aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/RegAllocLocal.cpp
blob: 04303cff5bfa7ea7f6eb65e86317fd20354180bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");

static RegisterRegAlloc
  localRegAlloc("local", "local register allocator",
                createLocalRegisterAllocator);

namespace {
  class RALocal : public MachineFunctionPass {
  public:
    static char ID;
    RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
  private:
    const TargetMachine *TM;
    MachineFunction *MF;
    const TargetRegisterInfo *TRI;
    const TargetInstrInfo *TII;

    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
    // values are spilled.
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;

    // Virt2PhysRegMap - This map contains entries for each virtual register
    // that is currently available in a physical register.
    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;

    unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
      return Virt2PhysRegMap[VirtReg];
    }

    // PhysRegsUsed - This array is effectively a map, containing entries for
    // each physical register that currently has a value (ie, it is in
    // Virt2PhysRegMap).  The value mapped to is the virtual register
    // corresponding to the physical register (the inverse of the
    // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
    // because it is used by a future instruction, and to -2 if it is not
    // allocatable.  If the entry for a physical register is -1, then the
    // physical register is "not in the map".
    //
    std::vector<int> PhysRegsUsed;

    // PhysRegsUseOrder - This contains a list of the physical registers that
    // currently have a virtual register value in them.  This list provides an
    // ordering of registers, imposing a reallocation order.  This list is only
    // used if all registers are allocated and we have to spill one, in which
    // case we spill the least recently used register.  Entries at the front of
    // the list are the least recently used registers, entries at the back are
    // the most recently used.
    //
    std::vector<unsigned> PhysRegsUseOrder;

    // Virt2LastUseMap - This maps each virtual register to its last use
    // (MachineInstr*, operand index pair).
    IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
    Virt2LastUseMap;

    std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      return Virt2LastUseMap[Reg];
    }

    // VirtRegModified - This bitset contains information about which virtual
    // registers need to be spilled back to memory when their registers are
    // scavenged.  If a virtual register has simply been rematerialized, there
    // is no reason to spill it to memory when we need the register back.
    //
    BitVector VirtRegModified;
    
    // UsedInMultipleBlocks - Tracks whether a particular register is used in
    // more than one block.
    BitVector UsedInMultipleBlocks;

    void markVirtRegModified(unsigned Reg, bool Val = true) {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      Reg -= TargetRegisterInfo::FirstVirtualRegister;
      if (Val)
        VirtRegModified.set(Reg);
      else
        VirtRegModified.reset(Reg);
    }

    bool isVirtRegModified(unsigned Reg) const {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
             && "Illegal virtual register!");
      return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
    }

    void AddToPhysRegsUseOrder(unsigned Reg) {
      std::vector<unsigned>::iterator It =
        std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
      if (It != PhysRegsUseOrder.end())
        PhysRegsUseOrder.erase(It);
      PhysRegsUseOrder.push_back(Reg);
    }

    void MarkPhysRegRecentlyUsed(unsigned Reg) {
      if (PhysRegsUseOrder.empty() ||
          PhysRegsUseOrder.back() == Reg) return;  // Already most recently used

      for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
        if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
          unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle
          PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
          // Add it to the end of the list
          PhysRegsUseOrder.push_back(RegMatch);
          if (RegMatch == Reg)
            return;    // Found an exact match, exit early
        }
    }

  public:
    virtual const char *getPassName() const {
      return "Local Register Allocator";
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequiredID(PHIEliminationID);
      AU.addRequiredID(TwoAddressInstructionPassID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    /// runOnMachineFunction - Register allocate the whole function
    bool runOnMachineFunction(MachineFunction &Fn);

    /// AllocateBasicBlock - Register allocate the specified basic block.
    void AllocateBasicBlock(MachineBasicBlock &MBB);


    /// areRegsEqual - This method returns true if the specified registers are
    /// related to each other.  To do this, it checks to see if they are equal
    /// or if the first register is in the alias set of the second register.
    ///
    bool areRegsEqual(unsigned R1, unsigned R2) const {
      if (R1 == R2) return true;
      for (const unsigned *AliasSet = TRI->getAliasSet(R2);
           *AliasSet; ++AliasSet) {
        if (*AliasSet == R1) return true;
      }
      return false;
    }

    /// getStackSpaceFor - This returns the frame index of the specified virtual
    /// register on the stack, allocating space if necessary.
    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);

    /// removePhysReg - This method marks the specified physical register as no
    /// longer being in use.
    ///
    void removePhysReg(unsigned PhysReg);

    /// spillVirtReg - This method spills the value specified by PhysReg into
    /// the virtual register slot specified by VirtReg.  It then updates the RA
    /// data structures to indicate the fact that PhysReg is now available.
    ///
    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                      unsigned VirtReg, unsigned PhysReg);

    /// spillPhysReg - This method spills the specified physical register into
    /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
    /// true, then the request is ignored if the physical register does not
    /// contain a virtual register.
    ///
    void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
                      unsigned PhysReg, bool OnlyVirtRegs = false);

    /// assignVirtToPhysReg - This method updates local state so that we know
    /// that PhysReg is the proper container for VirtReg now.  The physical
    /// register must not be used for anything else when this is called.
    ///
    void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);

    /// isPhysRegAvailable - Return true if the specified physical register is
    /// free and available for use.  This also includes checking to see if
    /// aliased registers are all free...
    ///
    bool isPhysRegAvailable(unsigned PhysReg) const;

    /// getFreeReg - Look to see if there is a free register available in the
    /// specified register class.  If not, return 0.
    ///
    unsigned getFreeReg(const TargetRegisterClass *RC);

    /// getReg - Find a physical register to hold the specified virtual
    /// register.  If all compatible physical registers are used, this method
    /// spills the last used virtual register to the stack, and uses that
    /// register. If NoFree is true, that means the caller knows there isn't
    /// a free register, do not call getFreeReg().
    unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
                    unsigned VirtReg, bool NoFree = false);

    /// reloadVirtReg - This method transforms the specified virtual
    /// register use to refer to a physical register.  This method may do this
    /// in one of several ways: if the register is available in a physical
    /// register already, it uses that physical register.  If the value is not
    /// in a physical register, and if there are physical registers available,
    /// it loads it into a register: PhysReg if that is an available physical
    /// register, otherwise any physical register of the right class.
    /// If register pressure is high, and it is possible, it tries to fold the
    /// load of the virtual register into the instruction itself.  It avoids
    /// doing this if register pressure is low to improve the chance that
    /// subsequent instructions can use the reloaded value.  This method
    /// returns the modified instruction.
    ///
    MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
                                unsigned OpNum, SmallSet<unsigned, 4> &RRegs,
                                unsigned PhysReg);

    /// ComputeLocalLiveness - Computes liveness of registers within a basic
    /// block, setting the killed/dead flags as appropriate.
    void ComputeLocalLiveness(MachineBasicBlock& MBB);

    void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                       unsigned PhysReg);
  };
  char RALocal::ID = 0;
}

/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
  // Find the location Reg would belong...
  int SS = StackSlotForVirtReg[VirtReg];
  if (SS != -1)
    return SS;          // Already has space allocated?

  // Allocate a new stack object for this spill location...
  int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
                                                            RC->getAlignment());

  // Assign the slot...
  StackSlotForVirtReg[VirtReg] = FrameIdx;
  return FrameIdx;
}


/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void RALocal::removePhysReg(unsigned PhysReg) {
  PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used

  std::vector<unsigned>::iterator It =
    std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
  if (It != PhysRegsUseOrder.end())
    PhysRegsUseOrder.erase(It);
}


/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg.  It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RALocal::spillVirtReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator I,
                           unsigned VirtReg, unsigned PhysReg) {
  assert(VirtReg && "Spilling a physical register is illegal!"
         " Must not have appropriate kill for the register or use exists beyond"
         " the intended one.");
  DEBUG(dbgs() << "  Spilling register " << TRI->getName(PhysReg)
               << " containing %reg" << VirtReg);
  
  if (!isVirtRegModified(VirtReg)) {
    DEBUG(dbgs() << " which has not been modified, so no store necessary!");
    std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
    if (LastUse.first)
      LastUse.first->getOperand(LastUse.second).setIsKill();
  } else {
    // Otherwise, there is a virtual register corresponding to this physical
    // register.  We only need to spill it into its stack slot if it has been
    // modified.
    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
    int FrameIndex = getStackSpaceFor(VirtReg, RC);
    DEBUG(dbgs() << " to stack slot #" << FrameIndex);
    // If the instruction reads the register that's spilled, (e.g. this can
    // happen if it is a move to a physical register), then the spill
    // instruction is not a kill.
    bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
    TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
    ++NumStores;   // Update statistics
  }

  getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available

  DEBUG(dbgs() << '\n');
  removePhysReg(PhysReg);
}


/// spillPhysReg - This method spills the specified physical register into the
/// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
/// then the request is ignored if the physical register does not contain a
/// virtual register.
///
void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
                           unsigned PhysReg, bool OnlyVirtRegs) {
  if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
    assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
    if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
      spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
  } else {
    // If the selected register aliases any other registers, we must make
    // sure that one of the aliases isn't alive.
    for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
         *AliasSet; ++AliasSet)
      if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
          PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
          if (PhysRegsUsed[*AliasSet])
            spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
  }
}


/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now.  The physical
/// register must not be used for anything else when this is called.
///
void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
  assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
  // Update information to note the fact that this register was just used, and
  // it holds VirtReg.
  PhysRegsUsed[PhysReg] = VirtReg;
  getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
  AddToPhysRegsUseOrder(PhysReg);   // New use of PhysReg
}


/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use.  This also includes checking to see if aliased
/// registers are all free...
///
bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
  if (PhysRegsUsed[PhysReg] != -1) return false;

  // If the selected register aliases any other allocated registers, it is
  // not free!
  for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
       *AliasSet; ++AliasSet)
    if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
      return false;                    // Can't use this reg then.
  return true;
}


/// getFreeReg - Look to see if there is a free register available in the
/// specified register class.  If not, return 0.
///
unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
  // Get iterators defining the range of registers that are valid to allocate in
  // this class, which also specifies the preferred allocation order.
  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);

  for (; RI != RE; ++RI)
    if (isPhysRegAvailable(*RI)) {       // Is reg unused?
      assert(*RI != 0 && "Cannot use register!");
      return *RI; // Found an unused register!
    }
  return 0;
}


/// getReg - Find a physical register to hold the specified virtual
/// register.  If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
                         unsigned VirtReg, bool NoFree) {
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);

  // First check to see if we have a free register of the requested type...
  unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);

  // If we didn't find an unused register, scavenge one now!
  if (PhysReg == 0) {
    assert(!PhysRegsUseOrder.empty() && "No allocated registers??");

    // Loop over all of the preallocated registers from the least recently used
    // to the most recently used.  When we find one that is capable of holding
    // our register, use it.
    for (unsigned i = 0; PhysReg == 0; ++i) {
      assert(i != PhysRegsUseOrder.size() &&
             "Couldn't find a register of the appropriate class!");

      unsigned R = PhysRegsUseOrder[i];

      // We can only use this register if it holds a virtual register (ie, it
      // can be spilled).  Do not use it if it is an explicitly allocated
      // physical register!
      assert(PhysRegsUsed[R] != -1 &&
             "PhysReg in PhysRegsUseOrder, but is not allocated?");
      if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
        // If the current register is compatible, use it.
        if (RC->contains(R)) {
          PhysReg = R;
          break;
        } else {
          // If one of the registers aliased to the current register is
          // compatible, use it.
          for (const unsigned *AliasIt = TRI->getAliasSet(R);
               *AliasIt; ++AliasIt) {
            if (RC->contains(*AliasIt) &&
                // If this is pinned down for some reason, don't use it.  For
                // example, if CL is pinned, and we run across CH, don't use
                // CH as justification for using scavenging ECX (which will
                // fail).
                PhysRegsUsed[*AliasIt] != 0 &&
                
                // Make sure the register is allocatable.  Don't allocate SIL on
                // x86-32.
                PhysRegsUsed[*AliasIt] != -2) {
              PhysReg = *AliasIt;    // Take an aliased register
              break;
            }
          }
        }
      }
    }

    assert(PhysReg && "Physical register not assigned!?!?");

    // At this point PhysRegsUseOrder[i] is the least recently used register of
    // compatible register class.  Spill it to memory and reap its remains.
    spillPhysReg(MBB, I, PhysReg);
  }

  // Now that we know which register we need to assign this to, do it now!
  assignVirtToPhysReg(VirtReg, PhysReg);
  return PhysReg;
}


/// reloadVirtReg - This method transforms the specified virtual
/// register use to refer to a physical register.  This method may do this in
/// one of several ways: if the register is available in a physical register
/// already, it uses that physical register.  If the value is not in a physical
/// register, and if there are physical registers available, it loads it into a
/// register: PhysReg if that is an available physical register, otherwise any
/// register.  If register pressure is high, and it is possible, it tries to
/// fold the load of the virtual register into the instruction itself.  It
/// avoids doing this if register pressure is low to improve the chance that
/// subsequent instructions can use the reloaded value.  This method returns
/// the modified instruction.
///
MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
                                     unsigned OpNum,
                                     SmallSet<unsigned, 4> &ReloadedRegs,
                                     unsigned PhysReg) {
  unsigned VirtReg = MI->getOperand(OpNum).getReg();

  // If the virtual register is already available, just update the instruction
  // and return.
  if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
    MI->getOperand(OpNum).setReg(PR);  // Assign the input register
    if (!MI->isDebugValue()) {
      // Do not do these for DBG_VALUE as they can affect codegen.
      MarkPhysRegRecentlyUsed(PR);       // Already have this value available!
      getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
    }
    return MI;
  }

  // Otherwise, we need to fold it into the current instruction, or reload it.
  // If we have registers available to hold the value, use them.
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
  // If we already have a PhysReg (this happens when the instruction is a
  // reg-to-reg copy with a PhysReg destination) use that.
  if (!PhysReg || !TargetRegisterInfo::isPhysicalRegister(PhysReg) ||
      !isPhysRegAvailable(PhysReg))
    PhysReg = getFreeReg(RC);
  int FrameIndex = getStackSpaceFor(VirtReg, RC);

  if (PhysReg) {   // Register is available, allocate it!
    assignVirtToPhysReg(VirtReg, PhysReg);
  } else {         // No registers available.
    // Force some poor hapless value out of the register file to
    // make room for the new register, and reload it.
    PhysReg = getReg(MBB, MI, VirtReg, true);
  }

  markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded

  DEBUG(dbgs() << "  Reloading %reg" << VirtReg << " into "
               << TRI->getName(PhysReg) << "\n");

  // Add move instruction(s)
  TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
  ++NumLoads;    // Update statistics

  MF->getRegInfo().setPhysRegUsed(PhysReg);
  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
  getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);

  if (!ReloadedRegs.insert(PhysReg)) {
    std::string msg;
    raw_string_ostream Msg(msg);
    Msg << "Ran out of registers during register allocation!";
    if (MI->isInlineAsm()) {
      Msg << "\nPlease check your inline asm statement for invalid "
           << "constraints:\n";
      MI->print(Msg, TM);
    }
    llvm_report_error(Msg.str());
  }
  for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
       *SubRegs; ++SubRegs) {
    if (!ReloadedRegs.insert(*SubRegs)) {
      std::string msg;
      raw_string_ostream Msg(msg);
      Msg << "Ran out of registers during register allocation!";
      if (MI->isInlineAsm()) {
        Msg << "\nPlease check your inline asm statement for invalid "
             << "constraints:\n";
        MI->print(Msg, TM);
      }
      llvm_report_error(Msg.str());
    }
  }

  return MI;
}

/// isReadModWriteImplicitKill - True if this is an implicit kill for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand& MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
        MO.isDef() && !MO.isDead())
      return true;
  }
  return false;
}

/// isReadModWriteImplicitDef - True if this is an implicit def for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand& MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
        !MO.isDef() && MO.isKill())
      return true;
  }
  return false;
}

// precedes - Helper function to determine with MachineInstr A
// precedes MachineInstr B within the same MBB.
static bool precedes(MachineBasicBlock::iterator A,
                     MachineBasicBlock::iterator B) {
  if (A == B)
    return false;
  
  MachineBasicBlock::iterator I = A->getParent()->begin();
  while (I != A->getParent()->end()) {
    if (I == A)
      return true;
    else if (I == B)
      return false;
    
    ++I;
  }
  
  return false;
}

/// ComputeLocalLiveness - Computes liveness of registers within a basic
/// block, setting the killed/dead flags as appropriate.
void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
  MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
  // Keep track of the most recently seen previous use or def of each reg, 
  // so that we can update them with dead/kill markers.
  DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
       I != E; ++I) {
    if (I->isDebugValue())
      continue;
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = I->getOperand(i);
      // Uses don't trigger any flags, but we need to save
      // them for later.  Also, we have to process these
      // _before_ processing the defs, since an instr
      // uses regs before it defs them.
      if (MO.isReg() && MO.getReg() && MO.isUse()) {
        LastUseDef[MO.getReg()] = std::make_pair(I, i);
        
        
        if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
        
        const unsigned* Aliases = TRI->getAliasSet(MO.getReg());
        if (Aliases) {
          while (*Aliases) {
            DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
              alias = LastUseDef.find(*Aliases);
            
            if (alias != LastUseDef.end() && alias->second.first != I)
              LastUseDef[*Aliases] = std::make_pair(I, i);
            
            ++Aliases;
          }
        }
      }
    }
    
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = I->getOperand(i);
      // Defs others than 2-addr redefs _do_ trigger flag changes:
      //   - A def followed by a def is dead
      //   - A use followed by a def is a kill
      if (MO.isReg() && MO.getReg() && MO.isDef()) {
        DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
          last = LastUseDef.find(MO.getReg());
        if (last != LastUseDef.end()) {
          // Check if this is a two address instruction.  If so, then
          // the def does not kill the use.
          if (last->second.first == I &&
              I->isRegTiedToUseOperand(i))
            continue;
          
          MachineOperand& lastUD =
                      last->second.first->getOperand(last->second.second);
          if (lastUD.isDef())
            lastUD.setIsDead(true);
          else
            lastUD.setIsKill(true);
        }
        
        LastUseDef[MO.getReg()] = std::make_pair(I, i);
      }
    }
  }
  
  // Live-out (of the function) registers contain return values of the function,
  // so we need to make sure they are alive at return time.
  if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
    MachineInstr* Ret = &MBB.back();
    for (MachineRegisterInfo::liveout_iterator
         I = MF->getRegInfo().liveout_begin(),
         E = MF->getRegInfo().liveout_end(); I != E; ++I)
      if (!Ret->readsRegister(*I)) {
        Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
        LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
      }
  }
  
  // Finally, loop over the final use/def of each reg 
  // in the block and determine if it is dead.
  for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
       I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
    MachineInstr* MI = I->second.first;
    unsigned idx = I->second.second;
    MachineOperand& MO = MI->getOperand(idx);
    
    bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
    
    // A crude approximation of "live-out" calculation
    bool usedOutsideBlock = isPhysReg ? false :   
          UsedInMultipleBlocks.test(MO.getReg() -  
                                    TargetRegisterInfo::FirstVirtualRegister);
    if (!isPhysReg && !usedOutsideBlock) {
      // DBG_VALUE complicates this:  if the only refs of a register outside
      // this block are DBG_VALUE, we can't keep the reg live just for that,
      // as it will cause the reg to be spilled at the end of this block when
      // it wouldn't have been otherwise.  Nullify the DBG_VALUEs when that
      // happens.
      bool UsedByDebugValueOnly = false;
      for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
           UE = MRI.reg_end(); UI != UE; ++UI)
        // Two cases:
        // - used in another block
        // - used in the same block before it is defined (loop)
        if (UI->getParent() != &MBB ||
            (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
          if (UI->isDebugValue()) {
            UsedByDebugValueOnly = true;
            continue;
          }
          // A non-DBG_VALUE use means we can leave DBG_VALUE uses alone.
          UsedInMultipleBlocks.set(MO.getReg() - 
                                   TargetRegisterInfo::FirstVirtualRegister);
          usedOutsideBlock = true;
          UsedByDebugValueOnly = false;
          break;
        }
      if (UsedByDebugValueOnly)
        for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
             UE = MRI.reg_end(); UI != UE; ++UI)
          if (UI->isDebugValue() &&
              (UI->getParent() != &MBB ||
               (MO.isDef() && precedes(&*UI, MI))))
            UI.getOperand().setReg(0U);
    }
  
    // Physical registers and those that are not live-out of the block
    // are killed/dead at their last use/def within this block.
    if (isPhysReg || !usedOutsideBlock) {
      if (MO.isUse()) {
        // Don't mark uses that are tied to defs as kills.
        if (!MI->isRegTiedToDefOperand(idx))
          MO.setIsKill(true);
      } else
        MO.setIsDead(true);
    }
  }
}

void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
  // loop over each instruction
  MachineBasicBlock::iterator MII = MBB.begin();
  
  DEBUG({
      const BasicBlock *LBB = MBB.getBasicBlock();
      if (LBB)
        dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName();
    });

  // Add live-in registers as active.
  for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
         E = MBB.livein_end(); I != E; ++I) {
    unsigned Reg = *I;
    MF->getRegInfo().setPhysRegUsed(Reg);
    PhysRegsUsed[Reg] = 0;            // It is free and reserved now
    AddToPhysRegsUseOrder(Reg); 
    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
         *SubRegs; ++SubRegs) {
      if (PhysRegsUsed[*SubRegs] != -2) {
        AddToPhysRegsUseOrder(*SubRegs); 
        PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
        MF->getRegInfo().setPhysRegUsed(*SubRegs);
      }
    }
  }
  
  ComputeLocalLiveness(MBB);
  
  // Otherwise, sequentially allocate each instruction in the MBB.
  while (MII != MBB.end()) {
    MachineInstr *MI = MII++;
    const TargetInstrDesc &TID = MI->getDesc();
    DEBUG({
        dbgs() << "\nStarting RegAlloc of: " << *MI;
        dbgs() << "  Regs have values: ";
        for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
          if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
            dbgs() << "[" << TRI->getName(i)
                   << ",%reg" << PhysRegsUsed[i] << "] ";
        dbgs() << '\n';
      });

    // Determine whether this is a copy instruction.  The cases where the
    // source or destination are phys regs are handled specially.
    unsigned SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg;
    unsigned SrcCopyPhysReg = 0U;
    bool isCopy = TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg, 
                                   SrcCopySubReg, DstCopySubReg);
    if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg))
      SrcCopyPhysReg = getVirt2PhysRegMapSlot(SrcCopyReg);

    // Loop over the implicit uses, making sure that they are at the head of the
    // use order list, so they don't get reallocated.
    if (TID.ImplicitUses) {
      for (const unsigned *ImplicitUses = TID.ImplicitUses;
           *ImplicitUses; ++ImplicitUses)
        MarkPhysRegRecentlyUsed(*ImplicitUses);
    }

    SmallVector<unsigned, 8> Kills;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = MI->getOperand(i);
      if (MO.isReg() && MO.isKill()) {
        if (!MO.isImplicit())
          Kills.push_back(MO.getReg());
        else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
          // These are extra physical register kills when a sub-register
          // is defined (def of a sub-register is a read/mod/write of the
          // larger registers). Ignore.
          Kills.push_back(MO.getReg());
      }
    }

    // If any physical regs are earlyclobber, spill any value they might
    // have in them, then mark them unallocatable.
    // If any virtual regs are earlyclobber, allocate them now (before
    // freeing inputs that are killed).
    if (MI->isInlineAsm()) {
      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
        MachineOperand& MO = MI->getOperand(i);
        if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
            MO.getReg()) {
          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
            unsigned DestVirtReg = MO.getReg();
            unsigned DestPhysReg;

            // If DestVirtReg already has a value, use it.
            if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
              DestPhysReg = getReg(MBB, MI, DestVirtReg);
            MF->getRegInfo().setPhysRegUsed(DestPhysReg);
            markVirtRegModified(DestVirtReg);
            getVirtRegLastUse(DestVirtReg) =
                   std::make_pair((MachineInstr*)0, 0);
            DEBUG(dbgs() << "  Assigning " << TRI->getName(DestPhysReg)
                         << " to %reg" << DestVirtReg << "\n");
            MO.setReg(DestPhysReg);  // Assign the earlyclobber register
          } else {
            unsigned Reg = MO.getReg();
            if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
            // These are extra physical register defs when a sub-register
            // is defined (def of a sub-register is a read/mod/write of the
            // larger registers). Ignore.
            if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;

            MF->getRegInfo().setPhysRegUsed(Reg);
            spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
            PhysRegsUsed[Reg] = 0;            // It is free and reserved now
            AddToPhysRegsUseOrder(Reg); 

            for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
                 *SubRegs; ++SubRegs) {
              if (PhysRegsUsed[*SubRegs] != -2) {
                MF->getRegInfo().setPhysRegUsed(*SubRegs);
                PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
                AddToPhysRegsUseOrder(*SubRegs); 
              }
            }
          }
        }
      }
    }

    // If a DBG_VALUE says something is located in a spilled register,
    // change the DBG_VALUE to be undef, which prevents the register
    // from being reloaded here.  Doing that would change the generated
    // code, unless another use immediately follows this instruction.
    if (MI->isDebugValue() &&
        MI->getNumOperands()==3 && MI->getOperand(0).isReg()) {
      unsigned VirtReg = MI->getOperand(0).getReg();
      if (VirtReg && TargetRegisterInfo::isVirtualRegister(VirtReg) &&
          !getVirt2PhysRegMapSlot(VirtReg))
        MI->getOperand(0).setReg(0U);
    }

    // Get the used operands into registers.  This has the potential to spill
    // incoming values if we are out of registers.  Note that we completely
    // ignore physical register uses here.  We assume that if an explicit
    // physical register is referenced by the instruction, that it is guaranteed
    // to be live-in, or the input is badly hosed.
    //
    SmallSet<unsigned, 4> ReloadedRegs;
    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
      MachineOperand& MO = MI->getOperand(i);
      // here we are looking for only used operands (never def&use)
      if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
        MI = reloadVirtReg(MBB, MI, i, ReloadedRegs,
                           isCopy ? DstCopyReg : 0);
    }

    // If this instruction is the last user of this register, kill the
    // value, freeing the register being used, so it doesn't need to be
    // spilled to memory.
    //
    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
      unsigned VirtReg = Kills[i];
      unsigned PhysReg = VirtReg;
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
        // If the virtual register was never materialized into a register, it
        // might not be in the map, but it won't hurt to zero it out anyway.
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
        PhysReg = PhysRegSlot;
        PhysRegSlot = 0;
      } else if (PhysRegsUsed[PhysReg] == -2) {
        // Unallocatable register dead, ignore.
        continue;
      } else {
        assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
               "Silently clearing a virtual register?");
      }

      if (PhysReg) {
        DEBUG(dbgs() << "  Last use of " << TRI->getName(PhysReg)
                     << "[%reg" << VirtReg <<"], removing it from live set\n");
        removePhysReg(PhysReg);
        for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
             *SubRegs; ++SubRegs) {
          if (PhysRegsUsed[*SubRegs] != -2) {
            DEBUG(dbgs()  << "  Last use of "
                          << TRI->getName(*SubRegs) << "[%reg" << VirtReg
                          <<"], removing it from live set\n");
            removePhysReg(*SubRegs);
          }
        }
      }
    }

    // Loop over all of the operands of the instruction, spilling registers that
    // are defined, and marking explicit destinations in the PhysRegsUsed map.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
          !MO.isEarlyClobber() &&
          TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
        unsigned Reg = MO.getReg();
        if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
        // These are extra physical register defs when a sub-register
        // is defined (def of a sub-register is a read/mod/write of the
        // larger registers). Ignore.
        if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;

        MF->getRegInfo().setPhysRegUsed(Reg);
        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
        PhysRegsUsed[Reg] = 0;            // It is free and reserved now
        AddToPhysRegsUseOrder(Reg); 

        for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
             *SubRegs; ++SubRegs) {
          if (PhysRegsUsed[*SubRegs] != -2) {
            MF->getRegInfo().setPhysRegUsed(*SubRegs);
            PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
            AddToPhysRegsUseOrder(*SubRegs); 
          }
        }
      }
    }

    // Loop over the implicit defs, spilling them as well.
    if (TID.ImplicitDefs) {
      for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
           *ImplicitDefs; ++ImplicitDefs) {
        unsigned Reg = *ImplicitDefs;
        if (PhysRegsUsed[Reg] != -2) {
          spillPhysReg(MBB, MI, Reg, true);
          AddToPhysRegsUseOrder(Reg); 
          PhysRegsUsed[Reg] = 0;            // It is free and reserved now
        }
        MF->getRegInfo().setPhysRegUsed(Reg);
        for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
             *SubRegs; ++SubRegs) {
          if (PhysRegsUsed[*SubRegs] != -2) {
            AddToPhysRegsUseOrder(*SubRegs); 
            PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
            MF->getRegInfo().setPhysRegUsed(*SubRegs);
          }
        }
      }
    }

    SmallVector<unsigned, 8> DeadDefs;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDead())
        DeadDefs.push_back(MO.getReg());
    }

    // Okay, we have allocated all of the source operands and spilled any values
    // that would be destroyed by defs of this instruction.  Loop over the
    // explicit defs and assign them to a register, spilling incoming values if
    // we need to scavenge a register.
    //
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDef() && MO.getReg() &&
          !MO.isEarlyClobber() &&
          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
        unsigned DestVirtReg = MO.getReg();
        unsigned DestPhysReg;

        // If DestVirtReg already has a value, use it.
        if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) {
          // If this is a copy try to reuse the input as the output;
          // that will make the copy go away.
          // If this is a copy, the source reg is a phys reg, and
          // that reg is available, use that phys reg for DestPhysReg.
          // If this is a copy, the source reg is a virtual reg, and
          // the phys reg that was assigned to that virtual reg is now
          // available, use that phys reg for DestPhysReg.  (If it's now
          // available that means this was the last use of the source.)
          if (isCopy &&
              TargetRegisterInfo::isPhysicalRegister(SrcCopyReg) &&
              isPhysRegAvailable(SrcCopyReg)) {
            DestPhysReg = SrcCopyReg;
            assignVirtToPhysReg(DestVirtReg, DestPhysReg);
          } else if (isCopy &&
              TargetRegisterInfo::isVirtualRegister(SrcCopyReg) &&
              SrcCopyPhysReg && isPhysRegAvailable(SrcCopyPhysReg) &&
              MF->getRegInfo().getRegClass(DestVirtReg)->
                               contains(SrcCopyPhysReg)) {
            DestPhysReg = SrcCopyPhysReg;
            assignVirtToPhysReg(DestVirtReg, DestPhysReg);
          } else
            DestPhysReg = getReg(MBB, MI, DestVirtReg);
        }
        MF->getRegInfo().setPhysRegUsed(DestPhysReg);
        markVirtRegModified(DestVirtReg);
        getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
        DEBUG(dbgs() << "  Assigning " << TRI->getName(DestPhysReg)
                     << " to %reg" << DestVirtReg << "\n");
        MO.setReg(DestPhysReg);  // Assign the output register
      }
    }

    // If this instruction defines any registers that are immediately dead,
    // kill them now.
    //
    for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
      unsigned VirtReg = DeadDefs[i];
      unsigned PhysReg = VirtReg;
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
        PhysReg = PhysRegSlot;
        assert(PhysReg != 0);
        PhysRegSlot = 0;
      } else if (PhysRegsUsed[PhysReg] == -2) {
        // Unallocatable register dead, ignore.
        continue;
      }

      if (PhysReg) {
        DEBUG(dbgs()  << "  Register " << TRI->getName(PhysReg)
                      << " [%reg" << VirtReg
                      << "] is never used, removing it from live set\n");
        removePhysReg(PhysReg);
        for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
             *AliasSet; ++AliasSet) {
          if (PhysRegsUsed[*AliasSet] != -2) {
            DEBUG(dbgs()  << "  Register " << TRI->getName(*AliasSet)
                          << " [%reg" << *AliasSet
                          << "] is never used, removing it from live set\n");
            removePhysReg(*AliasSet);
          }
        }
      }
    }
    
    // Finally, if this is a noop copy instruction, zap it.  (Except that if
    // the copy is dead, it must be kept to avoid messing up liveness info for
    // the register scavenger.  See pr4100.)
    if (TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg,
                         SrcCopySubReg, DstCopySubReg) &&
        SrcCopyReg == DstCopyReg && DeadDefs.empty())
      MBB.erase(MI);
  }

  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();

  // Spill all physical registers holding virtual registers now.
  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
    if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
      if (unsigned VirtReg = PhysRegsUsed[i])
        spillVirtReg(MBB, MI, VirtReg, i);
      else
        removePhysReg(i);
    }

#if 0
  // This checking code is very expensive.
  bool AllOk = true;
  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
           e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
    if (unsigned PR = Virt2PhysRegMap[i]) {
      cerr << "Register still mapped: " << i << " -> " << PR << "\n";
      AllOk = false;
    }
  assert(AllOk && "Virtual registers still in phys regs?");
#endif

  // Clear any physical register which appear live at the end of the basic
  // block, but which do not hold any virtual registers.  e.g., the stack
  // pointer.
  PhysRegsUseOrder.clear();
}

/// runOnMachineFunction - Register allocate the whole function
///
bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
  DEBUG(dbgs() << "Machine Function\n");
  MF = &Fn;
  TM = &Fn.getTarget();
  TRI = TM->getRegisterInfo();
  TII = TM->getInstrInfo();

  PhysRegsUsed.assign(TRI->getNumRegs(), -1);
  
  // At various places we want to efficiently check to see whether a register
  // is allocatable.  To handle this, we mark all unallocatable registers as
  // being pinned down, permanently.
  {
    BitVector Allocable = TRI->getAllocatableSet(Fn);
    for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
      if (!Allocable[i])
        PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
  }

  // initialize the virtual->physical register map to have a 'null'
  // mapping for all virtual registers
  unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
  StackSlotForVirtReg.grow(LastVirtReg);
  Virt2PhysRegMap.grow(LastVirtReg);
  Virt2LastUseMap.grow(LastVirtReg);
  VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
  UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
 
  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB)
    AllocateBasicBlock(*MBB);

  StackSlotForVirtReg.clear();
  PhysRegsUsed.clear();
  VirtRegModified.clear();
  UsedInMultipleBlocks.clear();
  Virt2PhysRegMap.clear();
  Virt2LastUseMap.clear();
  return true;
}

FunctionPass *llvm::createLocalRegisterAllocator() {
  return new RALocal();
}