aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/RegAllocLocal.cpp
blob: 05a7614cdf20612f12044f371a3a28af8ec94f22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include "Support/CommandLine.h"
#include <iostream>

namespace {
  Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
  Statistic<> NumReloaded("ra-local", "Number of registers reloaded");
  cl::opt<bool> DisableKill("no-kill", cl::Hidden, 
                            cl::desc("Disable register kill in local-ra"));

  class RA : public FunctionPass {
    TargetMachine &TM;
    MachineFunction *MF;
    const MRegisterInfo &RegInfo;
    const MachineInstrInfo &MIInfo;
    unsigned NumBytesAllocated;
    
    // Maps SSA Regs => offsets on the stack where these values are stored
    std::map<unsigned, unsigned> VirtReg2OffsetMap;

    // Virt2PhysRegMap - This map contains entries for each virtual register
    // that is currently available in a physical register.
    //
    std::map<unsigned, unsigned> Virt2PhysRegMap;
    
    // PhysRegsUsed - This map contains entries for each physical register that
    // currently has a value (ie, it is in Virt2PhysRegMap).  The value mapped
    // to is the virtual register corresponding to the physical register (the
    // inverse of the Virt2PhysRegMap), or 0.  The value is set to 0 if this
    // register is pinned because it is used by a future instruction.
    //
    std::map<unsigned, unsigned> PhysRegsUsed;

    // PhysRegsUseOrder - This contains a list of the physical registers that
    // currently have a virtual register value in them.  This list provides an
    // ordering of registers, imposing a reallocation order.  This list is only
    // used if all registers are allocated and we have to spill one, in which
    // case we spill the least recently used register.  Entries at the front of
    // the list are the least recently used registers, entries at the back are
    // the most recently used.
    //
    std::vector<unsigned> PhysRegsUseOrder;

    // LastUserOf map - This multimap contains the set of registers that each
    // key instruction is the last user of.  If an instruction has an entry in
    // this map, that means that the specified operands are killed after the 
    // instruction is executed, thus they don't need to be spilled into memory
    //
    std::multimap<MachineInstr*, unsigned> LastUserOf;

    void MarkPhysRegRecentlyUsed(unsigned Reg) {
      assert(!PhysRegsUseOrder.empty() && "No registers used!");
      if (PhysRegsUseOrder.back() != Reg) {
        for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
          if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) { // remove from middle
            unsigned RegMatch = PhysRegsUseOrder[i-1];
            PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
            PhysRegsUseOrder.push_back(RegMatch);  // Add it to the end of the list
            if (RegMatch == Reg) 
              return;    // Found an exact match, exit early
          }
      }
    }

  public:

    RA(TargetMachine &tm)
      : TM(tm), RegInfo(*tm.getRegisterInfo()), MIInfo(tm.getInstrInfo()) {
      cleanupAfterFunction();
    }

    bool runOnFunction(Function &Fn) {
      return runOnMachineFunction(MachineFunction::get(&Fn));
    }

    virtual const char *getPassName() const {
      return "Local Register Allocator";
    }

  private:
    /// runOnMachineFunction - Register allocate the whole function
    bool runOnMachineFunction(MachineFunction &Fn);

    /// AllocateBasicBlock - Register allocate the specified basic block.
    void AllocateBasicBlock(MachineBasicBlock &MBB);

    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
    /// in predecessor basic blocks.
    void EliminatePHINodes(MachineBasicBlock &MBB);

    /// CalculateLastUseOfVReg - Calculate an approximation of the killing
    /// uses for the virtual registers in the function.  Here we try to capture
    /// registers that are defined and only used within the same basic block.
    /// Because we don't have use-def chains yet, we have to do this the hard
    /// way.
    ///
    void CalculateLastUseOfVReg(MachineBasicBlock &MBB,
                        std::map<unsigned, MachineInstr*> &LastUseOfVReg) const;


    /// EmitPrologue/EmitEpilogue - Use the register info object to add a
    /// prologue/epilogue to the function and save/restore any callee saved
    /// registers we are responsible for.
    ///
    void EmitPrologue();
    void EmitEpilogue(MachineBasicBlock &MBB);

    /// areRegsEqual - This method returns true if the specified registers are
    /// related to each other.  To do this, it checks to see if they are equal
    /// or if the first register is in the alias set of the second register.
    ///
    bool areRegsEqual(unsigned R1, unsigned R2) const {
      if (R1 == R2) return true;
      if (const unsigned *AliasSet = RegInfo.getAliasSet(R2))
        for (unsigned i = 0; AliasSet[i]; ++i)
          if (AliasSet[i] == R1) return true;
      return false;
    }

    /// isAllocatableRegister - A register may be used by the program if it's
    /// not the stack or frame pointer.
    bool isAllocatableRegister(unsigned R) const {
      unsigned FP = RegInfo.getFramePointer(), SP = RegInfo.getStackPointer();
      return !areRegsEqual(FP, R) && !areRegsEqual(SP, R);
    }

    /// getStackSpaceFor - This returns the offset of the specified virtual
    /// register on the stack, allocating space if neccesary.
    unsigned getStackSpaceFor(unsigned VirtReg, 
                              const TargetRegisterClass *regClass);

    void cleanupAfterFunction() {
      VirtReg2OffsetMap.clear();
      NumBytesAllocated = 4;   // FIXME: This is X86 specific
    }

    void removePhysReg(unsigned PhysReg);

    /// spillVirtReg - This method spills the value specified by PhysReg into
    /// the virtual register slot specified by VirtReg.  It then updates the RA
    /// data structures to indicate the fact that PhysReg is now available.
    ///
    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                      unsigned VirtReg, unsigned PhysReg);

    /// spillPhysReg - This method spills the specified physical register into
    /// the virtual register slot associated with it.
    //
    void spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                      unsigned PhysReg) {
      std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
      if (PI != PhysRegsUsed.end()) {               // Only spill it if it's used!
        spillVirtReg(MBB, I, PI->second, PhysReg);
      } else if (const unsigned *AliasSet = RegInfo.getAliasSet(PhysReg)) {
        // If the selected register aliases any other registers, we must make sure
        // that one of the aliases isn't alive...
        for (unsigned i = 0; AliasSet[i]; ++i) {
          PI = PhysRegsUsed.find(AliasSet[i]);
          if (PI != PhysRegsUsed.end())     // Spill aliased register...
            spillVirtReg(MBB, I, PI->second, AliasSet[i]);
        }
      }
    }

    void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);

    /// isPhysRegAvailable - Return true if the specified physical register is
    /// free and available for use.  This also includes checking to see if
    /// aliased registers are all free...
    ///
    bool isPhysRegAvailable(unsigned PhysReg) const;
    
    /// getFreeReg - Find a physical register to hold the specified virtual
    /// register.  If all compatible physical registers are used, this method
    /// spills the last used virtual register to the stack, and uses that
    /// register.
    ///
    unsigned getFreeReg(MachineBasicBlock &MBB,
                        MachineBasicBlock::iterator &I,
                        unsigned virtualReg);

    /// reloadVirtReg - This method loads the specified virtual register into a
    /// physical register, returning the physical register chosen.  This updates
    /// the regalloc data structures to reflect the fact that the virtual reg is
    /// now alive in a physical register, and the previous one isn't.
    ///
    unsigned reloadVirtReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator &I, unsigned VirtReg);
  };
}


/// getStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned RA::getStackSpaceFor(unsigned VirtReg,
                              const TargetRegisterClass *RegClass) {
  // Find the location VirtReg would belong...
  std::map<unsigned, unsigned>::iterator I =
    VirtReg2OffsetMap.lower_bound(VirtReg);

  if (I != VirtReg2OffsetMap.end() && I->first == VirtReg)
    return I->second;          // Already has space allocated?

  unsigned RegSize = RegClass->getDataSize();

  // Align NumBytesAllocated.  We should be using TargetData alignment stuff
  // to determine this, but we don't know the LLVM type associated with the
  // virtual register.  Instead, just align to a multiple of the size for now.
  NumBytesAllocated += RegSize-1;
  NumBytesAllocated = NumBytesAllocated/RegSize*RegSize;
  
  // Assign the slot...
  VirtReg2OffsetMap.insert(I, std::make_pair(VirtReg, NumBytesAllocated));
  
  // Reserve the space!
  NumBytesAllocated += RegSize;
  return NumBytesAllocated-RegSize;
}


/// removePhysReg - This method marks the specified physical register as no 
/// longer being in use.
///
void RA::removePhysReg(unsigned PhysReg) {
  PhysRegsUsed.erase(PhysReg);      // PhyReg no longer used

  std::vector<unsigned>::iterator It =
    std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
  assert(It != PhysRegsUseOrder.end() &&
         "Spilled a physical register, but it was not in use list!");
  PhysRegsUseOrder.erase(It);
}

/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg.  It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                      unsigned VirtReg, unsigned PhysReg) {
  // If this is just a marker register, we don't need to spill it.
  if (VirtReg != 0) {
    const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
    unsigned stackOffset = getStackSpaceFor(VirtReg, RegClass);

    // Add move instruction(s)
    I = RegInfo.storeReg2RegOffset(MBB, I, PhysReg, RegInfo.getFramePointer(),
                                   -stackOffset, RegClass->getDataSize());
    ++NumSpilled;   // Update statistics
    Virt2PhysRegMap.erase(VirtReg);   // VirtReg no longer available
  }

  removePhysReg(PhysReg);
}


/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use.  This also includes checking to see if aliased
/// registers are all free...
///
bool RA::isPhysRegAvailable(unsigned PhysReg) const {
  if (PhysRegsUsed.count(PhysReg)) return false;

  // If the selected register aliases any other allocated registers, it is
  // not free!
  if (const unsigned *AliasSet = RegInfo.getAliasSet(PhysReg))
    for (unsigned i = 0; AliasSet[i]; ++i)
      if (PhysRegsUsed.count(AliasSet[i])) // Aliased register in use?
        return false;                      // Can't use this reg then.
  return true;
}



/// getFreeReg - Find a physical register to hold the specified virtual
/// register.  If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                        unsigned VirtReg) {
  const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
  unsigned PhysReg = 0;

  // First check to see if we have a free register of the requested type...
  for (TargetRegisterClass::iterator It = RegClass->begin(),E = RegClass->end();
       It != E; ++It) {
    unsigned R = *It;
    if (isPhysRegAvailable(R)) {       // Is reg unused?
      if (isAllocatableRegister(R)) {  // And is not a frame register?
        // Found an unused register!
        PhysReg = R;
        break;
      }
    }
  }

  // If we didn't find an unused register, scavenge one now!
  if (PhysReg == 0) {
    assert(!PhysRegsUseOrder.empty() && "No allocated registers??");

    // Loop over all of the preallocated registers from the least recently used
    // to the most recently used.  When we find one that is capable of holding
    // our register, use it.
    for (unsigned i = 0; PhysReg == 0; ++i) {
      assert(i != PhysRegsUseOrder.size() &&
             "Couldn't find a register of the appropriate class!");
      
      unsigned R = PhysRegsUseOrder[i];
      // If the current register is compatible, use it.
      if (isAllocatableRegister(R)) {
        if (RegInfo.getRegClass(R) == RegClass) {
          PhysReg = R;
          break;
        } else {
          // If one of the registers aliased to the current register is
          // compatible, use it.
          if (const unsigned *AliasSet = RegInfo.getAliasSet(R))
            for (unsigned a = 0; AliasSet[a]; ++a)
              if (RegInfo.getRegClass(AliasSet[a]) == RegClass) {
                PhysReg = AliasSet[a];    // Take an aliased register
                break;
              }
        }
      }
    }

    assert(isAllocatableRegister(PhysReg) && "Register is not allocatable!");

    assert(PhysReg && "Physical register not assigned!?!?");

    // At this point PhysRegsUseOrder[i] is the least recently used register of
    // compatible register class.  Spill it to memory and reap its remains.
    spillPhysReg(MBB, I, PhysReg);
  }

  // Now that we know which register we need to assign this to, do it now!
  AssignVirtToPhysReg(VirtReg, PhysReg);
  return PhysReg;
}


void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
  assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
         "Phys reg already assigned!");
  // Update information to note the fact that this register was just used, and
  // it holds VirtReg.
  PhysRegsUsed[PhysReg] = VirtReg;
  Virt2PhysRegMap[VirtReg] = PhysReg;
  PhysRegsUseOrder.push_back(PhysReg);   // New use of PhysReg
}


/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen.  This updates the
/// regalloc data structures to reflect the fact that the virtual reg is now
/// alive in a physical register, and the previous one isn't.
///
unsigned RA::reloadVirtReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator &I,
                           unsigned VirtReg) {
  std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg);
  if (It != Virt2PhysRegMap.end()) {
    MarkPhysRegRecentlyUsed(It->second);
    return It->second;               // Already have this value available!
  }

  unsigned PhysReg = getFreeReg(MBB, I, VirtReg);

  const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
  unsigned StackOffset = getStackSpaceFor(VirtReg, RegClass);

  // Add move instruction(s)
  I = RegInfo.loadRegOffset2Reg(MBB, I, PhysReg, RegInfo.getFramePointer(),
                                -StackOffset, RegClass->getDataSize());
  ++NumReloaded;    // Update statistics
  return PhysReg;
}

/// CalculateLastUseOfVReg - Calculate an approximation of the killing uses for
/// the virtual registers in the function.  Here we try to capture registers 
/// that are defined and only used within the same basic block.  Because we 
/// don't have use-def chains yet, we have to do this the hard way.
///
void RA::CalculateLastUseOfVReg(MachineBasicBlock &MBB, 
                      std::map<unsigned, MachineInstr*> &LastUseOfVReg) const {
  // Calculate the last machine instruction in this basic block that uses the
  // specified virtual register defined in this basic block.
  std::map<unsigned, MachineInstr*> LastLocalUses;

  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;++I){
    MachineInstr *MI = *I;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &Op = MI->getOperand(i);
      if (Op.isVirtualRegister()) {
        if (Op.opIsDef()) {   // Definition of a new virtual reg?
          LastLocalUses[Op.getAllocatedRegNum()] = 0;  // Record it
        } else {              // Use of a virtual reg.
          std::map<unsigned, MachineInstr*>::iterator It = 
                               LastLocalUses.find(Op.getAllocatedRegNum());
          if (It != LastLocalUses.end())  // Local use?
            It->second = MI;              // Update last use
          else
            LastUseOfVReg[Op.getAllocatedRegNum()] = 0;
        }
      }
    }
  }

  // Move local uses over... if there are any uses of a local already in the 
  // lastuse map, the newly inserted entry is ignored.
  LastUseOfVReg.insert(LastLocalUses.begin(), LastLocalUses.end());
}
 

/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
void RA::EliminatePHINodes(MachineBasicBlock &MBB) {
  const MachineInstrInfo &MII = TM.getInstrInfo();

  while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
    MachineInstr *MI = MBB.front();
    // Unlink the PHI node from the basic block... but don't delete the PHI yet
    MBB.erase(MBB.begin());
    
    assert(MI->getOperand(0).isVirtualRegister() &&
           "PHI node doesn't write virt reg?");

    unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
    
    for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
      MachineOperand &opVal = MI->getOperand(i-1);
      
      // Get the MachineBasicBlock equivalent of the BasicBlock that is the
      // source path the phi
      MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();

      // Check to make sure we haven't already emitted the copy for this block.
      // This can happen because PHI nodes may have multiple entries for the
      // same basic block.  It doesn't matter which entry we use though, because
      // all incoming values are guaranteed to be the same for a particular bb.
      //
      // Note that this is N^2 in the number of phi node entries, but since the
      // # of entries is tiny, this is not a problem.
      //
      bool HaveNotEmitted = true;
      for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
        if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
          HaveNotEmitted = false;
          break;
        }

      if (HaveNotEmitted) {
        MachineBasicBlock::iterator opI = opBlock.end();
        MachineInstr *opMI = *--opI;
        
        // must backtrack over ALL the branches in the previous block
        while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
          opMI = *--opI;
        
        // move back to the first branch instruction so new instructions
        // are inserted right in front of it and not in front of a non-branch
        if (!MII.isBranch(opMI->getOpcode()))
          ++opI;

        unsigned dataSize = MF->getRegClass(virtualReg)->getDataSize();

        // Retrieve the constant value from this op, move it to target
        // register of the phi
        if (opVal.isImmediate()) {
          opI = RegInfo.moveImm2Reg(opBlock, opI, virtualReg,
                                    (unsigned) opVal.getImmedValue(),
                                    dataSize);
        } else {
          opI = RegInfo.moveReg2Reg(opBlock, opI, virtualReg,
                                    opVal.getAllocatedRegNum(), dataSize);
        }
      }
    }
    
    // really delete the PHI instruction now!
    delete MI;
  }
}


void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
  // loop over each instruction
  MachineBasicBlock::iterator I = MBB.begin();
  for (; I != MBB.end(); ++I) {
    MachineInstr *MI = *I;
    const MachineInstrDescriptor &MID = MIInfo.get(MI->getOpcode());

    // Loop over all of the operands of the instruction, spilling registers that
    // are defined, and marking explicit destinations in the PhysRegsUsed map.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
      if (MI->getOperand(i).opIsDef() &&
          MI->getOperand(i).isPhysicalRegister()) {
        unsigned Reg = MI->getOperand(i).getAllocatedRegNum();
        spillPhysReg(MBB, I, Reg);
        PhysRegsUsed[Reg] = 0;  // It's free now, and it's reserved
        PhysRegsUseOrder.push_back(Reg);
      }

    // Loop over the implicit defs, spilling them, as above.
    if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
      for (unsigned i = 0; ImplicitDefs[i]; ++i) {
        unsigned Reg = ImplicitDefs[i];

        // We don't want to spill implicit definitions if they were explicitly
        // chosen.  For this reason, check to see now if the register we are
        // to spill has a vreg of 0.
        if (PhysRegsUsed.count(Reg) && PhysRegsUsed[Reg] != 0) {
          spillPhysReg(MBB, I, Reg);
          PhysRegsUsed[Reg] = 0;  // It's free now, and it's reserved
          PhysRegsUseOrder.push_back(Reg);
        }
      }

    // Loop over the implicit uses, making sure that they are at the head of the
    // use order list, so they don't get reallocated.
    if (const unsigned *ImplicitUses = MID.ImplicitUses)
      for (unsigned i = 0; ImplicitUses[i]; ++i)
        MarkPhysRegRecentlyUsed(ImplicitUses[i]);

    // Loop over all of the operands again, getting the used operands into
    // registers.  This has the potiential to spill incoming values because we
    // are out of registers.
    //
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
      if (MI->getOperand(i).opIsUse() &&
          MI->getOperand(i).isVirtualRegister()) {
        unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
        unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
        MI->SetMachineOperandReg(i, PhysSrcReg);  // Assign the input register
      }
    
    // Okay, we have allocated all of the source operands and spilled any values
    // that would be destroyed by defs of this instruction.  Loop over the
    // implicit defs and assign them to a register, spilling the incoming value
    // if we need to scavange a register.
    //
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
      if (MI->getOperand(i).opIsDef() &&
          !MI->getOperand(i).isPhysicalRegister()) {
        unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
        unsigned DestPhysReg;

        if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
          // must be same register number as the first operand
          // This maps a = b + c into b += c, and saves b into a's spot
          assert(MI->getOperand(1).isRegister()  &&
                 MI->getOperand(1).getAllocatedRegNum() &&
                 MI->getOperand(1).opIsUse() &&
                 "Two address instruction invalid!");
          DestPhysReg = MI->getOperand(1).getAllocatedRegNum();

          // Spill the incoming value, because we are about to change the
          // register contents.
          spillPhysReg(MBB, I, DestPhysReg);
          AssignVirtToPhysReg(DestVirtReg, DestPhysReg);
        } else {
          DestPhysReg = getFreeReg(MBB, I, DestVirtReg);
        }
        MI->SetMachineOperandReg(i, DestPhysReg);  // Assign the output register
      }

    if (!DisableKill) {
      // If this instruction is the last user of anything in registers, kill the 
      // value, freeing the register being used, so it doesn't need to be spilled
      // to memory at the end of the block.
      std::multimap<MachineInstr*, unsigned>::iterator LUOI = 
             LastUserOf.lower_bound(MI);
      for (; LUOI != LastUserOf.end() && LUOI->first == MI; ++MI) {// entry found?
        unsigned VirtReg = LUOI->second;
        unsigned PhysReg = Virt2PhysRegMap[VirtReg];
        if (PhysReg) {
          DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg << " Last use of: " << *MI);
          removePhysReg(PhysReg);
        }
        Virt2PhysRegMap.erase(VirtReg);
      }
    }
  }

  // Rewind the iterator to point to the first flow control instruction...
  const MachineInstrInfo &MII = TM.getInstrInfo();
  I = MBB.end();
  do {
    --I;
  } while ((MII.isReturn((*I)->getOpcode()) ||
            MII.isBranch((*I)->getOpcode())) && I != MBB.begin());
           
  if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode()))
    ++I;

  // Spill all physical registers holding virtual registers now.
  while (!PhysRegsUsed.empty())
    spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
                 PhysRegsUsed.begin()->first);

  assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
  assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
}


/// EmitPrologue - Use the register info object to add a prologue to the
/// function and save any callee saved registers we are responsible for.
///
void RA::EmitPrologue() {
  // Get a list of the callee saved registers, so that we can save them on entry
  // to the function.
  //

  MachineBasicBlock &MBB = MF->front();   // Prolog goes in entry BB
  MachineBasicBlock::iterator I = MBB.begin();

  const unsigned *CSRegs = RegInfo.getCalleeSaveRegs();
  for (unsigned i = 0; CSRegs[i]; ++i) {
    const TargetRegisterClass *RegClass = RegInfo.getRegClass(CSRegs[i]);
    unsigned Offset = getStackSpaceFor(CSRegs[i], RegClass);

    // Insert the spill to the stack frame...
    ++NumSpilled;
    I = RegInfo.storeReg2RegOffset(MBB, I, CSRegs[i], RegInfo.getFramePointer(),
                                   -Offset, RegClass->getDataSize());
  }

  // Add prologue to the function...
  RegInfo.emitPrologue(*MF, NumBytesAllocated);
}


/// EmitEpilogue - Use the register info object to add a epilogue to the
/// function and restore any callee saved registers we are responsible for.
///
void RA::EmitEpilogue(MachineBasicBlock &MBB) {
  // Insert instructions before the return.
  MachineBasicBlock::iterator I = --MBB.end();

  const unsigned *CSRegs = RegInfo.getCalleeSaveRegs();
  for (unsigned i = 0; CSRegs[i]; ++i) {
    const TargetRegisterClass *RegClass = RegInfo.getRegClass(CSRegs[i]);
    unsigned Offset = getStackSpaceFor(CSRegs[i], RegClass);
    ++NumReloaded;
    I = RegInfo.loadRegOffset2Reg(MBB, I, CSRegs[i], RegInfo.getFramePointer(),
                                  -Offset, RegClass->getDataSize());
    --I;  // Insert in reverse order
  }

  RegInfo.emitEpilogue(MBB, NumBytesAllocated);
}


/// runOnMachineFunction - Register allocate the whole function
///
bool RA::runOnMachineFunction(MachineFunction &Fn) {
  DEBUG(std::cerr << "Machine Function " << "\n");
  MF = &Fn;

  // First pass: eliminate PHI instructions by inserting copies into predecessor
  // blocks, and calculate a simple approximation of killing uses for virtual 
  // registers.
  //
  std::map<unsigned, MachineInstr*> LastUseOfVReg;
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB) {
    if (!DisableKill)
      CalculateLastUseOfVReg(*MBB, LastUseOfVReg);
    EliminatePHINodes(*MBB);
  }

  // At this point LastUseOfVReg has been filled in to contain the last 
  // MachineInstr user of the specified virtual register, if that user is 
  // within the same basic block as the definition (otherwise it contains
  // null).  Invert this mapping now:
  if (!DisableKill)
    for (std::map<unsigned, MachineInstr*>::iterator I = LastUseOfVReg.begin(),
         E = LastUseOfVReg.end(); I != E; ++I)
      if (I->second)
        LastUserOf.insert(std::make_pair(I->second, I->first));

  // We're done with the temporary list now.
  LastUseOfVReg.clear();

  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB)
    AllocateBasicBlock(*MBB);


  // Emit a prologue for the function...
  EmitPrologue();

  const MachineInstrInfo &MII = TM.getInstrInfo();

  // Add epilogue to restore the callee-save registers in each exiting block
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB) {
    // If last instruction is a return instruction, add an epilogue
    if (MII.isReturn(MBB->back()->getOpcode()))
      EmitEpilogue(*MBB);
  }

  LastUserOf.clear();
  cleanupAfterFunction();
  return true;
}

Pass *createLocalRegisterAllocator(TargetMachine &TM) {
  return new RA(TM);
}