aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/PreAllocSplitting.cpp
blob: 8f223b36007f5a2a97a5e0b6547d3a348b47bcc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level pre-register allocation
// live interval splitting pass. It finds live interval barriers, i.e.
// instructions which will kill all physical registers in certain register
// classes, and split all live intervals which cross the barrier.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pre-alloc-split"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);

STATISTIC(NumSplits, "Number of intervals split");

namespace {
  class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
    MachineFunction       *CurrMF;
    const TargetMachine   *TM;
    const TargetInstrInfo *TII;
    MachineFrameInfo      *MFI;
    MachineRegisterInfo   *MRI;
    LiveIntervals         *LIs;
    LiveStacks            *LSs;

    // Barrier - Current barrier being processed.
    MachineInstr          *Barrier;

    // BarrierMBB - Basic block where the barrier resides in.
    MachineBasicBlock     *BarrierMBB;

    // Barrier - Current barrier index.
    unsigned              BarrierIdx;

    // CurrLI - Current live interval being split.
    LiveInterval          *CurrLI;

    // CurrSLI - Current stack slot live interval.
    LiveInterval          *CurrSLI;

    // CurrSValNo - Current val# for the stack slot live interval.
    VNInfo                *CurrSValNo;

    // IntervalSSMap - A map from live interval to spill slots.
    DenseMap<unsigned, int> IntervalSSMap;

    // Def2SpillMap - A map from a def instruction index to spill index.
    DenseMap<unsigned, unsigned> Def2SpillMap;

  public:
    static char ID;
    PreAllocSplitting() : MachineFunctionPass(&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<LiveIntervals>();
      AU.addRequired<LiveStacks>();
      AU.addPreserved<LiveStacks>();
      AU.addPreserved<RegisterCoalescer>();
      if (StrongPHIElim)
        AU.addPreservedID(StrongPHIEliminationID);
      else
        AU.addPreservedID(PHIEliminationID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    
    virtual void releaseMemory() {
      IntervalSSMap.clear();
      Def2SpillMap.clear();
    }

    virtual const char *getPassName() const {
      return "Pre-Register Allocaton Live Interval Splitting";
    }

    /// print - Implement the dump method.
    virtual void print(std::ostream &O, const Module* M = 0) const {
      LIs->print(O, M);
    }

    void print(std::ostream *O, const Module* M = 0) const {
      if (O) print(*O, M);
    }

  private:
    MachineBasicBlock::iterator
      findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
                        unsigned&);

    MachineBasicBlock::iterator
      findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);

    MachineBasicBlock::iterator
      findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);

    int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);

    bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
                            unsigned&, int&) const;

    void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);

    void UpdateRegisterInterval(VNInfo*, unsigned, unsigned);

    bool ShrinkWrapToLastUse(MachineBasicBlock*, VNInfo*,
                             SmallVector<MachineOperand*, 4>&,
                             SmallPtrSet<MachineInstr*, 4>&);

    void ShrinkWrapLiveInterval(VNInfo*, MachineBasicBlock*, MachineBasicBlock*,
                        MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8>&,
                DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >&,
                  DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >&,
                                SmallVector<MachineBasicBlock*, 4>&);

    bool SplitRegLiveInterval(LiveInterval*);

    bool SplitRegLiveIntervals(const TargetRegisterClass **);
  };
} // end anonymous namespace

char PreAllocSplitting::ID = 0;

static RegisterPass<PreAllocSplitting>
X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");

const PassInfo *const llvm::PreAllocSplittingID = &X;


/// findNextEmptySlot - Find a gap after the given machine instruction in the
/// instruction index map. If there isn't one, return end().
MachineBasicBlock::iterator
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
                                     unsigned &SpotIndex) {
  MachineBasicBlock::iterator MII = MI;
  if (++MII != MBB->end()) {
    unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
    if (Index) {
      SpotIndex = Index;
      return MII;
    }
  }
  return MBB->end();
}

/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
                                  MachineInstr *DefMI,
                                  SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
                                  unsigned &SpillIndex) {
  MachineBasicBlock::iterator Pt = MBB->begin();

  // Go top down if RefsInMBB is empty.
  if (RefsInMBB.empty() && !DefMI) {
    MachineBasicBlock::iterator MII = MBB->begin();
    MachineBasicBlock::iterator EndPt = MI;
    do {
      ++MII;
      unsigned Index = LIs->getInstructionIndex(MII);
      unsigned Gap = LIs->findGapBeforeInstr(Index);
      if (Gap) {
        Pt = MII;
        SpillIndex = Gap;
        break;
      }
    } while (MII != EndPt);
  } else {
    MachineBasicBlock::iterator MII = MI;
    MachineBasicBlock::iterator EndPt = DefMI
      ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
    while (MII != EndPt && !RefsInMBB.count(MII)) {
      unsigned Index = LIs->getInstructionIndex(MII);
      if (LIs->hasGapBeforeInstr(Index)) {
        Pt = MII;
        SpillIndex = LIs->findGapBeforeInstr(Index, true);
      }
      --MII;
    }
  }

  return Pt;
}

/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
                                    unsigned LastIdx,
                                    SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
                                    unsigned &RestoreIndex) {
  // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
  // begin index accordingly.
  MachineBasicBlock::iterator Pt = MBB->end();
  unsigned EndIdx = LIs->getMBBEndIdx(MBB);

  // Go bottom up if RefsInMBB is empty and the end of the mbb isn't beyond
  // the last index in the live range.
  if (RefsInMBB.empty() && LastIdx >= EndIdx) {
    MachineBasicBlock::iterator MII = MBB->end();
    MachineBasicBlock::iterator EndPt = MI;
    --MII;
    do {
      unsigned Index = LIs->getInstructionIndex(MII);
      unsigned Gap = LIs->findGapBeforeInstr(Index);
      if (Gap) {
        Pt = MII;
        RestoreIndex = Gap;
        break;
      }
      --MII;
    } while (MII != EndPt);
  } else {
    MachineBasicBlock::iterator MII = MI;
    MII = ++MII;
    // FIXME: Limit the number of instructions to examine to reduce
    // compile time?
    while (MII != MBB->end()) {
      unsigned Index = LIs->getInstructionIndex(MII);
      if (Index > LastIdx)
        break;
      unsigned Gap = LIs->findGapBeforeInstr(Index);
      if (Gap) {
        Pt = MII;
        RestoreIndex = Gap;
      }
      if (RefsInMBB.count(MII))
        break;
      ++MII;
    }
  }

  return Pt;
}

/// CreateSpillStackSlot - Create a stack slot for the live interval being
/// split. If the live interval was previously split, just reuse the same
/// slot.
int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
                                            const TargetRegisterClass *RC) {
  int SS;
  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
  if (I != IntervalSSMap.end()) {
    SS = I->second;
  } else {
    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
    IntervalSSMap[Reg] = SS;
  }

  // Create live interval for stack slot.
  CurrSLI = &LSs->getOrCreateInterval(SS);
  if (CurrSLI->hasAtLeastOneValue())
    CurrSValNo = CurrSLI->getValNumInfo(0);
  else
    CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator());
  return SS;
}

/// IsAvailableInStack - Return true if register is available in a split stack
/// slot at the specified index.
bool
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
                                    unsigned Reg, unsigned DefIndex,
                                    unsigned RestoreIndex, unsigned &SpillIndex,
                                    int& SS) const {
  if (!DefMBB)
    return false;

  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
  if (I == IntervalSSMap.end())
    return false;
  DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
  if (II == Def2SpillMap.end())
    return false;

  // If last spill of def is in the same mbb as barrier mbb (where restore will
  // be), make sure it's not below the intended restore index.
  // FIXME: Undo the previous spill?
  assert(LIs->getMBBFromIndex(II->second) == DefMBB);
  if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
    return false;

  SS = I->second;
  SpillIndex = II->second;
  return true;
}

/// UpdateSpillSlotInterval - Given the specified val# of the register live
/// interval being split, and the spill and restore indicies, update the live
/// interval of the spill stack slot.
void
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
                                           unsigned RestoreIndex) {
  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
         "Expect restore in the barrier mbb");

  MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
  if (MBB == BarrierMBB) {
    // Intra-block spill + restore. We are done.
    LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
    CurrSLI->addRange(SLR);
    return;
  }

  SmallPtrSet<MachineBasicBlock*, 4> Processed;
  unsigned EndIdx = LIs->getMBBEndIdx(MBB);
  LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
  CurrSLI->addRange(SLR);
  Processed.insert(MBB);

  // Start from the spill mbb, figure out the extend of the spill slot's
  // live interval.
  SmallVector<MachineBasicBlock*, 4> WorkList;
  const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
  if (LR->end > EndIdx)
    // If live range extend beyond end of mbb, add successors to work list.
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
           SE = MBB->succ_end(); SI != SE; ++SI)
      WorkList.push_back(*SI);

  while (!WorkList.empty()) {
    MachineBasicBlock *MBB = WorkList.back();
    WorkList.pop_back();
    if (Processed.count(MBB))
      continue;
    unsigned Idx = LIs->getMBBStartIdx(MBB);
    LR = CurrLI->getLiveRangeContaining(Idx);
    if (LR && LR->valno == ValNo) {
      EndIdx = LIs->getMBBEndIdx(MBB);
      if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
        // Spill slot live interval stops at the restore.
        LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
        CurrSLI->addRange(SLR);
      } else if (LR->end > EndIdx) {
        // Live range extends beyond end of mbb, process successors.
        LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
        CurrSLI->addRange(SLR);
        for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
               SE = MBB->succ_end(); SI != SE; ++SI)
          WorkList.push_back(*SI);
      } else {
        LiveRange SLR(Idx, LR->end, CurrSValNo);
        CurrSLI->addRange(SLR);
      }
      Processed.insert(MBB);
    }
  }
}

/// UpdateRegisterInterval - Given the specified val# of the current live
/// interval is being split, and the spill and restore indices, update the live
/// interval accordingly.
void
PreAllocSplitting::UpdateRegisterInterval(VNInfo *ValNo, unsigned SpillIndex,
                                          unsigned RestoreIndex) {
  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
         "Expect restore in the barrier mbb");

  SmallVector<std::pair<unsigned,unsigned>, 4> Before;
  SmallVector<std::pair<unsigned,unsigned>, 4> After;
  SmallVector<unsigned, 4> BeforeKills;
  SmallVector<unsigned, 4> AfterKills;
  SmallPtrSet<const LiveRange*, 4> Processed;

  // First, let's figure out which parts of the live interval is now defined
  // by the restore, which are defined by the original definition.
  const LiveRange *LR = CurrLI->getLiveRangeContaining(RestoreIndex);
  After.push_back(std::make_pair(RestoreIndex, LR->end));
  if (CurrLI->isKill(ValNo, LR->end))
    AfterKills.push_back(LR->end);

  assert(LR->contains(SpillIndex));
  if (SpillIndex > LR->start) {
    Before.push_back(std::make_pair(LR->start, SpillIndex));
    BeforeKills.push_back(SpillIndex);
  }
  Processed.insert(LR);

  // Start from the restore mbb, figure out what part of the live interval
  // are defined by the restore.
  SmallVector<MachineBasicBlock*, 4> WorkList;
  MachineBasicBlock *MBB = BarrierMBB;
  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI)
    WorkList.push_back(*SI);

  while (!WorkList.empty()) {
    MBB = WorkList.back();
    WorkList.pop_back();
    unsigned Idx = LIs->getMBBStartIdx(MBB);
    LR = CurrLI->getLiveRangeContaining(Idx);
    if (LR && LR->valno == ValNo && !Processed.count(LR)) {
      After.push_back(std::make_pair(LR->start, LR->end));
      if (CurrLI->isKill(ValNo, LR->end))
        AfterKills.push_back(LR->end);
      Idx = LIs->getMBBEndIdx(MBB);
      if (LR->end > Idx) {
        // Live range extend beyond at least one mbb. Let's see what other
        // mbbs it reaches.
        LIs->findReachableMBBs(LR->start, LR->end, WorkList);
      }
      Processed.insert(LR);
    }
  }

  for (LiveInterval::iterator I = CurrLI->begin(), E = CurrLI->end();
       I != E; ++I) {
    LiveRange *LR = I;
    if (LR->valno == ValNo && !Processed.count(LR)) {
      Before.push_back(std::make_pair(LR->start, LR->end));
      if (CurrLI->isKill(ValNo, LR->end))
        BeforeKills.push_back(LR->end);
    }
  }

  // Now create new val#s to represent the live ranges defined by the old def
  // those defined by the restore.
  unsigned AfterDef = ValNo->def;
  MachineInstr *AfterCopy = ValNo->copy;
  bool HasPHIKill = ValNo->hasPHIKill;
  CurrLI->removeValNo(ValNo);
  VNInfo *BValNo = (Before.empty())
    ? NULL
    : CurrLI->getNextValue(AfterDef, AfterCopy, LIs->getVNInfoAllocator());
  if (BValNo)
    CurrLI->addKills(BValNo, BeforeKills);

  VNInfo *AValNo = (After.empty())
    ? NULL
    : CurrLI->getNextValue(RestoreIndex, 0, LIs->getVNInfoAllocator());
  if (AValNo) {
    AValNo->hasPHIKill = HasPHIKill;
    CurrLI->addKills(AValNo, AfterKills);
  }

  for (unsigned i = 0, e = Before.size(); i != e; ++i) {
    unsigned Start = Before[i].first;
    unsigned End   = Before[i].second;
    CurrLI->addRange(LiveRange(Start, End, BValNo));
  }
  for (unsigned i = 0, e = After.size(); i != e; ++i) {
    unsigned Start = After[i].first;
    unsigned End   = After[i].second;
    CurrLI->addRange(LiveRange(Start, End, AValNo));
  }
}

/// ShrinkWrapToLastUse - There are uses of the current live interval in the
/// given block, shrink wrap the live interval to the last use (i.e. remove
/// from last use to the end of the mbb). In case mbb is the where the barrier
/// is, remove from the last use to the barrier.
bool
PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB, VNInfo *ValNo,
                                       SmallVector<MachineOperand*, 4> &Uses,
                                       SmallPtrSet<MachineInstr*, 4> &UseMIs) {
  MachineOperand *LastMO = 0;
  MachineInstr *LastMI = 0;
  if (MBB != BarrierMBB && Uses.size() == 1) {
    // Single use, no need to traverse the block. We can't assume this for the
    // barrier bb though since the use is probably below the barrier.
    LastMO = Uses[0];
    LastMI = LastMO->getParent();
  } else {
    MachineBasicBlock::iterator MEE = MBB->begin();
    MachineBasicBlock::iterator MII;
    if (MBB == BarrierMBB)
      MII = Barrier;
    else
      MII = MBB->end();
    while (MII != MEE) {
      --MII;
      MachineInstr *UseMI = &*MII;
      if (!UseMIs.count(UseMI))
        continue;
      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = UseMI->getOperand(i);
        if (MO.isReg() && MO.getReg() == CurrLI->reg) {
          LastMO = &MO;
          break;
        }
      }
      LastMI = UseMI;
      break;
    }
  }

  // Cut off live range from last use (or beginning of the mbb if there
  // are no uses in it) to the end of the mbb.
  unsigned RangeStart, RangeEnd = LIs->getMBBEndIdx(MBB)+1;
  if (LastMI) {
    RangeStart = LIs->getUseIndex(LIs->getInstructionIndex(LastMI))+1;
    assert(!LastMO->isKill() && "Last use already terminates the interval?");
    LastMO->setIsKill();
  } else {
    assert(MBB == BarrierMBB);
    RangeStart = LIs->getMBBStartIdx(MBB);
  }
  if (MBB == BarrierMBB)
    RangeEnd = LIs->getUseIndex(BarrierIdx)+1;
  CurrLI->removeRange(RangeStart, RangeEnd);
  if (LastMI)
    CurrLI->addKill(ValNo, RangeStart);

  // Return true if the last use becomes a new kill.
  return LastMI;
}

/// ShrinkWrapLiveInterval - Recursively traverse the predecessor
/// chain to find the new 'kills' and shrink wrap the live interval to the
/// new kill indices.
void
PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB,
                          MachineBasicBlock *SuccMBB, MachineBasicBlock *DefMBB,
                                    SmallPtrSet<MachineBasicBlock*, 8> &Visited,
           DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > &Uses,
           DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > &UseMIs,
                                  SmallVector<MachineBasicBlock*, 4> &UseMBBs) {
  if (Visited.count(MBB))
    return;

  // If live interval is live in another successor path, then we can't process
  // this block. But we may able to do so after all the successors have been
  // processed.
  if (MBB != BarrierMBB) {
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
           SE = MBB->succ_end(); SI != SE; ++SI) {
      MachineBasicBlock *SMBB = *SI;
      if (SMBB == SuccMBB)
        continue;
      if (CurrLI->liveAt(LIs->getMBBStartIdx(SMBB)))
        return;
    }
  }

  Visited.insert(MBB);

  DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
    UMII = Uses.find(MBB);
  if (UMII != Uses.end()) {
    // At least one use in this mbb, lets look for the kill.
    DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
      UMII2 = UseMIs.find(MBB);
    if (ShrinkWrapToLastUse(MBB, ValNo, UMII->second, UMII2->second))
      // Found a kill, shrink wrapping of this path ends here.
      return;
  } else if (MBB == DefMBB) {
    // There are no uses after the def.
    MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
    if (UseMBBs.empty()) {
      // The only use must be below barrier in the barrier block. It's safe to
      // remove the def.
      LIs->RemoveMachineInstrFromMaps(DefMI);
      DefMI->eraseFromParent();
      CurrLI->removeRange(ValNo->def, LIs->getMBBEndIdx(MBB)+1);
    }
  } else if (MBB == BarrierMBB) {
    // Remove entire live range from start of mbb to barrier.
    CurrLI->removeRange(LIs->getMBBStartIdx(MBB),
                        LIs->getUseIndex(BarrierIdx)+1);
  } else {
    // Remove entire live range of the mbb out of the live interval.
    CurrLI->removeRange(LIs->getMBBStartIdx(MBB), LIs->getMBBEndIdx(MBB)+1);
  }

  if (MBB == DefMBB)
    // Reached the def mbb, stop traversing this path further.
    return;

  // Traverse the pathes up the predecessor chains further.
  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
    MachineBasicBlock *Pred = *PI;
    if (Pred == MBB)
      continue;
    if (Pred == DefMBB && ValNo->hasPHIKill)
      // Pred is the def bb and the def reaches other val#s, we must
      // allow the value to be live out of the bb.
      continue;
    ShrinkWrapLiveInterval(ValNo, Pred, MBB, DefMBB, Visited,
                           Uses, UseMIs, UseMBBs);
  }

  return;
}

/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
  CurrLI = LI;

  // Find live range where current interval cross the barrier.
  LiveInterval::iterator LR =
    CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
  VNInfo *ValNo = LR->valno;

  if (ValNo->def == ~1U) {
    // Defined by a dead def? How can this be?
    assert(0 && "Val# is defined by a dead def?");
    abort();
  }

  // FIXME: For now, if definition is rematerializable, do not split.
  MachineInstr *DefMI = (ValNo->def != ~0U)
    ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
  if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
    return false;

  // Find all references in the barrier mbb.
  SmallPtrSet<MachineInstr*, 4> RefsInMBB;
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
         E = MRI->reg_end(); I != E; ++I) {
    MachineInstr *RefMI = &*I;
    if (RefMI->getParent() == BarrierMBB)
      RefsInMBB.insert(RefMI);
  }

  // Find a point to restore the value after the barrier.
  unsigned RestoreIndex;
  MachineBasicBlock::iterator RestorePt =
    findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
  if (RestorePt == BarrierMBB->end())
    return false;

  // Add a spill either before the barrier or after the definition.
  MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
  const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
  unsigned SpillIndex = 0;
  MachineInstr *SpillMI = NULL;
  int SS = -1;
  if (ValNo->def == ~0U) {
    // If it's defined by a phi, we must split just before the barrier.
    MachineBasicBlock::iterator SpillPt = 
      findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
    if (SpillPt == BarrierMBB->begin())
      return false; // No gap to insert spill.
    // Add spill.
    SS = CreateSpillStackSlot(CurrLI->reg, RC);
    TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
    SpillMI = prior(SpillPt);
    LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
  } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
                                 RestoreIndex, SpillIndex, SS)) {
    // If it's already split, just restore the value. There is no need to spill
    // the def again.
    if (!DefMI)
      return false; // Def is dead. Do nothing.
    // Check if it's possible to insert a spill after the def MI.
    MachineBasicBlock::iterator SpillPt;
    if (DefMBB == BarrierMBB) {
      // Add spill after the def and the last use before the barrier.
      SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI, RefsInMBB, SpillIndex);
      if (SpillPt == DefMBB->begin())
        return false; // No gap to insert spill.
    } else {
      SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
      if (SpillPt == DefMBB->end())
        return false; // No gap to insert spill.
    }
    // Add spill. The store instruction kills the register if def is before
    // the barrier in the barrier block.
    SS = CreateSpillStackSlot(CurrLI->reg, RC);
    TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
                             DefMBB == BarrierMBB, SS, RC);
    SpillMI = prior(SpillPt);
    LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
  }

  // Remember def instruction index to spill index mapping.
  if (DefMI && SpillMI)
    Def2SpillMap[ValNo->def] = SpillIndex;

  // Add restore.
  TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
  MachineInstr *LoadMI = prior(RestorePt);
  LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);

  // If live interval is spilled in the same block as the barrier, just
  // create a hole in the interval.
  if (!DefMBB ||
      (SpillMI && SpillMI->getParent() == BarrierMBB)) {
    // Update spill stack slot live interval.
    UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
                            LIs->getDefIndex(RestoreIndex));

    UpdateRegisterInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
                           LIs->getDefIndex(RestoreIndex));

    ++NumSplits;
    return true;
  }

  // Update spill stack slot live interval.
  UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
                          LIs->getDefIndex(RestoreIndex));

  // Shrink wrap the live interval by walking up the CFG and find the
  // new kills.
  // Now let's find all the uses of the val#.
  DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > Uses;
  DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > UseMIs;
  SmallPtrSet<MachineBasicBlock*, 4> Seen;
  SmallVector<MachineBasicBlock*, 4> UseMBBs;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = UseMO.getParent();
    unsigned UseIdx = LIs->getInstructionIndex(UseMI);
    LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx);
    if (ULR->valno != ValNo)
      continue;
    MachineBasicBlock *UseMBB = UseMI->getParent();
    // Remember which other mbb's use this val#.
    if (Seen.insert(UseMBB) && UseMBB != BarrierMBB)
      UseMBBs.push_back(UseMBB);
    DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
      UMII = Uses.find(UseMBB);
    if (UMII != Uses.end()) {
      DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
        UMII2 = UseMIs.find(UseMBB);
      UMII->second.push_back(&UseMO);
      UMII2->second.insert(UseMI);
    } else {
      SmallVector<MachineOperand*, 4> Ops;
      Ops.push_back(&UseMO);
      Uses.insert(std::make_pair(UseMBB, Ops));
      SmallPtrSet<MachineInstr*, 4> MIs;
      MIs.insert(UseMI);
      UseMIs.insert(std::make_pair(UseMBB, MIs));
    }
  }

  // Walk up the predecessor chains.
  SmallPtrSet<MachineBasicBlock*, 8> Visited;
  ShrinkWrapLiveInterval(ValNo, BarrierMBB, NULL, DefMBB, Visited,
                         Uses, UseMIs, UseMBBs);

  // FIXME: If ValNo->hasPHIKill is false, then renumber the val# by
  // the restore.

  // Remove live range from barrier to the restore. FIXME: Find a better
  // point to re-start the live interval.
  UpdateRegisterInterval(ValNo, LIs->getUseIndex(BarrierIdx)+1,
                         LIs->getDefIndex(RestoreIndex));

  ++NumSplits;
  return true;
}

/// SplitRegLiveIntervals - Split all register live intervals that cross the
/// barrier that's being processed.
bool
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) {
  // First find all the virtual registers whose live intervals are intercepted
  // by the current barrier.
  SmallVector<LiveInterval*, 8> Intervals;
  for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
    if (TII->IgnoreRegisterClassBarriers(*RC))
      continue;
    std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
    for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
      unsigned Reg = VRs[i];
      if (!LIs->hasInterval(Reg))
        continue;
      LiveInterval *LI = &LIs->getInterval(Reg);
      if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
        // Virtual register live interval is intercepted by the barrier. We
        // should split and shrink wrap its interval if possible.
        Intervals.push_back(LI);
    }
  }

  // Process the affected live intervals.
  bool Change = false;
  while (!Intervals.empty()) {
    if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
      break;
    LiveInterval *LI = Intervals.back();
    Intervals.pop_back();
    Change |= SplitRegLiveInterval(LI);
  }

  return Change;
}

bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
  CurrMF = &MF;
  TM     = &MF.getTarget();
  TII    = TM->getInstrInfo();
  MFI    = MF.getFrameInfo();
  MRI    = &MF.getRegInfo();
  LIs    = &getAnalysis<LiveIntervals>();
  LSs    = &getAnalysis<LiveStacks>();

  bool MadeChange = false;

  // Make sure blocks are numbered in order.
  MF.RenumberBlocks();

#if 0
  // FIXME: Go top down.
  MachineBasicBlock *Entry = MF.begin();
  SmallPtrSet<MachineBasicBlock*,16> Visited;

  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
       DFI != E; ++DFI) {
    BarrierMBB = *DFI;
    for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
           E = BarrierMBB->end(); I != E; ++I) {
      Barrier = &*I;
      const TargetRegisterClass **BarrierRCs =
        Barrier->getDesc().getRegClassBarriers();
      if (!BarrierRCs)
        continue;
      BarrierIdx = LIs->getInstructionIndex(Barrier);
      MadeChange |= SplitRegLiveIntervals(BarrierRCs);
    }
  }
#else
  for (MachineFunction::reverse_iterator I = MF.rbegin(), E = MF.rend();
       I != E; ++I) {
    BarrierMBB = &*I;
    for (MachineBasicBlock::reverse_iterator II = BarrierMBB->rbegin(),
           EE = BarrierMBB->rend(); II != EE; ++II) {
      Barrier = &*II;
      const TargetRegisterClass **BarrierRCs =
        Barrier->getDesc().getRegClassBarriers();
      if (!BarrierRCs)
        continue;
      BarrierIdx = LIs->getInstructionIndex(Barrier);
      MadeChange |= SplitRegLiveIntervals(BarrierRCs);
    }
  }
#endif

  return MadeChange;
}