aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/RegAllocLinearScan.cpp
blob: 69eca8a18e8f306d3e404402e79154dedf5d0c36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a linear scan register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
using namespace llvm;

namespace {
    Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
    Statistic<> numReloaded("ra-linearscan", "Number of registers reloaded");

    class RA : public MachineFunctionPass {
    public:
        typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;

    private:
        MachineFunction* mf_;
        const TargetMachine* tm_;
        const MRegisterInfo* mri_;
        MachineBasicBlock* currentMbb_;
        MachineBasicBlock::iterator currentInstr_;
        typedef LiveIntervals::Intervals Intervals;
        const Intervals* li_;
        IntervalPtrs active_, inactive_;

        typedef std::vector<unsigned> Regs;
        Regs tempUseOperands_;
        Regs tempDefOperands_;

        typedef std::vector<bool> RegMask;
        RegMask reserved_;

        unsigned regUse_[MRegisterInfo::FirstVirtualRegister];
        unsigned regUseBackup_[MRegisterInfo::FirstVirtualRegister];

        typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
        MachineBasicBlockPtrs mbbs_;

        typedef std::map<unsigned, unsigned> Virt2PhysMap;
        Virt2PhysMap v2pMap_;

        typedef std::map<unsigned, int> Virt2StackSlotMap;
        Virt2StackSlotMap v2ssMap_;

        int instrAdded_;

    public:
        virtual const char* getPassName() const {
            return "Linear Scan Register Allocator";
        }

        virtual void getAnalysisUsage(AnalysisUsage &AU) const {
            AU.addRequired<LiveVariables>();
            AU.addRequired<LiveIntervals>();
            MachineFunctionPass::getAnalysisUsage(AU);
        }

    private:
        /// runOnMachineFunction - register allocate the whole function
        bool runOnMachineFunction(MachineFunction&);

        /// verifyIntervals - verify that we have no inconsistencies
        /// in the register assignments we have in active and inactive
        /// lists
        bool verifyIntervals();

        /// processActiveIntervals - expire old intervals and move
        /// non-overlapping ones to the incative list
        void processActiveIntervals(Intervals::const_iterator cur);

        /// processInactiveIntervals - expire old intervals and move
        /// overlapping ones to the active list
        void processInactiveIntervals(Intervals::const_iterator cur);

        /// assignStackSlotAtInterval - choose and spill
        /// interval. Currently we spill the interval with the last
        /// end point in the active and inactive lists and the current
        /// interval
        void assignStackSlotAtInterval(Intervals::const_iterator cur);

        ///
        /// register handling helpers
        ///

        /// getFreePhysReg - return a free physical register for this
        /// virtual register interval if we have one, otherwise return
        /// 0
        unsigned getFreePhysReg(Intervals::const_iterator cur);

        /// physRegAvailable - returns true if the specifed physical
        /// register is available
        bool physRegAvailable(unsigned physReg);

        /// tempPhysRegAvailable - returns true if the specifed
        /// temporary physical register is available
        bool tempPhysRegAvailable(unsigned physReg);

        /// getFreeTempPhysReg - return a free temprorary physical
        /// register for this virtual register if we have one (should
        /// never return 0)
        unsigned getFreeTempPhysReg(unsigned virtReg);

        /// assignVirt2PhysReg - assigns the free physical register to
        /// the virtual register passed as arguments
        void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);

        /// clearVirtReg - free the physical register associated with this
        /// virtual register and disassociate virtual->physical and
        /// physical->virtual mappings
        void clearVirtReg(unsigned virtReg);

        /// assignVirt2StackSlot - assigns this virtual register to a
        /// stack slot
        void assignVirt2StackSlot(unsigned virtReg);

        /// getStackSlot - returns the offset of the specified
        /// register on the stack
        int getStackSlot(unsigned virtReg);

        /// spillVirtReg - spills the virtual register
        void spillVirtReg(unsigned virtReg);

        /// loadPhysReg - loads to the physical register the value of
        /// the virtual register specifed. Virtual register must have
        /// an assigned stack slot
        void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);

        void markPhysRegFree(unsigned physReg);
        void markPhysRegNotFree(unsigned physReg);

        void backupRegUse() {
            memcpy(regUseBackup_, regUse_, sizeof(regUseBackup_));
        }

        void restoreRegUse() {
            memcpy(regUse_, regUseBackup_, sizeof(regUseBackup_));
        }

        void printVirt2PhysMap() const {
            std::cerr << "allocated registers:\n";
            for (Virt2PhysMap::const_iterator
                     i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
                std::cerr << '[' << i->first << ','
                          << mri_->getName(i->second) << "]\n";
            }
            std::cerr << '\n';
        }
        void printIntervals(const char* const str,
                            RA::IntervalPtrs::const_iterator i,
                            RA::IntervalPtrs::const_iterator e) const {
            if (str) std::cerr << str << " intervals:\n";
            for (; i != e; ++i) {
                std::cerr << "\t\t" << **i << " -> ";
                if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
                    std::cerr << mri_->getName((*i)->reg);
                }
                else {
                    std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
                }
                std::cerr << '\n';
            }
        }
        void printFreeRegs(const char* const str,
                           const TargetRegisterClass* rc) const {
            if (str) std::cerr << str << ':';
            for (TargetRegisterClass::iterator i =
                     rc->allocation_order_begin(*mf_);
                i != rc->allocation_order_end(*mf_); ++i) {
                unsigned reg = *i;
                if (!regUse_[reg]) {
                    std::cerr << ' ' << mri_->getName(reg); 
                    if (reserved_[reg]) std::cerr << "*";
                }
            }
            std::cerr << '\n';
        }
    };
}

bool RA::runOnMachineFunction(MachineFunction &fn) {
    mf_ = &fn;
    tm_ = &fn.getTarget();
    mri_ = tm_->getRegisterInfo();
    li_ = &getAnalysis<LiveIntervals>().getIntervals();
    active_.clear();
    inactive_.clear();

    mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
    v2pMap_.clear();
    v2ssMap_.clear();
    memset(regUse_, 0, sizeof(regUse_));
    memset(regUseBackup_, 0, sizeof(regUseBackup_));

    DEBUG(
        unsigned i = 0;
        for (MachineBasicBlockPtrs::iterator
                 mbbi = mbbs_.begin(), mbbe = mbbs_.end();
             mbbi != mbbe; ++mbbi) {
            MachineBasicBlock* mbb = *mbbi;
            std::cerr << mbb->getBasicBlock()->getName() << '\n';
            for (MachineBasicBlock::iterator
                     ii = mbb->begin(), ie = mbb->end();
                 ii != ie; ++ii) {
                MachineInstr* instr = *ii;

                std::cerr << i++ << "\t";
                instr->print(std::cerr, *tm_);
            }
        }
        );

    // FIXME: this will work only for the X86 backend. I need to
    // device an algorthm to select the minimal (considering register
    // aliasing) number of temp registers to reserve so that we have 2
    // registers for each register class available.

    // reserve R32: EDI, EBX,
    //         R16:  DI,  BX,
    //         R8:   BH,  BL
    //         RFP: FP5, FP6
    reserved_.assign(MRegisterInfo::FirstVirtualRegister, false);
    reserved_[19] = true; /* EDI */
    reserved_[17] = true; /* EBX */
    reserved_[12] = true; /*  DI */
    reserved_[ 7] = true; /*  BX */
    reserved_[ 4] = true; /*  BH */
    reserved_[ 5] = true; /*  BL */
    reserved_[28] = true; /* FP5 */
    reserved_[29] = true; /* FP6 */

    // liner scan algorithm
    for (Intervals::const_iterator
             i = li_->begin(), e = li_->end(); i != e; ++i) {
        DEBUG(std::cerr << "processing current interval: " << *i << '\n');

        DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
        DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
        processActiveIntervals(i);
        processInactiveIntervals(i);
        
        backupRegUse();

        // for every interval in inactive we overlap mark the register
        // as not free
        for (IntervalPtrs::iterator j = inactive_.begin();
             j != inactive_.end(); ++j) {
            unsigned reg = (*j)->reg;
            if (reg >= MRegisterInfo::FirstVirtualRegister)
                reg = v2pMap_[reg];

            if (i->overlaps(**j)) {
                markPhysRegNotFree(reg);
            }
        }

        // for every pre-allocated interval in unhandled we overlap
        // mark the register as not free
        for (Intervals::const_iterator j = i + 1; j != e; ++j) {
            if (j->reg < MRegisterInfo::FirstVirtualRegister &&
                i->overlaps(*j))
                markPhysRegNotFree(j->reg);
        }

        DEBUG(std::cerr << "\tallocating current interval:\n");
        // if this register is preallocated reserve it
        if (i->reg < MRegisterInfo::FirstVirtualRegister) {
            restoreRegUse();
            markPhysRegNotFree(i->reg);
            active_.push_back(&*i);
        }
        // otherwise we are allocating a virtual register. try to find
        // a free physical register or spill an interval in order to
        // assign it one (we could spill the current though).
        else {
            unsigned physReg = getFreePhysReg(i); 
            if (!physReg) {
                assignStackSlotAtInterval(i);
            }
            else {
                restoreRegUse();
                assignVirt2PhysReg(i->reg, physReg);
                active_.push_back(&*i);
            }
        }
    }
    // expire any remaining active intervals
    for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
        unsigned reg = (*i)->reg;
        DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
        if (reg >= MRegisterInfo::FirstVirtualRegister) {
            reg = v2pMap_[reg];
        }
        markPhysRegFree(reg);
    }

    DEBUG(std::cerr << "finished register allocation\n");
    DEBUG(printVirt2PhysMap());

    DEBUG(std::cerr << "Rewrite machine code:\n");
    for (MachineBasicBlockPtrs::iterator
             mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
        instrAdded_ = 0;
        currentMbb_ = *mbbi;

        for (currentInstr_ = currentMbb_->begin();
             currentInstr_ != currentMbb_->end(); ++currentInstr_) {

            DEBUG(std::cerr << "\tinstruction: ";
                  (*currentInstr_)->print(std::cerr, *tm_););

            // use our current mapping and actually replace and
            // virtual register with its allocated physical registers
            DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
                  "physical registers:\n");
            for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
                 i != e; ++i) {
                MachineOperand& op = (*currentInstr_)->getOperand(i);
                if (op.isVirtualRegister()) {
                    unsigned virtReg = op.getAllocatedRegNum();
                    unsigned physReg = v2pMap_[virtReg];
                    if (physReg) {
                        DEBUG(std::cerr << "\t\t\t%reg" << virtReg
                              << " -> " << mri_->getName(physReg) << '\n');
                        (*currentInstr_)->SetMachineOperandReg(i, physReg);
                    }
                }
            }

            DEBUG(std::cerr << "\t\tloading temporarily used operands to "
                  "registers:\n");
            for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
                 i != e; ++i) {
                MachineOperand& op = (*currentInstr_)->getOperand(i);
                if (op.isVirtualRegister() && op.isUse() && !op.isDef()) {
                    unsigned virtReg = op.getAllocatedRegNum();
                    unsigned physReg = v2pMap_[virtReg];
                    if (!physReg) {
                        physReg = getFreeTempPhysReg(virtReg);
                        loadVirt2PhysReg(virtReg, physReg);
                        tempUseOperands_.push_back(virtReg);
                    }
                    (*currentInstr_)->SetMachineOperandReg(i, physReg);
                }
            }

            DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
            for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
                clearVirtReg(tempUseOperands_[i]);
            }
            tempUseOperands_.clear();

            DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
                  "registers:\n");
            for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
                 i != e; ++i) {
                MachineOperand& op = (*currentInstr_)->getOperand(i);
                if (op.isVirtualRegister() && op.isDef()) {
                    unsigned virtReg = op.getAllocatedRegNum();
                    unsigned physReg = v2pMap_[virtReg];
                    if (!physReg) {
                        physReg = getFreeTempPhysReg(virtReg);
                    }
                    if (op.isUse()) { // def and use
                        loadVirt2PhysReg(virtReg, physReg);
                    }
                    else {
                        assignVirt2PhysReg(virtReg, physReg);
                    }
                    tempDefOperands_.push_back(virtReg);
                    (*currentInstr_)->SetMachineOperandReg(i, physReg);
                }
            }

            DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
                  "of this instruction:\n");
            ++currentInstr_; // we want to insert after this instruction
            for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
                spillVirtReg(tempDefOperands_[i]);
            }
            --currentInstr_; // restore currentInstr_ iterator
            tempDefOperands_.clear();
        }
    }

    return true;
}

void RA::processActiveIntervals(Intervals::const_iterator cur)
{
    DEBUG(std::cerr << "\tprocessing active intervals:\n");
    for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
        unsigned reg = (*i)->reg;
        // remove expired intervals. we expire earlier because this if
        // an interval expires this is going to be the last use. in
        // this case we can reuse the register for a def in the same
        // instruction
        if ((*i)->expiredAt(cur->start() + 1)) {
            DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
            if (reg >= MRegisterInfo::FirstVirtualRegister) {
                reg = v2pMap_[reg];
            }
            markPhysRegFree(reg);
            // remove from active
            i = active_.erase(i);
        }
        // move inactive intervals to inactive list
        else if (!(*i)->liveAt(cur->start())) {
            DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
            if (reg >= MRegisterInfo::FirstVirtualRegister) {
                reg = v2pMap_[reg];
            }
            markPhysRegFree(reg);
            // add to inactive
            inactive_.push_back(*i);
            // remove from active
            i = active_.erase(i);
        }
        else {
            ++i;
        }
    }
}

void RA::processInactiveIntervals(Intervals::const_iterator cur)
{
    DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
    for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
        unsigned reg = (*i)->reg;

        // remove expired intervals. we expire earlier because this if
        // an interval expires this is going to be the last use. in
        // this case we can reuse the register for a def in the same
        // instruction
        if ((*i)->expiredAt(cur->start() + 1)) {
            DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
            // remove from inactive
            i = inactive_.erase(i);
        }
        // move re-activated intervals in active list
        else if ((*i)->liveAt(cur->start())) {
            DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
            if (reg >= MRegisterInfo::FirstVirtualRegister) {
                reg = v2pMap_[reg];
            }
            markPhysRegNotFree(reg);
            // add to active
            active_.push_back(*i);
            // remove from inactive
            i = inactive_.erase(i);
        }
        else {
            ++i;
        }
    }
}

namespace {
    template <typename T>
    void updateWeight(T rw[], int reg, T w)
    {
        if (rw[reg] == std::numeric_limits<T>::max() ||
            w == std::numeric_limits<T>::max())
            rw[reg] = std::numeric_limits<T>::max();
        else
            rw[reg] += w;
    }
}

void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
{
    DEBUG(std::cerr << "\t\tassigning stack slot at interval "
          << *cur << ":\n");

    // set all weights to zero
    float regWeight[MRegisterInfo::FirstVirtualRegister];
    for (unsigned i = 0; i < MRegisterInfo::FirstVirtualRegister; ++i)
        regWeight[i] = 0.0F;

    // for each interval in active that overlaps
    for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
         if (!cur->overlaps(**i))
             continue;

        unsigned reg = (*i)->reg;
        if (reg >= MRegisterInfo::FirstVirtualRegister) {
            reg = v2pMap_[reg];
        }
        updateWeight(regWeight, reg, (*i)->weight);
        for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
            updateWeight(regWeight, *as, (*i)->weight);
    }

    // for each interval in inactive that overlaps
    for (IntervalPtrs::iterator i = inactive_.begin();
         i != inactive_.end(); ++i) {
         if (!cur->overlaps(**i))
             continue;

        unsigned reg = (*i)->reg;
        if (reg >= MRegisterInfo::FirstVirtualRegister) {
            reg = v2pMap_[reg];
        }
        updateWeight(regWeight, reg, (*i)->weight);
        for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
            updateWeight(regWeight, *as, (*i)->weight);
    }

    // for each fixed interval in unhandled that overlaps
    for (Intervals::const_iterator j = cur + 1; j != li_->end(); ++j) {
        if (j->reg >= MRegisterInfo::FirstVirtualRegister)
            continue;
        updateWeight(regWeight, j->reg, j->weight);
        for (const unsigned* as = mri_->getAliasSet(j->reg); *as; ++as)
            updateWeight(regWeight, *as, j->weight);
    }

    float minWeight = std::numeric_limits<float>::max();
    unsigned minReg = 0;
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
    for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
         i != rc->allocation_order_end(*mf_); ++i) {
        unsigned reg = *i;
        if (!reserved_[reg] && minWeight > regWeight[reg]) {
            minWeight = regWeight[reg];
            minReg = reg;
        }
    }

    if (cur->weight < minWeight) {
        restoreRegUse();
        DEBUG(std::cerr << "\t\t\t\tspilling : " << mri_->getName(minReg)
              << ", weight: " << cur->weight << '\n');
        assignVirt2StackSlot(cur->reg);
    }
    else {
        std::set<unsigned> toSpill;
        toSpill.insert(minReg);
        for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as)
            toSpill.insert(*as);

        std::vector<unsigned> spilled;
        for (IntervalPtrs::iterator i = active_.begin();
             i != active_.end(); ) {
            unsigned reg = (*i)->reg;
            if (reg >= MRegisterInfo::FirstVirtualRegister &&
                toSpill.find(v2pMap_[reg]) != toSpill.end() &&
                cur->overlaps(**i)) {
                spilled.push_back(v2pMap_[reg]);
                DEBUG(std::cerr << "\t\t\t\tspilling : "
                      << mri_->getName(minReg) << ", weight: "
                      << (*i)->weight << '\n');
                assignVirt2StackSlot(reg);
                i = active_.erase(i);
            }
            else {
                ++i;
            }
        }
        for (IntervalPtrs::iterator i = inactive_.begin();
             i != inactive_.end(); ) {
            unsigned reg = (*i)->reg;
            if (reg >= MRegisterInfo::FirstVirtualRegister &&
                toSpill.find(v2pMap_[reg]) != toSpill.end() &&
                cur->overlaps(**i)) {
                DEBUG(std::cerr << "\t\t\t\tspilling : "
                      << mri_->getName(minReg) << ", weight: "
                      << (*i)->weight << '\n');
                assignVirt2StackSlot(reg);
                i = inactive_.erase(i);
            }
            else {
                ++i;
            }
        }

        unsigned physReg = getFreePhysReg(cur);
        assert(physReg && "no free physical register after spill?");

        restoreRegUse();
        for (unsigned i = 0; i < spilled.size(); ++i)
            markPhysRegFree(spilled[i]);

        assignVirt2PhysReg(cur->reg, physReg);
        active_.push_back(&*cur);
    }
}

bool RA::physRegAvailable(unsigned physReg)
{
    assert(!reserved_[physReg] &&
           "cannot call this method with a reserved register");

    return !regUse_[physReg];
}

unsigned RA::getFreePhysReg(Intervals::const_iterator cur)
{
    DEBUG(std::cerr << "\t\tgetting free physical register: ");

    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
    for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
         i != rc->allocation_order_end(*mf_); ++i) {
        unsigned reg = *i;
        if (!reserved_[reg] && !regUse_[reg]) {
            DEBUG(std::cerr << mri_->getName(reg) << '\n');
            return reg;
        }
    }

    DEBUG(std::cerr << "no free register\n");
    return 0;
}

bool RA::tempPhysRegAvailable(unsigned physReg)
{
    assert(reserved_[physReg] &&
           "cannot call this method with a not reserved temp register");

    return !regUse_[physReg];
}

unsigned RA::getFreeTempPhysReg(unsigned virtReg)
{
    DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");

    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    // go in reverse allocation order for the temp registers
    for (TargetRegisterClass::iterator i = rc->allocation_order_end(*mf_) - 1;
         i != rc->allocation_order_begin(*mf_) - 1; --i) {
        unsigned reg = *i;
        if (reserved_[reg] && !regUse_[reg]) {
            DEBUG(std::cerr << mri_->getName(reg) << '\n');
            return reg;
        }
    }

    assert(0 && "no free temporary physical register?");
    return 0;
}

void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
    v2pMap_[virtReg] = physReg;
    markPhysRegNotFree(physReg);
}

void RA::clearVirtReg(unsigned virtReg)
{
    Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
    assert(it != v2pMap_.end() &&
           "attempting to clear a not allocated virtual register");
    unsigned physReg = it->second;
    markPhysRegFree(physReg);
    v2pMap_[virtReg] = 0; // this marks that this virtual register
                          // lives on the stack
    DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
          << "\n");
}

void RA::assignVirt2StackSlot(unsigned virtReg)
{
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);

    bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
    assert(inserted &&
           "attempt to assign stack slot to already assigned register?");
    // if the virtual register was previously assigned clear the mapping
    // and free the virtual register
    if (v2pMap_.find(virtReg) != v2pMap_.end()) {
        clearVirtReg(virtReg);
    }
    else {
        v2pMap_[virtReg] = 0; // this marks that this virtual register
                              // lives on the stack
    }
}

int RA::getStackSlot(unsigned virtReg)
{
    // use lower_bound so that we can do a possibly O(1) insert later
    // if necessary
    Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg);
    assert(it != v2ssMap_.end() &&
           "attempt to get stack slot on register that does not live on the stack");
    return it->second;
}

void RA::spillVirtReg(unsigned virtReg)
{
    DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    int frameIndex = getStackSlot(virtReg);
    DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
    ++numSpilled;
    instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
                                             v2pMap_[virtReg], frameIndex, rc);
    clearVirtReg(virtReg);
}

void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
    DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    int frameIndex = getStackSlot(virtReg);
    DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
    ++numReloaded;
    instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
                                              physReg, frameIndex, rc);
    assignVirt2PhysReg(virtReg, physReg);
}

void RA::markPhysRegFree(unsigned physReg)
{
    assert(regUse_[physReg] != 0);
    --regUse_[physReg];
    for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
        physReg = *as;
        assert(regUse_[physReg] != 0);
        --regUse_[physReg];
    }
}

void RA::markPhysRegNotFree(unsigned physReg)
{
    ++regUse_[physReg];
    for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
        physReg = *as;
        ++regUse_[physReg];
    }
}

FunctionPass* llvm::createLinearScanRegisterAllocator() {
    return new RA();
}