1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a linear scan register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include <algorithm>
using namespace llvm;
namespace {
Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
Statistic<> numReloaded("ra-linearscan", "Number of registers reloaded");
class PhysRegTracker {
private:
const MRegisterInfo* mri_;
std::vector<unsigned> regUse_;
public:
PhysRegTracker(MachineFunction* mf)
: mri_(mf ? mf->getTarget().getRegisterInfo() : NULL) {
if (mri_) {
regUse_.assign(mri_->getNumRegs(), 0);
}
}
PhysRegTracker(const PhysRegTracker& rhs)
: mri_(rhs.mri_),
regUse_(rhs.regUse_) {
}
const PhysRegTracker& operator=(const PhysRegTracker& rhs) {
mri_ = rhs.mri_;
regUse_ = rhs.regUse_;
return *this;
}
void addPhysRegUse(unsigned physReg) {
++regUse_[physReg];
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
physReg = *as;
++regUse_[physReg];
}
}
void delPhysRegUse(unsigned physReg) {
assert(regUse_[physReg] != 0);
--regUse_[physReg];
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
physReg = *as;
assert(regUse_[physReg] != 0);
--regUse_[physReg];
}
}
bool isPhysRegAvail(unsigned physReg) const {
return regUse_[physReg] == 0;
}
};
class RA : public MachineFunctionPass {
private:
MachineFunction* mf_;
const TargetMachine* tm_;
const MRegisterInfo* mri_;
LiveIntervals* li_;
typedef std::list<LiveIntervals::Interval*> IntervalPtrs;
IntervalPtrs unhandled_, fixed_, active_, inactive_, handled_;
PhysRegTracker prt_;
typedef std::map<unsigned, unsigned> Virt2PhysMap;
Virt2PhysMap v2pMap_;
typedef std::map<unsigned, int> Virt2StackSlotMap;
Virt2StackSlotMap v2ssMap_;
int instrAdded_;
typedef std::vector<float> SpillWeights;
SpillWeights spillWeights_;
public:
RA()
: prt_(NULL) {
}
virtual const char* getPassName() const {
return "Linear Scan Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addRequired<LiveIntervals>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// runOnMachineFunction - register allocate the whole function
bool runOnMachineFunction(MachineFunction&);
void releaseMemory();
private:
/// initIntervalSets - initializa the four interval sets:
/// unhandled, fixed, active and inactive
void initIntervalSets(LiveIntervals::Intervals& li);
/// processActiveIntervals - expire old intervals and move
/// non-overlapping ones to the incative list
void processActiveIntervals(IntervalPtrs::value_type cur);
/// processInactiveIntervals - expire old intervals and move
/// overlapping ones to the active list
void processInactiveIntervals(IntervalPtrs::value_type cur);
/// updateSpillWeights - updates the spill weights of the
/// specifed physical register and its weight
void updateSpillWeights(unsigned reg, SpillWeights::value_type weight);
/// assignRegOrStackSlotAtInterval - assign a register if one
/// is available, or spill.
void assignRegOrStackSlotAtInterval(IntervalPtrs::value_type cur);
/// addSpillCode - adds spill code for interval. The interval
/// must be modified by LiveIntervals::updateIntervalForSpill.
void addSpillCode(IntervalPtrs::value_type li, int slot);
///
/// register handling helpers
///
/// getFreePhysReg - return a free physical register for this
/// virtual register interval if we have one, otherwise return
/// 0
unsigned getFreePhysReg(IntervalPtrs::value_type cur);
/// assignVirt2PhysReg - assigns the free physical register to
/// the virtual register passed as arguments
Virt2PhysMap::iterator
assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
/// clearVirtReg - free the physical register associated with this
/// virtual register and disassociate virtual->physical and
/// physical->virtual mappings
void clearVirtReg(Virt2PhysMap::iterator it);
/// assignVirt2StackSlot - assigns this virtual register to a
/// stack slot. returns the stack slot
int assignVirt2StackSlot(unsigned virtReg);
/// getStackSlot - returns the offset of the specified
/// register on the stack
int getStackSlot(unsigned virtReg);
void printVirtRegAssignment() const {
std::cerr << "register assignment:\n";
for (Virt2PhysMap::const_iterator
i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
assert(i->second != 0);
std::cerr << '[' << i->first << ','
<< mri_->getName(i->second) << "]\n";
}
for (Virt2StackSlotMap::const_iterator
i = v2ssMap_.begin(), e = v2ssMap_.end(); i != e; ++i) {
std::cerr << '[' << i->first << ",ss#" << i->second << "]\n";
}
std::cerr << '\n';
}
void printIntervals(const char* const str,
RA::IntervalPtrs::const_iterator i,
RA::IntervalPtrs::const_iterator e) const {
if (str) std::cerr << str << " intervals:\n";
for (; i != e; ++i) {
std::cerr << "\t\t" << **i << " -> ";
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg)) {
Virt2PhysMap::const_iterator it = v2pMap_.find(reg);
reg = (it == v2pMap_.end() ? 0 : it->second);
}
std::cerr << mri_->getName(reg) << '\n';
}
}
void verifyAssignment() const {
for (Virt2PhysMap::const_iterator i = v2pMap_.begin(),
e = v2pMap_.end(); i != e; ++i)
for (Virt2PhysMap::const_iterator i2 = i; i2 != e; ++i2)
if (mri_->areAliases(i->second, i2->second)) {
const LiveIntervals::Interval
&in = li_->getInterval(i->second),
&in2 = li_->getInterval(i2->second);
assert(!in.overlaps(in2) &&
"overlapping intervals for same register!");
}
}
};
}
void RA::releaseMemory()
{
v2pMap_.clear();
v2ssMap_.clear();
unhandled_.clear();
active_.clear();
inactive_.clear();
fixed_.clear();
handled_.clear();
}
bool RA::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
li_ = &getAnalysis<LiveIntervals>();
prt_ = PhysRegTracker(mf_);
initIntervalSets(li_->getIntervals());
// linear scan algorithm
DEBUG(std::cerr << "Machine Function\n");
DEBUG(printIntervals("\tunhandled", unhandled_.begin(), unhandled_.end()));
DEBUG(printIntervals("\tfixed", fixed_.begin(), fixed_.end()));
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
while (!unhandled_.empty() || !fixed_.empty()) {
// pick the interval with the earliest start point
IntervalPtrs::value_type cur;
if (fixed_.empty()) {
cur = unhandled_.front();
unhandled_.pop_front();
}
else if (unhandled_.empty()) {
cur = fixed_.front();
fixed_.pop_front();
}
else if (unhandled_.front()->start() < fixed_.front()->start()) {
cur = unhandled_.front();
unhandled_.pop_front();
}
else {
cur = fixed_.front();
fixed_.pop_front();
}
DEBUG(std::cerr << *cur << '\n');
processActiveIntervals(cur);
processInactiveIntervals(cur);
// if this register is fixed we are done
if (MRegisterInfo::isPhysicalRegister(cur->reg)) {
prt_.addPhysRegUse(cur->reg);
active_.push_back(cur);
handled_.push_back(cur);
}
// otherwise we are allocating a virtual register. try to find
// a free physical register or spill an interval in order to
// assign it one (we could spill the current though).
else {
assignRegOrStackSlotAtInterval(cur);
}
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end())); }
// expire any remaining active intervals
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
unsigned reg = (*i)->reg;
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
prt_.delPhysRegUse(reg);
}
DEBUG(printVirtRegAssignment());
DEBUG(std::cerr << "finished register allocation\n");
// this is a slow operations do not uncomment
// DEBUG(verifyAssignment());
const TargetInstrInfo& tii = tm_->getInstrInfo();
DEBUG(std::cerr << "Rewrite machine code:\n");
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
instrAdded_ = 0;
for (MachineBasicBlock::iterator mii = mbbi->begin(), mie = mbbi->end();
mii != mie; ++mii) {
DEBUG(std::cerr << '\t'; mii->print(std::cerr, *tm_));
// use our current mapping and actually replace every
// virtual register with its allocated physical registers
DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
"physical registers:\n");
for (unsigned i = 0, e = mii->getNumOperands();
i != e; ++i) {
MachineOperand& op = mii->getOperand(i);
if (op.isRegister() &&
MRegisterInfo::isVirtualRegister(op.getReg())) {
unsigned virtReg = op.getReg();
Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
assert(it != v2pMap_.end() &&
"all virtual registers must be allocated");
unsigned physReg = it->second;
assert(MRegisterInfo::isPhysicalRegister(physReg));
DEBUG(std::cerr << "\t\t\t%reg" << virtReg
<< " -> " << mri_->getName(physReg) << '\n');
mii->SetMachineOperandReg(i, physReg);
}
}
}
}
return true;
}
void RA::initIntervalSets(LiveIntervals::Intervals& li)
{
assert(unhandled_.empty() && fixed_.empty() &&
active_.empty() && inactive_.empty() &&
"interval sets should be empty on initialization");
for (LiveIntervals::Intervals::iterator i = li.begin(), e = li.end();
i != e; ++i) {
if (MRegisterInfo::isPhysicalRegister(i->reg))
fixed_.push_back(&*i);
else
unhandled_.push_back(&*i);
}
}
void RA::processActiveIntervals(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\tprocessing active intervals:\n");
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals
if ((*i)->expiredAt(cur->start())) {
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
prt_.delPhysRegUse(reg);
// remove from active
i = active_.erase(i);
}
// move inactive intervals to inactive list
else if (!(*i)->liveAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
prt_.delPhysRegUse(reg);
// add to inactive
inactive_.push_back(*i);
// remove from active
i = active_.erase(i);
}
else {
++i;
}
}
}
void RA::processInactiveIntervals(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals
if ((*i)->expiredAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
// remove from inactive
i = inactive_.erase(i);
}
// move re-activated intervals in active list
else if ((*i)->liveAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
prt_.addPhysRegUse(reg);
// add to active
active_.push_back(*i);
// remove from inactive
i = inactive_.erase(i);
}
else {
++i;
}
}
}
void RA::updateSpillWeights(unsigned reg, SpillWeights::value_type weight)
{
spillWeights_[reg] += weight;
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
spillWeights_[*as] += weight;
}
void RA::assignRegOrStackSlotAtInterval(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\tallocating current interval:\n");
PhysRegTracker backupPrt = prt_;
spillWeights_.assign(mri_->getNumRegs(), 0.0);
// for each interval in active update spill weights
for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg))
reg = v2pMap_[reg];
updateSpillWeights(reg, (*i)->weight);
}
// for every interval in inactive we overlap with, mark the
// register as not free and update spill weights
for (IntervalPtrs::const_iterator i = inactive_.begin(),
e = inactive_.end(); i != e; ++i) {
if (cur->overlaps(**i)) {
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg))
reg = v2pMap_[reg];
prt_.addPhysRegUse(reg);
updateSpillWeights(reg, (*i)->weight);
}
}
// for every interval in fixed we overlap with,
// mark the register as not free and update spill weights
for (IntervalPtrs::const_iterator i = fixed_.begin(),
e = fixed_.end(); i != e; ++i) {
if (cur->overlaps(**i)) {
unsigned reg = (*i)->reg;
prt_.addPhysRegUse(reg);
updateSpillWeights(reg, (*i)->weight);
}
}
unsigned physReg = getFreePhysReg(cur);
// restore the physical register tracker
prt_ = backupPrt;
// if we find a free register, we are done: assign this virtual to
// the free physical register and add this interval to the active
// list.
if (physReg) {
assignVirt2PhysReg(cur->reg, physReg);
active_.push_back(cur);
handled_.push_back(cur);
return;
}
DEBUG(std::cerr << "\t\tassigning stack slot at interval "<< *cur << ":\n");
// push the current interval back to unhandled since we are going
// to re-run at least this iteration
unhandled_.push_front(cur);
float minWeight = std::numeric_limits<float>::infinity();
unsigned minReg = 0;
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (minWeight > spillWeights_[reg]) {
minWeight = spillWeights_[reg];
minReg = reg;
}
}
DEBUG(std::cerr << "\t\t\tregister with min weight: "
<< mri_->getName(minReg) << " (" << minWeight << ")\n");
// if the current has the minimum weight, we need to modify it,
// push it back in unhandled and let the linear scan algorithm run
// again
if (cur->weight < minWeight) {
DEBUG(std::cerr << "\t\t\t\tspilling(c): " << *cur;);
int slot = assignVirt2StackSlot(cur->reg);
li_->updateSpilledInterval(*cur);
addSpillCode(cur, slot);
DEBUG(std::cerr << "[ " << *cur << " ]\n");
return;
}
// otherwise we spill all intervals aliasing the register with
// minimum weight, rollback to the interval with the earliest
// start point and let the linear scan algorithm run again
std::vector<bool> toSpill(mri_->getNumRegs(), false);
toSpill[minReg] = true;
for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as)
toSpill[*as] = true;
unsigned earliestStart = cur->start();
for (IntervalPtrs::iterator i = active_.begin();
i != active_.end(); ++i) {
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg) &&
toSpill[v2pMap_[reg]] &&
cur->overlaps(**i)) {
DEBUG(std::cerr << "\t\t\t\tspilling(a): " << **i);
int slot = assignVirt2StackSlot((*i)->reg);
li_->updateSpilledInterval(**i);
addSpillCode(*i, slot);
DEBUG(std::cerr << "[ " << **i << " ]\n");
earliestStart = std::min(earliestStart, (*i)->start());
}
}
for (IntervalPtrs::iterator i = inactive_.begin();
i != inactive_.end(); ++i) {
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg) &&
toSpill[v2pMap_[reg]] &&
cur->overlaps(**i)) {
DEBUG(std::cerr << "\t\t\t\tspilling(i): " << **i << '\n');
int slot = assignVirt2StackSlot((*i)->reg);
li_->updateSpilledInterval(**i);
addSpillCode(*i, slot);
DEBUG(std::cerr << "[ " << **i << " ]\n");
earliestStart = std::min(earliestStart, (*i)->start());
}
}
DEBUG(std::cerr << "\t\t\t\trolling back to: " << earliestStart << '\n');
// scan handled in reverse order and undo each one, restoring the
// state of unhandled and fixed
while (!handled_.empty()) {
IntervalPtrs::value_type i = handled_.back();
// if this interval starts before t we are done
if (i->start() < earliestStart)
break;
DEBUG(std::cerr << "\t\t\t\t\tundo changes for: " << *i << '\n');
handled_.pop_back();
IntervalPtrs::iterator it;
if ((it = find(active_.begin(), active_.end(), i)) != active_.end()) {
active_.erase(it);
if (MRegisterInfo::isPhysicalRegister(i->reg)) {
fixed_.push_front(i);
prt_.delPhysRegUse(i->reg);
}
else {
Virt2PhysMap::iterator v2pIt = v2pMap_.find(i->reg);
clearVirtReg(v2pIt);
unhandled_.push_front(i);
prt_.delPhysRegUse(v2pIt->second);
}
}
else if ((it = find(inactive_.begin(), inactive_.end(), i)) != inactive_.end()) {
inactive_.erase(it);
if (MRegisterInfo::isPhysicalRegister(i->reg))
fixed_.push_front(i);
else {
Virt2PhysMap::iterator v2pIt = v2pMap_.find(i->reg);
clearVirtReg(v2pIt);
unhandled_.push_front(i);
}
}
else {
if (MRegisterInfo::isPhysicalRegister(i->reg))
fixed_.push_front(i);
else {
Virt2PhysMap::iterator v2pIt = v2pMap_.find(i->reg);
clearVirtReg(v2pIt);
unhandled_.push_front(i);
}
}
}
// scan the rest and undo each interval that expired after t and
// insert it in active (the next iteration of the algorithm will
// put it in inactive if required)
IntervalPtrs::iterator i = handled_.begin(), e = handled_.end();
for (; i != e; ++i) {
if (!(*i)->expiredAt(earliestStart) && (*i)->expiredAt(cur->start())) {
DEBUG(std::cerr << "\t\t\t\t\tundo changes for: " << **i << '\n');
active_.push_back(*i);
if (MRegisterInfo::isPhysicalRegister((*i)->reg))
prt_.addPhysRegUse((*i)->reg);
else {
assert(v2pMap_.count((*i)->reg));
prt_.addPhysRegUse(v2pMap_.find((*i)->reg)->second);
}
}
}
}
void RA::addSpillCode(IntervalPtrs::value_type li, int slot)
{
// We scan the instructions corresponding to each range. We load
// when we have a use and spill at end of basic blocks or end of
// ranges only if the register was modified.
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li->reg);
for (LiveIntervals::Interval::Ranges::iterator i = li->ranges.begin(),
e = li->ranges.end(); i != e; ++i) {
unsigned index = i->first & ~1;
unsigned end = i->second;
entry:
bool dirty = false, loaded = false;
// skip deleted instructions. getInstructionFromIndex returns
// null if the instruction was deleted (because of coalescing
// for example)
while (!li_->getInstructionFromIndex(index)) index += 2;
MachineBasicBlock::iterator mi = li_->getInstructionFromIndex(index);
MachineBasicBlock* mbb = mi->getParent();
for (; index < end; index += 2) {
// ignore deleted instructions
while (!li_->getInstructionFromIndex(index)) index += 2;
// if we changed basic block we need to start over
mi = li_->getInstructionFromIndex(index);
if (mbb != mi->getParent()) {
if (dirty) {
mi = li_->getInstructionFromIndex(index-2);
assert(mbb == mi->getParent() &&
"rewound to wrong instruction?");
DEBUG(std::cerr << "add store for reg" << li->reg << " to "
"stack slot " << slot << " after: ";
mi->print(std::cerr, *tm_));
++numSpilled;
mri_->storeRegToStackSlot(*mi->getParent(),
next(mi), li->reg, slot, rc);
}
goto entry;
}
// if it is used in this instruction load it
for (unsigned i = 0; i < mi->getNumOperands(); ++i) {
MachineOperand& mop = mi->getOperand(i);
if (mop.isRegister() && mop.getReg() == li->reg &&
mop.isUse() && !loaded) {
loaded = true;
DEBUG(std::cerr << "add load for reg" << li->reg
<< " from stack slot " << slot << " before: ";
mi->print(std::cerr, *tm_));
++numReloaded;
mri_->loadRegFromStackSlot(*mi->getParent(),
mi, li->reg, slot, rc);
}
}
// if it is defined in this instruction mark as dirty
for (unsigned i = 0; i < mi->getNumOperands(); ++i) {
MachineOperand& mop = mi->getOperand(i);
if (mop.isRegister() && mop.getReg() == li->reg &&
mop.isDef())
dirty = loaded = true;
}
}
if (dirty) {
mi = li_->getInstructionFromIndex(index-2);
assert(mbb == mi->getParent() &&
"rewound to wrong instruction?");
DEBUG(std::cerr << "add store for reg" << li->reg << " to "
"stack slot " << slot << " after: ";
mi->print(std::cerr, *tm_));
++numSpilled;
mri_->storeRegToStackSlot(*mi->getParent(),
next(mi), li->reg, slot, rc);
}
}
}
unsigned RA::getFreePhysReg(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\t\tgetting free physical register: ");
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (prt_.isPhysRegAvail(reg)) {
DEBUG(std::cerr << mri_->getName(reg) << '\n');
return reg;
}
}
DEBUG(std::cerr << "no free register\n");
return 0;
}
RA::Virt2PhysMap::iterator
RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
bool inserted;
Virt2PhysMap::iterator it;
tie(it, inserted) = v2pMap_.insert(std::make_pair(virtReg, physReg));
assert(inserted && "attempting to assign a virt->phys mapping to an "
"already mapped register");
prt_.addPhysRegUse(physReg);
return it;
}
void RA::clearVirtReg(Virt2PhysMap::iterator it)
{
assert(it != v2pMap_.end() &&
"attempting to clear a not allocated virtual register");
unsigned physReg = it->second;
v2pMap_.erase(it);
DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
<< "\n");
}
int RA::assignVirt2StackSlot(unsigned virtReg)
{
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
assert(inserted && "attempt to assign stack slot to spilled register!");
return frameIndex;
}
int RA::getStackSlot(unsigned virtReg)
{
assert(v2ssMap_.count(virtReg) &&
"attempt to get stack slot for a non spilled register");
return v2ssMap_.find(virtReg)->second;
}
FunctionPass* llvm::createLinearScanRegisterAllocator() {
return new RA();
}
|