1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
|
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/Passes.h"
#include "AllocationOrder.h"
#include "InterferenceCache.h"
#include "LiveDebugVariables.h"
#include "RegAllocBase.h"
#include "SpillPlacement.h"
#include "Spiller.h"
#include "SplitKit.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <queue>
using namespace llvm;
STATISTIC(NumGlobalSplits, "Number of split global live ranges");
STATISTIC(NumLocalSplits, "Number of split local live ranges");
STATISTIC(NumEvicted, "Number of interferences evicted");
static cl::opt<SplitEditor::ComplementSpillMode>
SplitSpillMode("split-spill-mode", cl::Hidden,
cl::desc("Spill mode for splitting live ranges"),
cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
clEnumValEnd),
cl::init(SplitEditor::SM_Partition));
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
createGreedyRegisterAllocator);
namespace {
class RAGreedy : public MachineFunctionPass,
public RegAllocBase,
private LiveRangeEdit::Delegate {
// context
MachineFunction *MF;
// analyses
SlotIndexes *Indexes;
MachineDominatorTree *DomTree;
MachineLoopInfo *Loops;
EdgeBundles *Bundles;
SpillPlacement *SpillPlacer;
LiveDebugVariables *DebugVars;
// state
OwningPtr<Spiller> SpillerInstance;
std::priority_queue<std::pair<unsigned, unsigned> > Queue;
unsigned NextCascade;
// Live ranges pass through a number of stages as we try to allocate them.
// Some of the stages may also create new live ranges:
//
// - Region splitting.
// - Per-block splitting.
// - Local splitting.
// - Spilling.
//
// Ranges produced by one of the stages skip the previous stages when they are
// dequeued. This improves performance because we can skip interference checks
// that are unlikely to give any results. It also guarantees that the live
// range splitting algorithm terminates, something that is otherwise hard to
// ensure.
enum LiveRangeStage {
/// Newly created live range that has never been queued.
RS_New,
/// Only attempt assignment and eviction. Then requeue as RS_Split.
RS_Assign,
/// Attempt live range splitting if assignment is impossible.
RS_Split,
/// Attempt more aggressive live range splitting that is guaranteed to make
/// progress. This is used for split products that may not be making
/// progress.
RS_Split2,
/// Live range will be spilled. No more splitting will be attempted.
RS_Spill,
/// There is nothing more we can do to this live range. Abort compilation
/// if it can't be assigned.
RS_Done
};
static const char *const StageName[];
// RegInfo - Keep additional information about each live range.
struct RegInfo {
LiveRangeStage Stage;
// Cascade - Eviction loop prevention. See canEvictInterference().
unsigned Cascade;
RegInfo() : Stage(RS_New), Cascade(0) {}
};
IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
LiveRangeStage getStage(const LiveInterval &VirtReg) const {
return ExtraRegInfo[VirtReg.reg].Stage;
}
void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
ExtraRegInfo.resize(MRI->getNumVirtRegs());
ExtraRegInfo[VirtReg.reg].Stage = Stage;
}
template<typename Iterator>
void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
ExtraRegInfo.resize(MRI->getNumVirtRegs());
for (;Begin != End; ++Begin) {
unsigned Reg = (*Begin)->reg;
if (ExtraRegInfo[Reg].Stage == RS_New)
ExtraRegInfo[Reg].Stage = NewStage;
}
}
/// Cost of evicting interference.
struct EvictionCost {
unsigned BrokenHints; ///< Total number of broken hints.
float MaxWeight; ///< Maximum spill weight evicted.
EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
bool operator<(const EvictionCost &O) const {
if (BrokenHints != O.BrokenHints)
return BrokenHints < O.BrokenHints;
return MaxWeight < O.MaxWeight;
}
};
// splitting state.
OwningPtr<SplitAnalysis> SA;
OwningPtr<SplitEditor> SE;
/// Cached per-block interference maps
InterferenceCache IntfCache;
/// All basic blocks where the current register has uses.
SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
/// Global live range splitting candidate info.
struct GlobalSplitCandidate {
// Register intended for assignment, or 0.
unsigned PhysReg;
// SplitKit interval index for this candidate.
unsigned IntvIdx;
// Interference for PhysReg.
InterferenceCache::Cursor Intf;
// Bundles where this candidate should be live.
BitVector LiveBundles;
SmallVector<unsigned, 8> ActiveBlocks;
void reset(InterferenceCache &Cache, unsigned Reg) {
PhysReg = Reg;
IntvIdx = 0;
Intf.setPhysReg(Cache, Reg);
LiveBundles.clear();
ActiveBlocks.clear();
}
// Set B[i] = C for every live bundle where B[i] was NoCand.
unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
unsigned Count = 0;
for (int i = LiveBundles.find_first(); i >= 0;
i = LiveBundles.find_next(i))
if (B[i] == NoCand) {
B[i] = C;
Count++;
}
return Count;
}
};
/// Candidate info for for each PhysReg in AllocationOrder.
/// This vector never shrinks, but grows to the size of the largest register
/// class.
SmallVector<GlobalSplitCandidate, 32> GlobalCand;
enum { NoCand = ~0u };
/// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
/// NoCand which indicates the stack interval.
SmallVector<unsigned, 32> BundleCand;
public:
RAGreedy();
/// Return the pass name.
virtual const char* getPassName() const {
return "Greedy Register Allocator";
}
/// RAGreedy analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual Spiller &spiller() { return *SpillerInstance; }
virtual void enqueue(LiveInterval *LI);
virtual LiveInterval *dequeue();
virtual unsigned selectOrSplit(LiveInterval&,
SmallVectorImpl<LiveInterval*>&);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
private:
bool LRE_CanEraseVirtReg(unsigned);
void LRE_WillShrinkVirtReg(unsigned);
void LRE_DidCloneVirtReg(unsigned, unsigned);
float calcSpillCost();
bool addSplitConstraints(InterferenceCache::Cursor, float&);
void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
void growRegion(GlobalSplitCandidate &Cand);
float calcGlobalSplitCost(GlobalSplitCandidate&);
bool calcCompactRegion(GlobalSplitCandidate&);
void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
void calcGapWeights(unsigned, SmallVectorImpl<float>&);
bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
void evictInterference(LiveInterval&, unsigned,
SmallVectorImpl<LiveInterval*>&);
unsigned tryAssign(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned tryEvict(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned trySplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace
char RAGreedy::ID = 0;
#ifndef NDEBUG
const char *const RAGreedy::StageName[] = {
"RS_New",
"RS_Assign",
"RS_Split",
"RS_Split2",
"RS_Spill",
"RS_Done"
};
#endif
// Hysteresis to use when comparing floats.
// This helps stabilize decisions based on float comparisons.
const float Hysteresis = 0.98f;
FunctionPass* llvm::createGreedyRegisterAllocator() {
return new RAGreedy();
}
RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
}
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<CalculateSpillWeights>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
AU.addRequired<LiveRegMatrix>();
AU.addPreserved<LiveRegMatrix>();
AU.addRequired<EdgeBundles>();
AU.addRequired<SpillPlacement>();
MachineFunctionPass::getAnalysisUsage(AU);
}
//===----------------------------------------------------------------------===//
// LiveRangeEdit delegate methods
//===----------------------------------------------------------------------===//
bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
if (VRM->hasPhys(VirtReg)) {
Matrix->unassign(LIS->getInterval(VirtReg));
return true;
}
// Unassigned virtreg is probably in the priority queue.
// RegAllocBase will erase it after dequeueing.
return false;
}
void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
if (!VRM->hasPhys(VirtReg))
return;
// Register is assigned, put it back on the queue for reassignment.
LiveInterval &LI = LIS->getInterval(VirtReg);
Matrix->unassign(LI);
enqueue(&LI);
}
void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
// Cloning a register we haven't even heard about yet? Just ignore it.
if (!ExtraRegInfo.inBounds(Old))
return;
// LRE may clone a virtual register because dead code elimination causes it to
// be split into connected components. The new components are much smaller
// than the original, so they should get a new chance at being assigned.
// same stage as the parent.
ExtraRegInfo[Old].Stage = RS_Assign;
ExtraRegInfo.grow(New);
ExtraRegInfo[New] = ExtraRegInfo[Old];
}
void RAGreedy::releaseMemory() {
SpillerInstance.reset(0);
ExtraRegInfo.clear();
GlobalCand.clear();
}
void RAGreedy::enqueue(LiveInterval *LI) {
// Prioritize live ranges by size, assigning larger ranges first.
// The queue holds (size, reg) pairs.
const unsigned Size = LI->getSize();
const unsigned Reg = LI->reg;
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Can only enqueue virtual registers");
unsigned Prio;
ExtraRegInfo.grow(Reg);
if (ExtraRegInfo[Reg].Stage == RS_New)
ExtraRegInfo[Reg].Stage = RS_Assign;
if (ExtraRegInfo[Reg].Stage == RS_Split) {
// Unsplit ranges that couldn't be allocated immediately are deferred until
// everything else has been allocated.
Prio = Size;
} else {
// Everything is allocated in long->short order. Long ranges that don't fit
// should be spilled (or split) ASAP so they don't create interference.
Prio = (1u << 31) + Size;
// Boost ranges that have a physical register hint.
if (VRM->hasKnownPreference(Reg))
Prio |= (1u << 30);
}
Queue.push(std::make_pair(Prio, ~Reg));
}
LiveInterval *RAGreedy::dequeue() {
if (Queue.empty())
return 0;
LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
Queue.pop();
return LI;
}
//===----------------------------------------------------------------------===//
// Direct Assignment
//===----------------------------------------------------------------------===//
/// tryAssign - Try to assign VirtReg to an available register.
unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
Order.rewind();
unsigned PhysReg;
while ((PhysReg = Order.next()))
if (!Matrix->checkInterference(VirtReg, PhysReg))
break;
if (!PhysReg || Order.isHint())
return PhysReg;
// PhysReg is available, but there may be a better choice.
// If we missed a simple hint, try to cheaply evict interference from the
// preferred register.
if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
if (Order.isHint(Hint)) {
DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
EvictionCost MaxCost(1);
if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
evictInterference(VirtReg, Hint, NewVRegs);
return Hint;
}
}
// Try to evict interference from a cheaper alternative.
unsigned Cost = TRI->getCostPerUse(PhysReg);
// Most registers have 0 additional cost.
if (!Cost)
return PhysReg;
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
<< '\n');
unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
return CheapReg ? CheapReg : PhysReg;
}
//===----------------------------------------------------------------------===//
// Interference eviction
//===----------------------------------------------------------------------===//
/// shouldEvict - determine if A should evict the assigned live range B. The
/// eviction policy defined by this function together with the allocation order
/// defined by enqueue() decides which registers ultimately end up being split
/// and spilled.
///
/// Cascade numbers are used to prevent infinite loops if this function is a
/// cyclic relation.
///
/// @param A The live range to be assigned.
/// @param IsHint True when A is about to be assigned to its preferred
/// register.
/// @param B The live range to be evicted.
/// @param BreaksHint True when B is already assigned to its preferred register.
bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
LiveInterval &B, bool BreaksHint) {
bool CanSplit = getStage(B) < RS_Spill;
// Be fairly aggressive about following hints as long as the evictee can be
// split.
if (CanSplit && IsHint && !BreaksHint)
return true;
return A.weight > B.weight;
}
/// canEvictInterference - Return true if all interferences between VirtReg and
/// PhysReg can be evicted. When OnlyCheap is set, don't do anything
///
/// @param VirtReg Live range that is about to be assigned.
/// @param PhysReg Desired register for assignment.
/// @param IsHint True when PhysReg is VirtReg's preferred register.
/// @param MaxCost Only look for cheaper candidates and update with new cost
/// when returning true.
/// @returns True when interference can be evicted cheaper than MaxCost.
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
bool IsHint, EvictionCost &MaxCost) {
// It is only possible to evict virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
return false;
// Find VirtReg's cascade number. This will be unassigned if VirtReg was never
// involved in an eviction before. If a cascade number was assigned, deny
// evicting anything with the same or a newer cascade number. This prevents
// infinite eviction loops.
//
// This works out so a register without a cascade number is allowed to evict
// anything, and it can be evicted by anything.
unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
if (!Cascade)
Cascade = NextCascade;
EvictionCost Cost;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// If there is 10 or more interferences, chances are one is heavier.
if (Q.collectInterferingVRegs(10) >= 10)
return false;
// Check if any interfering live range is heavier than MaxWeight.
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
"Only expecting virtual register interference from query");
// Never evict spill products. They cannot split or spill.
if (getStage(*Intf) == RS_Done)
return false;
// Once a live range becomes small enough, it is urgent that we find a
// register for it. This is indicated by an infinite spill weight. These
// urgent live ranges get to evict almost anything.
//
// Also allow urgent evictions of unspillable ranges from a strictly
// larger allocation order.
bool Urgent = !VirtReg.isSpillable() &&
(Intf->isSpillable() ||
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
// Only evict older cascades or live ranges without a cascade.
unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
if (Cascade <= IntfCascade) {
if (!Urgent)
return false;
// We permit breaking cascades for urgent evictions. It should be the
// last resort, though, so make it really expensive.
Cost.BrokenHints += 10;
}
// Would this break a satisfied hint?
bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
// Update eviction cost.
Cost.BrokenHints += BreaksHint;
Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
// Abort if this would be too expensive.
if (!(Cost < MaxCost))
return false;
// Finally, apply the eviction policy for non-urgent evictions.
if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
return false;
}
}
MaxCost = Cost;
return true;
}
/// evictInterference - Evict any interferring registers that prevent VirtReg
/// from being assigned to Physreg. This assumes that canEvictInterference
/// returned true.
void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
// Make sure that VirtReg has a cascade number, and assign that cascade
// number to every evicted register. These live ranges than then only be
// evicted by a newer cascade, preventing infinite loops.
unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
if (!Cascade)
Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
<< " interference: Cascade " << Cascade << '\n');
// Collect all interfering virtregs first.
SmallVector<LiveInterval*, 8> Intfs;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
Intfs.append(IVR.begin(), IVR.end());
}
// Evict them second. This will invalidate the queries.
for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
LiveInterval *Intf = Intfs[i];
// The same VirtReg may be present in multiple RegUnits. Skip duplicates.
if (!VRM->hasPhys(Intf->reg))
continue;
Matrix->unassign(*Intf);
assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
VirtReg.isSpillable() < Intf->isSpillable()) &&
"Cannot decrease cascade number, illegal eviction");
ExtraRegInfo[Intf->reg].Cascade = Cascade;
++NumEvicted;
NewVRegs.push_back(Intf);
}
}
/// tryEvict - Try to evict all interferences for a physreg.
/// @param VirtReg Currently unassigned virtual register.
/// @param Order Physregs to try.
/// @return Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs,
unsigned CostPerUseLimit) {
NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
// Keep track of the cheapest interference seen so far.
EvictionCost BestCost(~0u);
unsigned BestPhys = 0;
unsigned OrderLimit = Order.getOrder().size();
// When we are just looking for a reduced cost per use, don't break any
// hints, and only evict smaller spill weights.
if (CostPerUseLimit < ~0u) {
BestCost.BrokenHints = 0;
BestCost.MaxWeight = VirtReg.weight;
// Check of any registers in RC are below CostPerUseLimit.
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
unsigned MinCost = RegClassInfo.getMinCost(RC);
if (MinCost >= CostPerUseLimit) {
DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
<< ", no cheaper registers to be found.\n");
return 0;
}
// It is normal for register classes to have a long tail of registers with
// the same cost. We don't need to look at them if they're too expensive.
if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
OrderLimit = RegClassInfo.getLastCostChange(RC);
DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
}
}
Order.rewind();
while (unsigned PhysReg = Order.nextWithDups(OrderLimit)) {
if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
continue;
// The first use of a callee-saved register in a function has cost 1.
// Don't start using a CSR when the CostPerUseLimit is low.
if (CostPerUseLimit == 1)
if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
if (!MRI->isPhysRegUsed(CSR)) {
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
<< PrintReg(CSR, TRI) << '\n');
continue;
}
if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
continue;
// Best so far.
BestPhys = PhysReg;
// Stop if the hint can be used.
if (Order.isHint())
break;
}
if (!BestPhys)
return 0;
evictInterference(VirtReg, BestPhys, NewVRegs);
return BestPhys;
}
//===----------------------------------------------------------------------===//
// Region Splitting
//===----------------------------------------------------------------------===//
/// addSplitConstraints - Fill out the SplitConstraints vector based on the
/// interference pattern in Physreg and its aliases. Add the constraints to
/// SpillPlacement and return the static cost of this split in Cost, assuming
/// that all preferences in SplitConstraints are met.
/// Return false if there are no bundles with positive bias.
bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
float &Cost) {
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
// Reset interference dependent info.
SplitConstraints.resize(UseBlocks.size());
float StaticCost = 0;
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
BC.Number = BI.MBB->getNumber();
Intf.moveToBlock(BC.Number);
BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
BC.ChangesValue = BI.FirstDef.isValid();
if (!Intf.hasInterference())
continue;
// Number of spill code instructions to insert.
unsigned Ins = 0;
// Interference for the live-in value.
if (BI.LiveIn) {
if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
BC.Entry = SpillPlacement::MustSpill, ++Ins;
else if (Intf.first() < BI.FirstInstr)
BC.Entry = SpillPlacement::PrefSpill, ++Ins;
else if (Intf.first() < BI.LastInstr)
++Ins;
}
// Interference for the live-out value.
if (BI.LiveOut) {
if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
BC.Exit = SpillPlacement::MustSpill, ++Ins;
else if (Intf.last() > BI.LastInstr)
BC.Exit = SpillPlacement::PrefSpill, ++Ins;
else if (Intf.last() > BI.FirstInstr)
++Ins;
}
// Accumulate the total frequency of inserted spill code.
if (Ins)
StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
}
Cost = StaticCost;
// Add constraints for use-blocks. Note that these are the only constraints
// that may add a positive bias, it is downhill from here.
SpillPlacer->addConstraints(SplitConstraints);
return SpillPlacer->scanActiveBundles();
}
/// addThroughConstraints - Add constraints and links to SpillPlacer from the
/// live-through blocks in Blocks.
void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
ArrayRef<unsigned> Blocks) {
const unsigned GroupSize = 8;
SpillPlacement::BlockConstraint BCS[GroupSize];
unsigned TBS[GroupSize];
unsigned B = 0, T = 0;
for (unsigned i = 0; i != Blocks.size(); ++i) {
unsigned Number = Blocks[i];
Intf.moveToBlock(Number);
if (!Intf.hasInterference()) {
assert(T < GroupSize && "Array overflow");
TBS[T] = Number;
if (++T == GroupSize) {
SpillPlacer->addLinks(makeArrayRef(TBS, T));
T = 0;
}
continue;
}
assert(B < GroupSize && "Array overflow");
BCS[B].Number = Number;
// Interference for the live-in value.
if (Intf.first() <= Indexes->getMBBStartIdx(Number))
BCS[B].Entry = SpillPlacement::MustSpill;
else
BCS[B].Entry = SpillPlacement::PrefSpill;
// Interference for the live-out value.
if (Intf.last() >= SA->getLastSplitPoint(Number))
BCS[B].Exit = SpillPlacement::MustSpill;
else
BCS[B].Exit = SpillPlacement::PrefSpill;
if (++B == GroupSize) {
ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
SpillPlacer->addConstraints(Array);
B = 0;
}
}
ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
SpillPlacer->addConstraints(Array);
SpillPlacer->addLinks(makeArrayRef(TBS, T));
}
void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
// Keep track of through blocks that have not been added to SpillPlacer.
BitVector Todo = SA->getThroughBlocks();
SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
unsigned AddedTo = 0;
#ifndef NDEBUG
unsigned Visited = 0;
#endif
for (;;) {
ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
// Find new through blocks in the periphery of PrefRegBundles.
for (int i = 0, e = NewBundles.size(); i != e; ++i) {
unsigned Bundle = NewBundles[i];
// Look at all blocks connected to Bundle in the full graph.
ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
I != E; ++I) {
unsigned Block = *I;
if (!Todo.test(Block))
continue;
Todo.reset(Block);
// This is a new through block. Add it to SpillPlacer later.
ActiveBlocks.push_back(Block);
#ifndef NDEBUG
++Visited;
#endif
}
}
// Any new blocks to add?
if (ActiveBlocks.size() == AddedTo)
break;
// Compute through constraints from the interference, or assume that all
// through blocks prefer spilling when forming compact regions.
ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
if (Cand.PhysReg)
addThroughConstraints(Cand.Intf, NewBlocks);
else
// Provide a strong negative bias on through blocks to prevent unwanted
// liveness on loop backedges.
SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
AddedTo = ActiveBlocks.size();
// Perhaps iterating can enable more bundles?
SpillPlacer->iterate();
}
DEBUG(dbgs() << ", v=" << Visited);
}
/// calcCompactRegion - Compute the set of edge bundles that should be live
/// when splitting the current live range into compact regions. Compact
/// regions can be computed without looking at interference. They are the
/// regions formed by removing all the live-through blocks from the live range.
///
/// Returns false if the current live range is already compact, or if the
/// compact regions would form single block regions anyway.
bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
// Without any through blocks, the live range is already compact.
if (!SA->getNumThroughBlocks())
return false;
// Compact regions don't correspond to any physreg.
Cand.reset(IntfCache, 0);
DEBUG(dbgs() << "Compact region bundles");
// Use the spill placer to determine the live bundles. GrowRegion pretends
// that all the through blocks have interference when PhysReg is unset.
SpillPlacer->prepare(Cand.LiveBundles);
// The static split cost will be zero since Cand.Intf reports no interference.
float Cost;
if (!addSplitConstraints(Cand.Intf, Cost)) {
DEBUG(dbgs() << ", none.\n");
return false;
}
growRegion(Cand);
SpillPlacer->finish();
if (!Cand.LiveBundles.any()) {
DEBUG(dbgs() << ", none.\n");
return false;
}
DEBUG({
for (int i = Cand.LiveBundles.find_first(); i>=0;
i = Cand.LiveBundles.find_next(i))
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
return true;
}
/// calcSpillCost - Compute how expensive it would be to split the live range in
/// SA around all use blocks instead of forming bundle regions.
float RAGreedy::calcSpillCost() {
float Cost = 0;
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
unsigned Number = BI.MBB->getNumber();
// We normally only need one spill instruction - a load or a store.
Cost += SpillPlacer->getBlockFrequency(Number);
// Unless the value is redefined in the block.
if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
Cost += SpillPlacer->getBlockFrequency(Number);
}
return Cost;
}
/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
/// interference pattern in SplitConstraints.
///
float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
float GlobalCost = 0;
const BitVector &LiveBundles = Cand.LiveBundles;
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
unsigned Ins = 0;
if (BI.LiveIn)
Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
if (BI.LiveOut)
Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
if (Ins)
GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
}
for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
unsigned Number = Cand.ActiveBlocks[i];
bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
if (!RegIn && !RegOut)
continue;
if (RegIn && RegOut) {
// We need double spill code if this block has interference.
Cand.Intf.moveToBlock(Number);
if (Cand.Intf.hasInterference())
GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
continue;
}
// live-in / stack-out or stack-in live-out.
GlobalCost += SpillPlacer->getBlockFrequency(Number);
}
return GlobalCost;
}
/// splitAroundRegion - Split the current live range around the regions
/// determined by BundleCand and GlobalCand.
///
/// Before calling this function, GlobalCand and BundleCand must be initialized
/// so each bundle is assigned to a valid candidate, or NoCand for the
/// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
/// objects must be initialized for the current live range, and intervals
/// created for the used candidates.
///
/// @param LREdit The LiveRangeEdit object handling the current split.
/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
/// must appear in this list.
void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
ArrayRef<unsigned> UsedCands) {
// These are the intervals created for new global ranges. We may create more
// intervals for local ranges.
const unsigned NumGlobalIntvs = LREdit.size();
DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
assert(NumGlobalIntvs && "No global intervals configured");
// Isolate even single instructions when dealing with a proper sub-class.
// That guarantees register class inflation for the stack interval because it
// is all copies.
unsigned Reg = SA->getParent().reg;
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
// First handle all the blocks with uses.
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
unsigned Number = BI.MBB->getNumber();
unsigned IntvIn = 0, IntvOut = 0;
SlotIndex IntfIn, IntfOut;
if (BI.LiveIn) {
unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
if (CandIn != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandIn];
IntvIn = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfIn = Cand.Intf.first();
}
}
if (BI.LiveOut) {
unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
if (CandOut != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandOut];
IntvOut = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfOut = Cand.Intf.last();
}
}
// Create separate intervals for isolated blocks with multiple uses.
if (!IntvIn && !IntvOut) {
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
SE->splitSingleBlock(BI);
continue;
}
if (IntvIn && IntvOut)
SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
else if (IntvIn)
SE->splitRegInBlock(BI, IntvIn, IntfIn);
else
SE->splitRegOutBlock(BI, IntvOut, IntfOut);
}
// Handle live-through blocks. The relevant live-through blocks are stored in
// the ActiveBlocks list with each candidate. We need to filter out
// duplicates.
BitVector Todo = SA->getThroughBlocks();
for (unsigned c = 0; c != UsedCands.size(); ++c) {
ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
unsigned Number = Blocks[i];
if (!Todo.test(Number))
continue;
Todo.reset(Number);
unsigned IntvIn = 0, IntvOut = 0;
SlotIndex IntfIn, IntfOut;
unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
if (CandIn != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandIn];
IntvIn = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfIn = Cand.Intf.first();
}
unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
if (CandOut != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandOut];
IntvOut = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfOut = Cand.Intf.last();
}
if (!IntvIn && !IntvOut)
continue;
SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
}
}
++NumGlobalSplits;
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(Reg, LREdit.regs());
ExtraRegInfo.resize(MRI->getNumVirtRegs());
unsigned OrigBlocks = SA->getNumLiveBlocks();
// Sort out the new intervals created by splitting. We get four kinds:
// - Remainder intervals should not be split again.
// - Candidate intervals can be assigned to Cand.PhysReg.
// - Block-local splits are candidates for local splitting.
// - DCE leftovers should go back on the queue.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
LiveInterval &Reg = *LREdit.get(i);
// Ignore old intervals from DCE.
if (getStage(Reg) != RS_New)
continue;
// Remainder interval. Don't try splitting again, spill if it doesn't
// allocate.
if (IntvMap[i] == 0) {
setStage(Reg, RS_Spill);
continue;
}
// Global intervals. Allow repeated splitting as long as the number of live
// blocks is strictly decreasing.
if (IntvMap[i] < NumGlobalIntvs) {
if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
<< " blocks as original.\n");
// Don't allow repeated splitting as a safe guard against looping.
setStage(Reg, RS_Split2);
}
continue;
}
// Other intervals are treated as new. This includes local intervals created
// for blocks with multiple uses, and anything created by DCE.
}
if (VerifyEnabled)
MF->verify(this, "After splitting live range around region");
}
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
unsigned NumCands = 0;
unsigned BestCand = NoCand;
float BestCost;
SmallVector<unsigned, 8> UsedCands;
// Check if we can split this live range around a compact region.
bool HasCompact = calcCompactRegion(GlobalCand.front());
if (HasCompact) {
// Yes, keep GlobalCand[0] as the compact region candidate.
NumCands = 1;
BestCost = HUGE_VALF;
} else {
// No benefit from the compact region, our fallback will be per-block
// splitting. Make sure we find a solution that is cheaper than spilling.
BestCost = Hysteresis * calcSpillCost();
DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
}
Order.rewind();
while (unsigned PhysReg = Order.next()) {
// Discard bad candidates before we run out of interference cache cursors.
// This will only affect register classes with a lot of registers (>32).
if (NumCands == IntfCache.getMaxCursors()) {
unsigned WorstCount = ~0u;
unsigned Worst = 0;
for (unsigned i = 0; i != NumCands; ++i) {
if (i == BestCand || !GlobalCand[i].PhysReg)
continue;
unsigned Count = GlobalCand[i].LiveBundles.count();
if (Count < WorstCount)
Worst = i, WorstCount = Count;
}
--NumCands;
GlobalCand[Worst] = GlobalCand[NumCands];
if (BestCand == NumCands)
BestCand = Worst;
}
if (GlobalCand.size() <= NumCands)
GlobalCand.resize(NumCands+1);
GlobalSplitCandidate &Cand = GlobalCand[NumCands];
Cand.reset(IntfCache, PhysReg);
SpillPlacer->prepare(Cand.LiveBundles);
float Cost;
if (!addSplitConstraints(Cand.Intf, Cost)) {
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
continue;
}
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
if (Cost >= BestCost) {
DEBUG({
if (BestCand == NoCand)
dbgs() << " worse than no bundles\n";
else
dbgs() << " worse than "
<< PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
});
continue;
}
growRegion(Cand);
SpillPlacer->finish();
// No live bundles, defer to splitSingleBlocks().
if (!Cand.LiveBundles.any()) {
DEBUG(dbgs() << " no bundles.\n");
continue;
}
Cost += calcGlobalSplitCost(Cand);
DEBUG({
dbgs() << ", total = " << Cost << " with bundles";
for (int i = Cand.LiveBundles.find_first(); i>=0;
i = Cand.LiveBundles.find_next(i))
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
if (Cost < BestCost) {
BestCand = NumCands;
BestCost = Hysteresis * Cost; // Prevent rounding effects.
}
++NumCands;
}
// No solutions found, fall back to single block splitting.
if (!HasCompact && BestCand == NoCand)
return 0;
// Prepare split editor.
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
SE->reset(LREdit, SplitSpillMode);
// Assign all edge bundles to the preferred candidate, or NoCand.
BundleCand.assign(Bundles->getNumBundles(), NoCand);
// Assign bundles for the best candidate region.
if (BestCand != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[BestCand];
if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
UsedCands.push_back(BestCand);
Cand.IntvIdx = SE->openIntv();
DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
<< B << " bundles, intv " << Cand.IntvIdx << ".\n");
(void)B;
}
}
// Assign bundles for the compact region.
if (HasCompact) {
GlobalSplitCandidate &Cand = GlobalCand.front();
assert(!Cand.PhysReg && "Compact region has no physreg");
if (unsigned B = Cand.getBundles(BundleCand, 0)) {
UsedCands.push_back(0);
Cand.IntvIdx = SE->openIntv();
DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
<< Cand.IntvIdx << ".\n");
(void)B;
}
}
splitAroundRegion(LREdit, UsedCands);
return 0;
}
//===----------------------------------------------------------------------===//
// Per-Block Splitting
//===----------------------------------------------------------------------===//
/// tryBlockSplit - Split a global live range around every block with uses. This
/// creates a lot of local live ranges, that will be split by tryLocalSplit if
/// they don't allocate.
unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
unsigned Reg = VirtReg.reg;
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
SE->reset(LREdit, SplitSpillMode);
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
SE->splitSingleBlock(BI);
}
// No blocks were split.
if (LREdit.empty())
return 0;
// We did split for some blocks.
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
// Tell LiveDebugVariables about the new ranges.
DebugVars->splitRegister(Reg, LREdit.regs());
ExtraRegInfo.resize(MRI->getNumVirtRegs());
// Sort out the new intervals created by splitting. The remainder interval
// goes straight to spilling, the new local ranges get to stay RS_New.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
LiveInterval &LI = *LREdit.get(i);
if (getStage(LI) == RS_New && IntvMap[i] == 0)
setStage(LI, RS_Spill);
}
if (VerifyEnabled)
MF->verify(this, "After splitting live range around basic blocks");
return 0;
}
//===----------------------------------------------------------------------===//
// Per-Instruction Splitting
//===----------------------------------------------------------------------===//
/// tryInstructionSplit - Split a live range around individual instructions.
/// This is normally not worthwhile since the spiller is doing essentially the
/// same thing. However, when the live range is in a constrained register
/// class, it may help to insert copies such that parts of the live range can
/// be moved to a larger register class.
///
/// This is similar to spilling to a larger register class.
unsigned
RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
// There is no point to this if there are no larger sub-classes.
if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
return 0;
// Always enable split spill mode, since we're effectively spilling to a
// register.
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
SE->reset(LREdit, SplitEditor::SM_Size);
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
if (Uses.size() <= 1)
return 0;
DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
// Split around every non-copy instruction.
for (unsigned i = 0; i != Uses.size(); ++i) {
if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
if (MI->isFullCopy()) {
DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
continue;
}
SE->openIntv();
SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
SE->useIntv(SegStart, SegStop);
}
if (LREdit.empty()) {
DEBUG(dbgs() << "All uses were copies.\n");
return 0;
}
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
ExtraRegInfo.resize(MRI->getNumVirtRegs());
// Assign all new registers to RS_Spill. This was the last chance.
setStage(LREdit.begin(), LREdit.end(), RS_Spill);
return 0;
}
//===----------------------------------------------------------------------===//
// Local Splitting
//===----------------------------------------------------------------------===//
/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
/// in order to use PhysReg between two entries in SA->UseSlots.
///
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
SmallVectorImpl<float> &GapWeight) {
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
const unsigned NumGaps = Uses.size()-1;
// Start and end points for the interference check.
SlotIndex StartIdx =
BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
SlotIndex StopIdx =
BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
GapWeight.assign(NumGaps, 0.0f);
// Add interference from each overlapping register.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
.checkInterference())
continue;
// We know that VirtReg is a continuous interval from FirstInstr to
// LastInstr, so we don't need InterferenceQuery.
//
// Interference that overlaps an instruction is counted in both gaps
// surrounding the instruction. The exception is interference before
// StartIdx and after StopIdx.
//
LiveIntervalUnion::SegmentIter IntI =
Matrix->getLiveUnions()[*Units] .find(StartIdx);
for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
// Skip the gaps before IntI.
while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
if (++Gap == NumGaps)
break;
if (Gap == NumGaps)
break;
// Update the gaps covered by IntI.
const float weight = IntI.value()->weight;
for (; Gap != NumGaps; ++Gap) {
GapWeight[Gap] = std::max(GapWeight[Gap], weight);
if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
break;
}
if (Gap == NumGaps)
break;
}
}
// Add fixed interference.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
const LiveInterval &LI = LIS->getRegUnit(*Units);
LiveInterval::const_iterator I = LI.find(StartIdx);
LiveInterval::const_iterator E = LI.end();
// Same loop as above. Mark any overlapped gaps as HUGE_VALF.
for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
while (Uses[Gap+1].getBoundaryIndex() < I->start)
if (++Gap == NumGaps)
break;
if (Gap == NumGaps)
break;
for (; Gap != NumGaps; ++Gap) {
GapWeight[Gap] = HUGE_VALF;
if (Uses[Gap+1].getBaseIndex() >= I->end)
break;
}
if (Gap == NumGaps)
break;
}
}
}
/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
/// basic block.
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
// Note that it is possible to have an interval that is live-in or live-out
// while only covering a single block - A phi-def can use undef values from
// predecessors, and the block could be a single-block loop.
// We don't bother doing anything clever about such a case, we simply assume
// that the interval is continuous from FirstInstr to LastInstr. We should
// make sure that we don't do anything illegal to such an interval, though.
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
if (Uses.size() <= 2)
return 0;
const unsigned NumGaps = Uses.size()-1;
DEBUG({
dbgs() << "tryLocalSplit: ";
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
dbgs() << ' ' << Uses[i];
dbgs() << '\n';
});
// If VirtReg is live across any register mask operands, compute a list of
// gaps with register masks.
SmallVector<unsigned, 8> RegMaskGaps;
if (Matrix->checkRegMaskInterference(VirtReg)) {
// Get regmask slots for the whole block.
ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
DEBUG(dbgs() << RMS.size() << " regmasks in block:");
// Constrain to VirtReg's live range.
unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
Uses.front().getRegSlot()) - RMS.begin();
unsigned re = RMS.size();
for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
// Look for Uses[i] <= RMS <= Uses[i+1].
assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
continue;
// Skip a regmask on the same instruction as the last use. It doesn't
// overlap the live range.
if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
break;
DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
RegMaskGaps.push_back(i);
// Advance ri to the next gap. A regmask on one of the uses counts in
// both gaps.
while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
++ri;
}
DEBUG(dbgs() << '\n');
}
// Since we allow local split results to be split again, there is a risk of
// creating infinite loops. It is tempting to require that the new live
// ranges have less instructions than the original. That would guarantee
// convergence, but it is too strict. A live range with 3 instructions can be
// split 2+3 (including the COPY), and we want to allow that.
//
// Instead we use these rules:
//
// 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
// noop split, of course).
// 2. Require progress be made for ranges with getStage() == RS_Split2. All
// the new ranges must have fewer instructions than before the split.
// 3. New ranges with the same number of instructions are marked RS_Split2,
// smaller ranges are marked RS_New.
//
// These rules allow a 3 -> 2+3 split once, which we need. They also prevent
// excessive splitting and infinite loops.
//
bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
// Best split candidate.
unsigned BestBefore = NumGaps;
unsigned BestAfter = 0;
float BestDiff = 0;
const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
SmallVector<float, 8> GapWeight;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
// Keep track of the largest spill weight that would need to be evicted in
// order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
calcGapWeights(PhysReg, GapWeight);
// Remove any gaps with regmask clobbers.
if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
GapWeight[RegMaskGaps[i]] = HUGE_VALF;
// Try to find the best sequence of gaps to close.
// The new spill weight must be larger than any gap interference.
// We will split before Uses[SplitBefore] and after Uses[SplitAfter].
unsigned SplitBefore = 0, SplitAfter = 1;
// MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
// It is the spill weight that needs to be evicted.
float MaxGap = GapWeight[0];
for (;;) {
// Live before/after split?
const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
<< Uses[SplitBefore] << '-' << Uses[SplitAfter]
<< " i=" << MaxGap);
// Stop before the interval gets so big we wouldn't be making progress.
if (!LiveBefore && !LiveAfter) {
DEBUG(dbgs() << " all\n");
break;
}
// Should the interval be extended or shrunk?
bool Shrink = true;
// How many gaps would the new range have?
unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
// Legally, without causing looping?
bool Legal = !ProgressRequired || NewGaps < NumGaps;
if (Legal && MaxGap < HUGE_VALF) {
// Estimate the new spill weight. Each instruction reads or writes the
// register. Conservatively assume there are no read-modify-write
// instructions.
//
// Try to guess the size of the new interval.
const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
Uses[SplitBefore].distance(Uses[SplitAfter]) +
(LiveBefore + LiveAfter)*SlotIndex::InstrDist);
// Would this split be possible to allocate?
// Never allocate all gaps, we wouldn't be making progress.
DEBUG(dbgs() << " w=" << EstWeight);
if (EstWeight * Hysteresis >= MaxGap) {
Shrink = false;
float Diff = EstWeight - MaxGap;
if (Diff > BestDiff) {
DEBUG(dbgs() << " (best)");
BestDiff = Hysteresis * Diff;
BestBefore = SplitBefore;
BestAfter = SplitAfter;
}
}
}
// Try to shrink.
if (Shrink) {
if (++SplitBefore < SplitAfter) {
DEBUG(dbgs() << " shrink\n");
// Recompute the max when necessary.
if (GapWeight[SplitBefore - 1] >= MaxGap) {
MaxGap = GapWeight[SplitBefore];
for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
MaxGap = std::max(MaxGap, GapWeight[i]);
}
continue;
}
MaxGap = 0;
}
// Try to extend the interval.
if (SplitAfter >= NumGaps) {
DEBUG(dbgs() << " end\n");
break;
}
DEBUG(dbgs() << " extend\n");
MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
}
}
// Didn't find any candidates?
if (BestBefore == NumGaps)
return 0;
DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
<< '-' << Uses[BestAfter] << ", " << BestDiff
<< ", " << (BestAfter - BestBefore + 1) << " instrs\n");
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
SE->reset(LREdit);
SE->openIntv();
SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
SE->useIntv(SegStart, SegStop);
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
// If the new range has the same number of instructions as before, mark it as
// RS_Split2 so the next split will be forced to make progress. Otherwise,
// leave the new intervals as RS_New so they can compete.
bool LiveBefore = BestBefore != 0 || BI.LiveIn;
bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
if (NewGaps >= NumGaps) {
DEBUG(dbgs() << "Tagging non-progress ranges: ");
assert(!ProgressRequired && "Didn't make progress when it was required.");
for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
if (IntvMap[i] == 1) {
setStage(*LREdit.get(i), RS_Split2);
DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
}
DEBUG(dbgs() << '\n');
}
++NumLocalSplits;
return 0;
}
//===----------------------------------------------------------------------===//
// Live Range Splitting
//===----------------------------------------------------------------------===//
/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*>&NewVRegs) {
// Ranges must be Split2 or less.
if (getStage(VirtReg) >= RS_Spill)
return 0;
// Local intervals are handled separately.
if (LIS->intervalIsInOneMBB(VirtReg)) {
NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
SA->analyze(&VirtReg);
unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
return tryInstructionSplit(VirtReg, Order, NewVRegs);
}
NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
SA->analyze(&VirtReg);
// FIXME: SplitAnalysis may repair broken live ranges coming from the
// coalescer. That may cause the range to become allocatable which means that
// tryRegionSplit won't be making progress. This check should be replaced with
// an assertion when the coalescer is fixed.
if (SA->didRepairRange()) {
// VirtReg has changed, so all cached queries are invalid.
Matrix->invalidateVirtRegs();
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
return PhysReg;
}
// First try to split around a region spanning multiple blocks. RS_Split2
// ranges already made dubious progress with region splitting, so they go
// straight to single block splitting.
if (getStage(VirtReg) < RS_Split2) {
unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
}
// Then isolate blocks.
return tryBlockSplit(VirtReg, Order, NewVRegs);
}
//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
// First try assigning a free register.
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
return PhysReg;
LiveRangeStage Stage = getStage(VirtReg);
DEBUG(dbgs() << StageName[Stage]
<< " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
// Try to evict a less worthy live range, but only for ranges from the primary
// queue. The RS_Split ranges already failed to do this, and they should not
// get a second chance until they have been split.
if (Stage != RS_Split)
if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
return PhysReg;
assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
// The first time we see a live range, don't try to split or spill.
// Wait until the second time, when all smaller ranges have been allocated.
// This gives a better picture of the interference to split around.
if (Stage < RS_Split) {
setStage(VirtReg, RS_Split);
DEBUG(dbgs() << "wait for second round\n");
NewVRegs.push_back(&VirtReg);
return 0;
}
// If we couldn't allocate a register from spilling, there is probably some
// invalid inline assembly. The base class wil report it.
if (Stage >= RS_Done || !VirtReg.isSpillable())
return ~0u;
// Try splitting VirtReg or interferences.
unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
// Finally spill VirtReg itself.
NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
spiller().spill(LRE);
setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
if (VerifyEnabled)
MF->verify(this, "After spilling");
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
<< "********** Function: " << mf.getName() << '\n');
MF = &mf;
if (VerifyEnabled)
MF->verify(this, "Before greedy register allocator");
RegAllocBase::init(getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>(),
getAnalysis<LiveRegMatrix>());
Indexes = &getAnalysis<SlotIndexes>();
DomTree = &getAnalysis<MachineDominatorTree>();
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
Loops = &getAnalysis<MachineLoopInfo>();
Bundles = &getAnalysis<EdgeBundles>();
SpillPlacer = &getAnalysis<SpillPlacement>();
DebugVars = &getAnalysis<LiveDebugVariables>();
SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
ExtraRegInfo.clear();
ExtraRegInfo.resize(MRI->getNumVirtRegs());
NextCascade = 1;
IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
GlobalCand.resize(32); // This will grow as needed.
allocatePhysRegs();
releaseMemory();
return true;
}
|