ExtractSubregInputReg.Reg;
SrcSubReg = ExtractSubregInputReg.SubIdx;
return true;
}
bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcReg,
unsigned &SrcSubReg) {
assert(Def->isSubregToReg() && "Invalid definition");
// We are looking at:
// Def = SUBREG_TO_REG Imm, v0, sub0
// Bails if we have to compose sub registers.
// If DefSubReg != sub0, we would have to check that all the bits
// we track are included in sub0 and if yes, we would have to
// determine the right subreg in v0.
if (DefSubReg != Def->getOperand(3).getImm())
return false;
// Bails if we have to compose sub registers.
// Likewise, if v0.subreg != 0, we would have to compose it with sub0.
if (Def->getOperand(2).getSubReg())
return false;
SrcReg = Def->getOperand(2).getReg();
SrcSubReg = Def->getOperand(3).getImm();
return true;
}
bool ValueTracker::getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg) {
assert(Def && "This method needs a valid definition");
assert(
(DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
if (Def->isCopy())
return getNextSourceFromCopy(SrcReg, SrcSubReg);
if (Def->isBitcast())
return getNextSourceFromBitcast(SrcReg, SrcSubReg);
// All the remaining cases involve "complex" instructions.
// Bails if we did not ask for the advanced tracking.
if (!UseAdvancedTracking)
return false;
if (Def->isRegSequence() || Def->isRegSequenceLike())
return getNextSourceFromRegSequence(SrcReg, SrcSubReg);
if (Def->isInsertSubreg() || Def->isInsertSubregLike())
return getNextSourceFromInsertSubreg(SrcReg, SrcSubReg);
if (Def->isExtractSubreg() || Def->isExtractSubregLike())
return getNextSourceFromExtractSubreg(SrcReg, SrcSubReg);
if (Def->isSubregToReg())
return getNextSourceFromSubregToReg(SrcReg, SrcSubReg);
return false;
}
const MachineInstr *ValueTracker::getNextSource(unsigned &SrcReg,
unsigned &SrcSubReg) {
// If we reach a point where we cannot move up in the use-def chain,
// there is nothing we can get.
if (!Def)
return nullptr;
const MachineInstr *PrevDef = nullptr;
// Try to find the next source.
if (getNextSourceImpl(SrcReg, SrcSubReg)) {
// Update definition, definition index, and subregister for the
// next call of getNextSource.
// Update the current register.
Reg = SrcReg;
// Update the return value before moving up in the use-def chain.
PrevDef = Def;
// If we can still move up in the use-def chain, move to the next
// defintion.
if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
Def = MRI.getVRegDef(Reg);
DefIdx = MRI.def_begin(Reg).getOperandNo();
DefSubReg = SrcSubReg;
return PrevDef;
}
}
// If we end up here, this means we will not be able to find another source
// for the next iteration.
// Make sure any new call to getNextSource bails out early by cutting the
// use-def chain.
Def = nullptr;
return PrevDef;
}
|