aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/RegAllocIterativeScan.cpp
blob: 4cdcc1d4dd221da849f71dd4e0947cbb5510cc29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//===-- RegAllocIterativeScan.cpp - Iterative Scan register allocator -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an iterative scan register
// allocator. Iterative scan is a linear scan variant with the
// following difference:
//
// It performs linear scan and keeps a list of the registers it cannot
// allocate. It then spills all those registers and repeats the
// process until allocation succeeds.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "LiveIntervalAnalysis.h"
#include "PhysRegTracker.h"
#include "VirtRegMap.h"
#include <algorithm>
#include <cmath>
#include <set>

using namespace llvm;

namespace {

  Statistic<double> efficiency
  ("regalloc", "Ratio of intervals processed over total intervals");

  static unsigned numIterations = 0;
  static unsigned numIntervals = 0;

  class RA : public MachineFunctionPass {
  private:
    MachineFunction* mf_;
    const TargetMachine* tm_;
    const MRegisterInfo* mri_;
    LiveIntervals* li_;
    typedef std::vector<LiveInterval*> IntervalPtrs;
    IntervalPtrs unhandled_, fixed_, active_, inactive_, handled_, spilled_;

    std::auto_ptr<PhysRegTracker> prt_;
    std::auto_ptr<VirtRegMap> vrm_;
    std::auto_ptr<Spiller> spiller_;

    typedef std::vector<float> SpillWeights;
    SpillWeights spillWeights_;

  public:
    virtual const char* getPassName() const {
      return "Iterative Scan Register Allocator";
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LiveIntervals>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    /// runOnMachineFunction - register allocate the whole function
    bool runOnMachineFunction(MachineFunction&);

    void releaseMemory();

  private:
    /// linearScan - the linear scan algorithm. Returns a boolean
    /// indicating if there were any spills
    bool linearScan();

    /// initIntervalSets - initializes the four interval sets:
    /// unhandled, fixed, active and inactive
    void initIntervalSets();

    /// processActiveIntervals - expire old intervals and move
    /// non-overlapping ones to the incative list
    void processActiveIntervals(IntervalPtrs::value_type cur);

    /// processInactiveIntervals - expire old intervals and move
    /// overlapping ones to the active list
    void processInactiveIntervals(IntervalPtrs::value_type cur);

    /// updateSpillWeights - updates the spill weights of the
    /// specifed physical register and its weight
    void updateSpillWeights(unsigned reg, SpillWeights::value_type weight);

    /// assignRegOrStackSlotAtInterval - assign a register if one
    /// is available, or spill.
    void assignRegOrSpillAtInterval(IntervalPtrs::value_type cur);

    ///
    /// register handling helpers
    ///

    /// getFreePhysReg - return a free physical register for this
    /// virtual register interval if we have one, otherwise return
    /// 0
    unsigned getFreePhysReg(IntervalPtrs::value_type cur);

    /// assignVirt2StackSlot - assigns this virtual register to a
    /// stack slot. returns the stack slot
    int assignVirt2StackSlot(unsigned virtReg);

    void printIntervals(const char* const str,
                        RA::IntervalPtrs::const_iterator i,
                        RA::IntervalPtrs::const_iterator e) const {
      if (str) std::cerr << str << " intervals:\n";
      for (; i != e; ++i) {
        std::cerr << "\t" << **i << " -> ";
        unsigned reg = (*i)->reg;
        if (MRegisterInfo::isVirtualRegister(reg)) {
          reg = vrm_->getPhys(reg);
        }
        std::cerr << mri_->getName(reg) << '\n';
      }
    }
  };
}

void RA::releaseMemory()
{
  unhandled_.clear();
  fixed_.clear();
  active_.clear();
  inactive_.clear();
  handled_.clear();
  spilled_.clear();
}

bool RA::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  tm_ = &fn.getTarget();
  mri_ = tm_->getRegisterInfo();
  li_ = &getAnalysis<LiveIntervals>();
  if (!prt_.get()) prt_.reset(new PhysRegTracker(*mri_));
  vrm_.reset(new VirtRegMap(*mf_));
  if (!spiller_.get()) spiller_.reset(createSpiller());

  initIntervalSets();

  numIntervals += li_->getNumIntervals();

  while (linearScan()) {
    // we spilled some registers, so we need to add intervals for
    // the spill code and restart the algorithm
    std::set<unsigned> spilledRegs;
    for (IntervalPtrs::iterator
           i = spilled_.begin(); i != spilled_.end(); ++i) {
      int slot = vrm_->assignVirt2StackSlot((*i)->reg);
      std::vector<LiveInterval*> added =
        li_->addIntervalsForSpills(**i, *vrm_, slot);
      std::copy(added.begin(), added.end(), std::back_inserter(handled_));
      spilledRegs.insert((*i)->reg);
    }
    spilled_.clear();
    for (IntervalPtrs::iterator
           i = handled_.begin(); i != handled_.end(); )
      if (spilledRegs.count((*i)->reg))
        i = handled_.erase(i);
      else
        ++i;
    handled_.swap(unhandled_);
    vrm_->clearAllVirt();
  }

  efficiency = double(numIterations) / double(numIntervals);

  DEBUG(std::cerr << *vrm_);

  spiller_->runOnMachineFunction(*mf_, *vrm_);

  return true;
}

bool RA::linearScan()
{
  // linear scan algorithm
  DEBUG(std::cerr << "********** LINEAR SCAN **********\n");
  DEBUG(std::cerr << "********** Function: "
        << mf_->getFunction()->getName() << '\n');


  std::sort(unhandled_.begin(), unhandled_.end(),
            greater_ptr<LiveInterval>());
  DEBUG(printIntervals("unhandled", unhandled_.begin(), unhandled_.end()));
  DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
  DEBUG(printIntervals("active", active_.begin(), active_.end()));
  DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));

  while (!unhandled_.empty()) {
    // pick the interval with the earliest start point
    IntervalPtrs::value_type cur = unhandled_.back();
    unhandled_.pop_back();
    ++numIterations;
    DEBUG(std::cerr << "\n*** CURRENT ***: " << *cur << '\n');

    processActiveIntervals(cur);
    processInactiveIntervals(cur);

    // if this register is fixed we are done
    if (MRegisterInfo::isPhysicalRegister(cur->reg)) {
      prt_->addRegUse(cur->reg);
      active_.push_back(cur);
      handled_.push_back(cur);
    }
    // otherwise we are allocating a virtual register. try to find
    // a free physical register or spill an interval in order to
    // assign it one (we could spill the current though).
    else {
      assignRegOrSpillAtInterval(cur);
    }

    DEBUG(printIntervals("active", active_.begin(), active_.end()));
    DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
  }

  // expire any remaining active intervals
  for (IntervalPtrs::reverse_iterator
         i = active_.rbegin(); i != active_.rend(); ) {
    unsigned reg = (*i)->reg;
    DEBUG(std::cerr << "\tinterval " << **i << " expired\n");
    if (MRegisterInfo::isVirtualRegister(reg))
      reg = vrm_->getPhys(reg);
    prt_->delRegUse(reg);
    i = IntervalPtrs::reverse_iterator(active_.erase(i.base()-1));
  }

  // expire any remaining inactive intervals
  for (IntervalPtrs::reverse_iterator
         i = inactive_.rbegin(); i != inactive_.rend(); ) {
    DEBUG(std::cerr << "\tinterval " << **i << " expired\n");
    i = IntervalPtrs::reverse_iterator(inactive_.erase(i.base()-1));
  }

  // return true if we spilled anything
  return !spilled_.empty();
}

void RA::initIntervalSets() {
  assert(unhandled_.empty() && fixed_.empty() &&
         active_.empty() && inactive_.empty() &&
         "interval sets should be empty on initialization");

  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i){
    unhandled_.push_back(&i->second);
    if (MRegisterInfo::isPhysicalRegister(i->second.reg))
      fixed_.push_back(&i->second);
  }
}

void RA::processActiveIntervals(IntervalPtrs::value_type cur)
{
  DEBUG(std::cerr << "\tprocessing active intervals:\n");
  IntervalPtrs::iterator ii = active_.begin(), ie = active_.end();
  while (ii != ie) {
    LiveInterval* i = *ii;
    unsigned reg = i->reg;

    // remove expired intervals
    if (i->expiredAt(cur->start())) {
      DEBUG(std::cerr << "\t\tinterval " << *i << " expired\n");
      if (MRegisterInfo::isVirtualRegister(reg))
        reg = vrm_->getPhys(reg);
      prt_->delRegUse(reg);
      // swap with last element and move end iterator back one position
      std::iter_swap(ii, --ie);
    }
    // move inactive intervals to inactive list
    else if (!i->liveAt(cur->start())) {
      DEBUG(std::cerr << "\t\tinterval " << *i << " inactive\n");
      if (MRegisterInfo::isVirtualRegister(reg))
        reg = vrm_->getPhys(reg);
      prt_->delRegUse(reg);
      // add to inactive
      inactive_.push_back(i);
      // swap with last element and move end iterator back one postion
      std::iter_swap(ii, --ie);
    }
    else {
      ++ii;
    }
  }
  active_.erase(ie, active_.end());
}

void RA::processInactiveIntervals(IntervalPtrs::value_type cur)
{
  DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
  IntervalPtrs::iterator ii = inactive_.begin(), ie = inactive_.end();
  while (ii != ie) {
    LiveInterval* i = *ii;
    unsigned reg = i->reg;

    // remove expired intervals
    if (i->expiredAt(cur->start())) {
      DEBUG(std::cerr << "\t\tinterval " << *i << " expired\n");
      // swap with last element and move end iterator back one position
      std::iter_swap(ii, --ie);
    }
    // move re-activated intervals in active list
    else if (i->liveAt(cur->start())) {
      DEBUG(std::cerr << "\t\tinterval " << *i << " active\n");
      if (MRegisterInfo::isVirtualRegister(reg))
        reg = vrm_->getPhys(reg);
      prt_->addRegUse(reg);
      // add to active
      active_.push_back(i);
      // swap with last element and move end iterator back one position
      std::iter_swap(ii, --ie);
    }
    else {
      ++ii;
    }
  }
  inactive_.erase(ie, inactive_.end());
}

void RA::updateSpillWeights(unsigned reg, SpillWeights::value_type weight)
{
  spillWeights_[reg] += weight;
  for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
    spillWeights_[*as] += weight;
}

void RA::assignRegOrSpillAtInterval(IntervalPtrs::value_type cur)
{
  DEBUG(std::cerr << "\tallocating current interval: ");

  PhysRegTracker backupPrt = *prt_;

  spillWeights_.assign(mri_->getNumRegs(), 0.0);

  // for each interval in active update spill weights
  for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
       i != e; ++i) {
    unsigned reg = (*i)->reg;
    if (MRegisterInfo::isVirtualRegister(reg))
      reg = vrm_->getPhys(reg);
    updateSpillWeights(reg, (*i)->weight);
  }

  // for every interval in inactive we overlap with, mark the
  // register as not free and update spill weights
  for (IntervalPtrs::const_iterator i = inactive_.begin(),
         e = inactive_.end(); i != e; ++i) {
    if (cur->overlaps(**i)) {
      unsigned reg = (*i)->reg;
      if (MRegisterInfo::isVirtualRegister(reg))
        reg = vrm_->getPhys(reg);
      prt_->addRegUse(reg);
      updateSpillWeights(reg, (*i)->weight);
    }
  }

  // for every interval in fixed we overlap with,
  // mark the register as not free and update spill weights
  for (IntervalPtrs::const_iterator i = fixed_.begin(),
         e = fixed_.end(); i != e; ++i) {
    if (cur->overlaps(**i)) {
      unsigned reg = (*i)->reg;
      prt_->addRegUse(reg);
      updateSpillWeights(reg, (*i)->weight);
    }
  }

  unsigned physReg = getFreePhysReg(cur);
  // restore the physical register tracker
  *prt_ = backupPrt;
  // if we find a free register, we are done: assign this virtual to
  // the free physical register and add this interval to the active
  // list.
  if (physReg) {
    DEBUG(std::cerr <<  mri_->getName(physReg) << '\n');
    vrm_->assignVirt2Phys(cur->reg, physReg);
    prt_->addRegUse(physReg);
    active_.push_back(cur);
    handled_.push_back(cur);
    return;
  }
  DEBUG(std::cerr << "no free registers\n");

  DEBUG(std::cerr << "\tassigning stack slot at interval "<< *cur << ":\n");

  float minWeight = HUGE_VAL;
  unsigned minReg = 0;
  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
  for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
       i != rc->allocation_order_end(*mf_); ++i) {
    unsigned reg = *i;
    if (minWeight > spillWeights_[reg]) {
      minWeight = spillWeights_[reg];
      minReg = reg;
    }
  }
  DEBUG(std::cerr << "\t\tregister with min weight: "
        << mri_->getName(minReg) << " (" << minWeight << ")\n");

  // if the current has the minimum weight, we spill it and move on
  if (cur->weight <= minWeight) {
    DEBUG(std::cerr << "\t\t\tspilling(c): " << *cur << '\n');
    spilled_.push_back(cur);
    return;
  }

  // otherwise we spill all intervals aliasing the register with
  // minimum weight, assigned the newly cleared register to the
  // current interval and continue
  assert(MRegisterInfo::isPhysicalRegister(minReg) &&
         "did not choose a register to spill?");
  std::vector<bool> toSpill(mri_->getNumRegs(), false);
  toSpill[minReg] = true;
  for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as)
    toSpill[*as] = true;
  unsigned earliestStart = cur->start();

  std::set<unsigned> spilled;

  for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ) {
    unsigned reg = (*i)->reg;
    if (MRegisterInfo::isVirtualRegister(reg) &&
        toSpill[vrm_->getPhys(reg)] &&
        cur->overlaps(**i)) {
      DEBUG(std::cerr << "\t\t\tspilling(a): " << **i << '\n');
      spilled_.push_back(*i);
      prt_->delRegUse(vrm_->getPhys(reg));
      vrm_->clearVirt(reg);
      i = active_.erase(i);
    }
    else
      ++i;
  }
  for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ) {
    unsigned reg = (*i)->reg;
    if (MRegisterInfo::isVirtualRegister(reg) &&
        toSpill[vrm_->getPhys(reg)] &&
        cur->overlaps(**i)) {
      DEBUG(std::cerr << "\t\t\tspilling(i): " << **i << '\n');
      spilled_.push_back(*i);
      vrm_->clearVirt(reg);
      i = inactive_.erase(i);
    }
    else
      ++i;
  }

  vrm_->assignVirt2Phys(cur->reg, minReg);
  prt_->addRegUse(minReg);
  active_.push_back(cur);
  handled_.push_back(cur);

}

unsigned RA::getFreePhysReg(LiveInterval* cur)
{
  std::vector<unsigned> inactiveCounts(mri_->getNumRegs(), 0);
  for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
       i != e; ++i) {
    unsigned reg = (*i)->reg;
    if (MRegisterInfo::isVirtualRegister(reg))
      reg = vrm_->getPhys(reg);
    ++inactiveCounts[reg];
  }

  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);

  unsigned freeReg = 0;
  for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
       i != rc->allocation_order_end(*mf_); ++i) {
    unsigned reg = *i;
    if (prt_->isRegAvail(reg) &&
        (!freeReg || inactiveCounts[freeReg] < inactiveCounts[reg]))
        freeReg = reg;
  }
  return freeReg;
}

FunctionPass* llvm::createIterativeScanRegisterAllocator() {
  return new RA();
}