aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/RegAllocGreedy.cpp
blob: 92f97d046f5d88356a8b0b6b8cd4f8bb5b2937f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "AllocationOrder.h"
#include "LiveIntervalUnion.h"
#include "LiveRangeEdit.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "SpillPlacement.h"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineLoopRanges.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"

using namespace llvm;

static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
                                       createGreedyRegisterAllocator);

namespace {
class RAGreedy : public MachineFunctionPass, public RegAllocBase {
  // context
  MachineFunction *MF;
  BitVector ReservedRegs;

  // analyses
  SlotIndexes *Indexes;
  LiveStacks *LS;
  MachineDominatorTree *DomTree;
  MachineLoopInfo *Loops;
  MachineLoopRanges *LoopRanges;
  EdgeBundles *Bundles;
  SpillPlacement *SpillPlacer;

  // state
  std::auto_ptr<Spiller> SpillerInstance;
  std::auto_ptr<SplitAnalysis> SA;

  // splitting state.

  /// All basic blocks where the current register is live.
  SmallVector<SpillPlacement::BlockConstraint, 8> SpillConstraints;

  /// Additional information about basic blocks where the current variable is
  /// live. Such a block will look like one of these templates:
  ///
  ///  1. |   o---x   | Internal to block. Variable is only live in this block.
  ///  2. |---x       | Live-in, kill.
  ///  3. |       o---| Def, live-out.
  ///  4. |---x   o---| Live-in, kill, def, live-out.
  ///  5. |---o---o---| Live-through with uses or defs.
  ///  6. |-----------| Live-through without uses. Transparent.
  ///
  struct BlockInfo {
    MachineBasicBlock *MBB;
    SlotIndex FirstUse;   ///< First instr using current reg.
    SlotIndex LastUse;    ///< Last instr using current reg.
    SlotIndex Kill;       ///< Interval end point inside block.
    SlotIndex Def;        ///< Interval start point inside block.
    bool Uses;            ///< Current reg has uses or defs in block.
    bool LiveThrough;     ///< Live in whole block (Templ 5. or 6. above).
    bool LiveIn;          ///< Current reg is live in.
    bool LiveOut;         ///< Current reg is live out.

    // Per-interference pattern scratch data.
    bool OverlapEntry;    ///< Interference overlaps entering interval.
    bool OverlapExit;     ///< Interference overlaps exiting interval.
  };

  /// Basic blocks where var is live. This array is parallel to
  /// SpillConstraints.
  SmallVector<BlockInfo, 8> LiveBlocks;

public:
  RAGreedy();

  /// Return the pass name.
  virtual const char* getPassName() const {
    return "Greedy Register Allocator";
  }

  /// RAGreedy analysis usage.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  virtual void releaseMemory();

  virtual Spiller &spiller() { return *SpillerInstance; }

  virtual float getPriority(LiveInterval *LI);

  virtual unsigned selectOrSplit(LiveInterval&,
                                 SmallVectorImpl<LiveInterval*>&);

  /// Perform register allocation.
  virtual bool runOnMachineFunction(MachineFunction &mf);

  static char ID;

private:
  bool checkUncachedInterference(LiveInterval&, unsigned);
  LiveInterval *getSingleInterference(LiveInterval&, unsigned);
  bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
  bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg);
  float calcInterferenceWeight(LiveInterval&, unsigned);
  void calcLiveBlockInfo(LiveInterval&);
  float calcInterferenceInfo(LiveInterval&, unsigned);
  float calcGlobalSplitCost(const BitVector&);
  void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
                         SmallVectorImpl<LiveInterval*>&);

  unsigned tryReassign(LiveInterval&, AllocationOrder&);
  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
                          SmallVectorImpl<LiveInterval*>&);
  unsigned trySplit(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<LiveInterval*>&);
  unsigned trySpillInterferences(LiveInterval&, AllocationOrder&,
                                 SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace

char RAGreedy::ID = 0;

FunctionPass* llvm::createGreedyRegisterAllocator() {
  return new RAGreedy();
}

RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
}

void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  if (StrongPHIElim)
    AU.addRequiredID(StrongPHIEliminationID);
  AU.addRequiredTransitive<RegisterCoalescer>();
  AU.addRequired<CalculateSpillWeights>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<MachineLoopRanges>();
  AU.addPreserved<MachineLoopRanges>();
  AU.addRequired<VirtRegMap>();
  AU.addPreserved<VirtRegMap>();
  AU.addRequired<EdgeBundles>();
  AU.addRequired<SpillPlacement>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

void RAGreedy::releaseMemory() {
  SpillerInstance.reset(0);
  RegAllocBase::releaseMemory();
}

float RAGreedy::getPriority(LiveInterval *LI) {
  float Priority = LI->weight;

  // Prioritize hinted registers so they are allocated first.
  std::pair<unsigned, unsigned> Hint;
  if (Hint.first || Hint.second) {
    // The hint can be target specific, a virtual register, or a physreg.
    Priority *= 2;

    // Prefer physreg hints above anything else.
    if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second))
      Priority *= 2;
  }
  return Priority;
}


//===----------------------------------------------------------------------===//
//                         Register Reassignment
//===----------------------------------------------------------------------===//

// Check interference without using the cache.
bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
                                         unsigned PhysReg) {
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
    if (subQ.checkInterference())
      return true;
  }
  return false;
}

/// getSingleInterference - Return the single interfering virtual register
/// assigned to PhysReg. Return 0 if more than one virtual register is
/// interfering.
LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
                                              unsigned PhysReg) {
  // Check physreg and aliases.
  LiveInterval *Interference = 0;
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    if (Q.checkInterference()) {
      if (Interference)
        return 0;
      Q.collectInterferingVRegs(1);
      if (!Q.seenAllInterferences())
        return 0;
      Interference = Q.interferingVRegs().front();
    }
  }
  return Interference;
}

// Attempt to reassign this virtual register to a different physical register.
//
// FIXME: we are not yet caching these "second-level" interferences discovered
// in the sub-queries. These interferences can change with each call to
// selectOrSplit. However, we could implement a "may-interfere" cache that
// could be conservatively dirtied when we reassign or split.
//
// FIXME: This may result in a lot of alias queries. We could summarize alias
// live intervals in their parent register's live union, but it's messy.
bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
                            unsigned WantedPhysReg) {
  assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
         "Can only reassign virtual registers");
  assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
         "inconsistent phys reg assigment");

  AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
  while (unsigned PhysReg = Order.next()) {
    // Don't reassign to a WantedPhysReg alias.
    if (TRI->regsOverlap(PhysReg, WantedPhysReg))
      continue;

    if (checkUncachedInterference(InterferingVReg, PhysReg))
      continue;

    // Reassign the interfering virtual reg to this physical reg.
    unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
    DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
          TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
    PhysReg2LiveUnion[OldAssign].extract(InterferingVReg);
    VRM->clearVirt(InterferingVReg.reg);
    VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg);
    PhysReg2LiveUnion[PhysReg].unify(InterferingVReg);

    return true;
  }
  return false;
}

/// reassignInterferences - Reassign all interferences to different physical
/// registers such that Virtreg can be assigned to PhysReg.
/// Currently this only works with a single interference.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  PhysReg Physical register to be cleared.
/// @return True on success, false if nothing was changed.
bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) {
  LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
  if (!InterferingVReg)
    return false;
  if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
    return false;
  return reassignVReg(*InterferingVReg, PhysReg);
}

/// tryReassign - Try to reassign interferences to different physregs.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  Order   Physregs to try.
/// @return         Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order) {
  NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
  Order.rewind();
  while (unsigned PhysReg = Order.next())
    if (reassignInterferences(VirtReg, PhysReg))
      return PhysReg;
  return 0;
}


//===----------------------------------------------------------------------===//
//                              Region Splitting
//===----------------------------------------------------------------------===//

/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
/// where VirtReg is live.
/// The SpillConstraints array is minimally initialized with MBB->getNumber().
void RAGreedy::calcLiveBlockInfo(LiveInterval &VirtReg) {
  LiveBlocks.clear();
  SpillConstraints.clear();

  assert(!VirtReg.empty() && "Cannot allocate an empty interval");
  LiveInterval::const_iterator LVI = VirtReg.begin();
  LiveInterval::const_iterator LVE = VirtReg.end();

  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
  UseI = SA->UseSlots.begin();
  UseE = SA->UseSlots.end();

  // Loop over basic blocks where VirtReg is live.
  MachineFunction::iterator MFI = Indexes->getMBBFromIndex(LVI->start);
  for (;;) {
    // Block constraints depend on the interference pattern.
    // Just allocate them here, don't compute anything.
    SpillPlacement::BlockConstraint BC;
    BC.Number = MFI->getNumber();
    SpillConstraints.push_back(BC);

    BlockInfo BI;
    BI.MBB = MFI;
    SlotIndex Start, Stop;
    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);

    // LVI is the first live segment overlapping MBB.
    BI.LiveIn = LVI->start <= Start;
    if (!BI.LiveIn)
      BI.Def = LVI->start;

    // Find the first and last uses in the block.
    BI.Uses = SA->hasUses(MFI);
    if (BI.Uses && UseI != UseE) {
      BI.FirstUse = *UseI;
      assert(BI.FirstUse >= Start);
      do ++UseI;
      while (UseI != UseE && *UseI < Stop);
      BI.LastUse = UseI[-1];
      assert(BI.LastUse < Stop);
    }

    // Look for gaps in the live range.
    bool hasGap = false;
    BI.LiveOut = true;
    while (LVI->end < Stop) {
      SlotIndex LastStop = LVI->end;
      if (++LVI == LVE || LVI->start >= Stop) {
        BI.Kill = LastStop;
        BI.LiveOut = false;
        break;
      }
      if (LastStop < LVI->start) {
        hasGap = true;
        BI.Kill = LastStop;
        BI.Def = LVI->start;
      }
    }

    // Don't set LiveThrough when the block has a gap.
    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
    LiveBlocks.push_back(BI);

    // LVI is now at LVE or LVI->end >= Stop.
    if (LVI == LVE)
      break;

    // Live segment ends exactly at Stop. Move to the next segment.
    if (LVI->end == Stop && ++LVI == LVE)
      break;

    // Pick the next basic block.
    if (LVI->start < Stop)
      ++MFI;
    else
      MFI = Indexes->getMBBFromIndex(LVI->start);
  }
}

/// calcInterferenceInfo - Compute per-block outgoing and ingoing constraints
/// when considering interference from PhysReg. Also compute an optimistic local
/// cost of this interference pattern.
///
/// The final cost of a split is the local cost + global cost of preferences
/// broken by SpillPlacement.
///
float RAGreedy::calcInterferenceInfo(LiveInterval &VirtReg, unsigned PhysReg) {
  // Reset interference dependent info.
  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
    BlockInfo &BI = LiveBlocks[i];
    SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
    BC.Entry = (BI.Uses && BI.LiveIn) ?
      SpillPlacement::PrefReg : SpillPlacement::DontCare;
    BC.Exit = (BI.Uses && BI.LiveOut) ?
      SpillPlacement::PrefReg : SpillPlacement::DontCare;
    BI.OverlapEntry = BI.OverlapExit = false;
  }

  // Add interference info from each PhysReg alias.
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
    if (!query(VirtReg, *AI).checkInterference())
      continue;
    DEBUG(PhysReg2LiveUnion[*AI].print(dbgs(), TRI));
    LiveIntervalUnion::SegmentIter IntI =
      PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
    if (!IntI.valid())
      continue;

    for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
      BlockInfo &BI = LiveBlocks[i];
      SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
      SlotIndex Start, Stop;
      tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);

      // Skip interference-free blocks.
      if (IntI.start() >= Stop)
        continue;

      // Handle transparent blocks with interference separately.
      // Transparent blocks never incur any fixed cost.
      if (BI.LiveThrough && !BI.Uses) {
        // Check if interference is live-in - force spill.
        if (BC.Entry != SpillPlacement::MustSpill) {
          BC.Entry = SpillPlacement::PrefSpill;
          IntI.advanceTo(Start);
          if (IntI.valid() && IntI.start() <= Start)
            BC.Entry = SpillPlacement::MustSpill;
        }

        // Check if interference is live-out - force spill.
        if (BC.Exit != SpillPlacement::MustSpill) {
          BC.Exit = SpillPlacement::PrefSpill;
          IntI.advanceTo(Stop);
          if (IntI.valid() && IntI.start() < Stop)
            BC.Exit = SpillPlacement::MustSpill;
        }

        // Nothing more to do for this transparent block.
        if (!IntI.valid())
          break;
        continue;
      }

      // Now we only have blocks with uses left.
      // Check if the interference overlaps the uses.
      assert(BI.Uses && "Non-transparent block without any uses");

      // Check interference on entry.
      if (BI.LiveIn && BC.Entry != SpillPlacement::MustSpill) {
        IntI.advanceTo(Start);
        if (!IntI.valid())
          break;

        // Interference is live-in - force spill.
        if (IntI.start() <= Start)
          BC.Entry = SpillPlacement::MustSpill;
        // Not live in, but before the first use.
        else if (IntI.start() < BI.FirstUse)
          BC.Entry = SpillPlacement::PrefSpill;
      }

      // Does interference overlap the uses in the entry segment
      // [FirstUse;Kill)?
      if (BI.LiveIn && !BI.OverlapEntry) {
        IntI.advanceTo(BI.FirstUse);
        if (!IntI.valid())
          break;
        // A live-through interval has no kill.
        // Check [FirstUse;LastUse) instead.
        if (IntI.start() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
          BI.OverlapEntry = true;
      }

      // Does interference overlap the uses in the exit segment [Def;LastUse)?
      if (BI.LiveOut && !BI.LiveThrough && !BI.OverlapExit) {
        IntI.advanceTo(BI.Def);
        if (!IntI.valid())
          break;
        if (IntI.start() < BI.LastUse)
          BI.OverlapExit = true;
      }

      // Check interference on exit.
      if (BI.LiveOut && BC.Exit != SpillPlacement::MustSpill) {
        // Check interference between LastUse and Stop.
        if (BC.Exit != SpillPlacement::PrefSpill) {
          IntI.advanceTo(BI.LastUse);
          if (!IntI.valid())
            break;
          if (IntI.start() < Stop)
            BC.Exit = SpillPlacement::PrefSpill;
        }
        // Is the interference live-out?
        IntI.advanceTo(Stop);
        if (!IntI.valid())
          break;
        if (IntI.start() < Stop)
          BC.Exit = SpillPlacement::MustSpill;
      }
    }
  }

  // Accumulate a local cost of this interference pattern.
  float LocalCost = 0;
  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
    BlockInfo &BI = LiveBlocks[i];
    if (!BI.Uses)
      continue;
    SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
    unsigned Inserts = 0;

    // Do we need spill code for the entry segment?
    if (BI.LiveIn)
      Inserts += BI.OverlapEntry || BC.Entry != SpillPlacement::PrefReg;

    // For the exit segment?
    if (BI.LiveOut)
      Inserts += BI.OverlapExit || BC.Exit != SpillPlacement::PrefReg;

    // The local cost of spill code in this block is the block frequency times
    // the number of spill instructions inserted.
    if (Inserts)
      LocalCost += Inserts * SpillPlacer->getBlockFrequency(BI.MBB);
  }
  DEBUG(dbgs() << "Local cost of " << PrintReg(PhysReg, TRI) << " = "
               << LocalCost << '\n');
  return LocalCost;
}

/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
/// interference pattern in SpillConstraints.
///
float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
  float GlobalCost = 0;
  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
    SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
    unsigned Inserts = 0;
    // Broken entry preference?
    Inserts += LiveBundles[Bundles->getBundle(BC.Number, 0)] !=
                 (BC.Entry == SpillPlacement::PrefReg);
    // Broken exit preference?
    Inserts += LiveBundles[Bundles->getBundle(BC.Number, 1)] !=
                 (BC.Exit == SpillPlacement::PrefReg);
    if (Inserts)
      GlobalCost += Inserts * SpillPlacer->getBlockFrequency(LiveBlocks[i].MBB);
  }
  DEBUG(dbgs() << "Global cost = " << GlobalCost << '\n');
  return GlobalCost;
}

/// splitAroundRegion - Split VirtReg around the region determined by
/// LiveBundles. Make an effort to avoid interference from PhysReg.
///
/// The 'register' interval is going to contain as many uses as possible while
/// avoiding interference. The 'stack' interval is the complement constructed by
/// SplitEditor. It will contain the rest.
///
void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
                                 const BitVector &LiveBundles,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  DEBUG({
    dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
           << " with bundles";
    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
      dbgs() << " EB#" << i;
    dbgs() << ".\n";
  });

  // First compute interference ranges in the live blocks.
  typedef std::pair<SlotIndex, SlotIndex> IndexPair;
  SmallVector<IndexPair, 8> InterferenceRanges;
  InterferenceRanges.resize(LiveBlocks.size());
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
    if (!query(VirtReg, *AI).checkInterference())
      continue;
    LiveIntervalUnion::SegmentIter IntI =
      PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
    if (!IntI.valid())
      continue;
    for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
      BlockInfo &BI = LiveBlocks[i];
      if (!BI.Uses)
        continue;
      IndexPair &IP = InterferenceRanges[i];
      SlotIndex Start, Stop;
      tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
      // Skip interference-free blocks.
      if (IntI.start() >= Stop)
        continue;

      // First interference in block.
      if (BI.LiveIn) {
        IntI.advanceTo(Start);
        if (!IntI.valid())
          break;
        if (IntI.start() >= Stop)
          continue;
        if (!IP.first.isValid() || IntI.start() < IP.first)
          IP.first = IntI.start();
      }

      // Last interference in block.
      if (BI.LiveOut) {
        IntI.advanceTo(Stop);
        if (!IntI.valid() || IntI.start() >= Stop)
          --IntI;
        if (IntI.stop() <= Start)
          continue;
        if (!IP.second.isValid() || IntI.stop() > IP.second)
          IP.second = IntI.stop();
      }
    }
  }

  SmallVector<LiveInterval*, 4> SpillRegs;
  LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
  SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit);

  // Create the main cross-block interval.
  SE.openIntv();

  // First add all defs that are live out of a block.
  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
    BlockInfo &BI = LiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];

    // Should the register be live out?
    if (!BI.LiveOut || !RegOut)
      continue;

    IndexPair &IP = InterferenceRanges[i];
    SlotIndex Start, Stop;
    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);

    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
                 << Bundles->getBundle(BI.MBB->getNumber(), 1)
                 << " intf [" << IP.first << ';' << IP.second << ')');

    // The interference interval should either be invalid or overlap MBB.
    assert((!IP.first.isValid() || IP.first < Stop) && "Bad interference");
    assert((!IP.second.isValid() || IP.second > Start) && "Bad interference");

    // Check interference leaving the block.
    if (!IP.second.isValid()) {
      // Block is interference-free.
      DEBUG(dbgs() << ", no interference");
      if (!BI.Uses) {
        assert(BI.LiveThrough && "No uses, but not live through block?");
        // Block is live-through without interference.
        DEBUG(dbgs() << ", no uses"
                     << (RegIn ? ", live-through.\n" : ", stack in.\n"));
        if (!RegIn)
          SE.enterIntvAtEnd(*BI.MBB);
        continue;
      }
      if (!BI.LiveThrough) {
        DEBUG(dbgs() << ", not live-through.\n");
        SE.useIntv(SE.enterIntvBefore(BI.Def), Stop);
        continue;
      }
      if (!RegIn) {
        // Block is live-through, but entry bundle is on the stack.
        // Reload just before the first use.
        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
        SE.useIntv(SE.enterIntvBefore(BI.FirstUse), Stop);
        continue;
      }
      DEBUG(dbgs() << ", live-through.\n");
      continue;
    }

    // Block has interference.
    DEBUG(dbgs() << ", interference to " << IP.second);
    if (!BI.Uses) {
      // No uses in block, avoid interference by reloading as late as possible.
      DEBUG(dbgs() << ", no uses.\n");
      SE.enterIntvAtEnd(*BI.MBB);
      continue;
    }
    if (IP.second < BI.LastUse) {
      // There are interference-free uses at the end of the block.
      // Find the first use that can get the live-out register.
      SmallVectorImpl<SlotIndex>::const_iterator UI =
        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), IP.second);
      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
      SlotIndex Use = *UI;
      DEBUG(dbgs() << ", free use at " << Use << ".\n");
      assert(Use <= BI.LastUse && "Couldn't find last use");
      SE.useIntv(SE.enterIntvBefore(Use), Stop);
      continue;
    }

    // Interference is after the last use.
    DEBUG(dbgs() << " after last use.\n");
    SE.enterIntvAtEnd(*BI.MBB);
  }

  // Now all defs leading to live bundles are handled, do everything else.
  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
    BlockInfo &BI = LiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];

    // Is the register live-in?
    if (!BI.LiveIn || !RegIn)
      continue;

    // We have an incoming register. Check for interference.
    IndexPair &IP = InterferenceRanges[i];
    SlotIndex Start, Stop;
    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);

    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
                 << " -> BB#" << BI.MBB->getNumber());

    // Check interference entering the block.
    if (!IP.first.isValid()) {
      // Block is interference-free.
      DEBUG(dbgs() << ", no interference");
      if (!BI.Uses) {
        assert(BI.LiveThrough && "No uses, but not live through block?");
        // Block is live-through without interference.
        if (RegOut) {
          DEBUG(dbgs() << ", no uses, live-through.\n");
          SE.useIntv(Start, Stop);
        } else {
          DEBUG(dbgs() << ", no uses, stack-out.\n");
          SE.leaveIntvAtTop(*BI.MBB);
        }
        continue;
      }
      if (!BI.LiveThrough) {
        DEBUG(dbgs() << ", killed in block.\n");
        SE.useIntv(Start, SE.leaveIntvAfter(BI.Kill));
        continue;
      }
      if (!RegOut) {
        // Block is live-through, but exit bundle is on the stack.
        // Spill immediately after the last use.
        DEBUG(dbgs() << ", uses, stack-out.\n");
        SE.useIntv(Start, SE.leaveIntvAfter(BI.LastUse));
        continue;
      }
      // Register is live-through.
      DEBUG(dbgs() << ", uses, live-through.\n");
      SE.useIntv(Start, Stop);
      continue;
    }

    // Block has interference.
    DEBUG(dbgs() << ", interference from " << IP.first);
    if (!BI.Uses) {
      // No uses in block, avoid interference by spilling as soon as possible.
      DEBUG(dbgs() << ", no uses.\n");
      SE.leaveIntvAtTop(*BI.MBB);
      continue;
    }
    if (IP.first > BI.FirstUse) {
      // There are interference-free uses at the beginning of the block.
      // Find the last use that can get the register.
      SmallVectorImpl<SlotIndex>::const_iterator UI =
        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), IP.first);
      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
      SlotIndex Use = (--UI)->getBoundaryIndex();
      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
      assert(Use >= BI.FirstUse && Use < IP.first);
      SE.useIntv(Start, SE.leaveIntvAfter(Use));
      continue;
    }

    // Interference is before the first use.
    DEBUG(dbgs() << " before first use.\n");
    SE.leaveIntvAtTop(*BI.MBB);
  }

  SE.closeIntv();

  // FIXME: Should we be more aggressive about splitting the stack region into
  // per-block segments? The current approach allows the stack region to
  // separate into connected components. Some components may be allocatable.
  SE.finish();

  if (VerifyEnabled)
    MF->verify(this, "After splitting live range around region");
}

unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
  calcLiveBlockInfo(VirtReg);
  BitVector LiveBundles, BestBundles;
  float BestCost = 0;
  unsigned BestReg = 0;
  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    float Cost = calcInterferenceInfo(VirtReg, PhysReg);
    if (BestReg && Cost >= BestCost)
      continue;

    SpillPlacer->placeSpills(SpillConstraints, LiveBundles);
    // No live bundles, defer to splitSingleBlocks().
    if (!LiveBundles.any())
      continue;

    Cost += calcGlobalSplitCost(LiveBundles);
    if (!BestReg || Cost < BestCost) {
      BestReg = PhysReg;
      BestCost = Cost;
      BestBundles.swap(LiveBundles);
    }
  }

  if (!BestReg)
    return 0;

  splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
  return 0;
}


//===----------------------------------------------------------------------===//
//                          Live Range Splitting
//===----------------------------------------------------------------------===//

/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
  NamedRegionTimer T("Splitter", TimerGroupName, TimePassesIsEnabled);
  SA->analyze(&VirtReg);

  // Don't attempt splitting on local intervals for now. TBD.
  if (LIS->intervalIsInOneMBB(VirtReg))
    return 0;

  // First try to split around a region spanning multiple blocks.
  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
  if (PhysReg || !NewVRegs.empty())
    return PhysReg;

  // Then isolate blocks with multiple uses.
  SplitAnalysis::BlockPtrSet Blocks;
  if (SA->getMultiUseBlocks(Blocks)) {
    SmallVector<LiveInterval*, 4> SpillRegs;
    LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
    SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit).splitSingleBlocks(Blocks);
    if (VerifyEnabled)
      MF->verify(this, "After splitting live range around basic blocks");
  }

  // Don't assign any physregs.
  return 0;
}


//===----------------------------------------------------------------------===//
//                                Spilling
//===----------------------------------------------------------------------===//

/// calcInterferenceWeight - Calculate the combined spill weight of
/// interferences when assigning VirtReg to PhysReg.
float RAGreedy::calcInterferenceWeight(LiveInterval &VirtReg, unsigned PhysReg){
  float Sum = 0;
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
    Q.collectInterferingVRegs();
    if (Q.seenUnspillableVReg())
      return HUGE_VALF;
    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i)
      Sum += Q.interferingVRegs()[i]->weight;
  }
  return Sum;
}

/// trySpillInterferences - Try to spill interfering registers instead of the
/// current one. Only do it if the accumulated spill weight is smaller than the
/// current spill weight.
unsigned RAGreedy::trySpillInterferences(LiveInterval &VirtReg,
                                         AllocationOrder &Order,
                                     SmallVectorImpl<LiveInterval*> &NewVRegs) {
  NamedRegionTimer T("Spill Interference", TimerGroupName, TimePassesIsEnabled);
  unsigned BestPhys = 0;
  float BestWeight = 0;

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    float Weight = calcInterferenceWeight(VirtReg, PhysReg);
    if (Weight == HUGE_VALF || Weight >= VirtReg.weight)
      continue;
    if (!BestPhys || Weight < BestWeight)
      BestPhys = PhysReg, BestWeight = Weight;
  }

  // No candidates found.
  if (!BestPhys)
    return 0;

  // Collect all interfering registers.
  SmallVector<LiveInterval*, 8> Spills;
  for (const unsigned *AI = TRI->getOverlaps(BestPhys); *AI; ++AI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
    Spills.append(Q.interferingVRegs().begin(), Q.interferingVRegs().end());
    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
      LiveInterval *VReg = Q.interferingVRegs()[i];
      PhysReg2LiveUnion[*AI].extract(*VReg);
      VRM->clearVirt(VReg->reg);
    }
  }

  // Spill them all.
  DEBUG(dbgs() << "spilling " << Spills.size() << " interferences with weight "
               << BestWeight << '\n');
  for (unsigned i = 0, e = Spills.size(); i != e; ++i)
    spiller().spill(Spills[i], NewVRegs, Spills);
  return BestPhys;
}


//===----------------------------------------------------------------------===//
//                            Main Entry Point
//===----------------------------------------------------------------------===//

unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  // First try assigning a free register.
  AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
  while (unsigned PhysReg = Order.next()) {
    if (!checkPhysRegInterference(VirtReg, PhysReg))
      return PhysReg;
  }

  // Try to reassign interferences.
  if (unsigned PhysReg = tryReassign(VirtReg, Order))
    return PhysReg;

  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");

  // Try splitting VirtReg or interferences.
  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
  if (PhysReg || !NewVRegs.empty())
    return PhysReg;

  // Try to spill another interfering reg with less spill weight.
  PhysReg = trySpillInterferences(VirtReg, Order, NewVRegs);
  if (PhysReg)
    return PhysReg;

  // Finally spill VirtReg itself.
  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
  SmallVector<LiveInterval*, 1> pendingSpills;
  spiller().spill(&VirtReg, NewVRegs, pendingSpills);

  // The live virtual register requesting allocation was spilled, so tell
  // the caller not to allocate anything during this round.
  return 0;
}

bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
               << "********** Function: "
               << ((Value*)mf.getFunction())->getName() << '\n');

  MF = &mf;
  if (VerifyEnabled)
    MF->verify(this, "Before greedy register allocator");

  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
  Indexes = &getAnalysis<SlotIndexes>();
  DomTree = &getAnalysis<MachineDominatorTree>();
  ReservedRegs = TRI->getReservedRegs(*MF);
  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
  Loops = &getAnalysis<MachineLoopInfo>();
  LoopRanges = &getAnalysis<MachineLoopRanges>();
  Bundles = &getAnalysis<EdgeBundles>();
  SpillPlacer = &getAnalysis<SpillPlacement>();

  SA.reset(new SplitAnalysis(*MF, *LIS, *Loops));

  allocatePhysRegs();
  addMBBLiveIns(MF);

  // Run rewriter
  {
    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
    std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
    rewriter->runOnMachineFunction(*MF, *VRM, LIS);
  }

  // The pass output is in VirtRegMap. Release all the transient data.
  releaseMemory();

  return true;
}