aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/ScheduleDAGInstrs.cpp
blob: c47dddaf18992cdc47bca9117568258636510094 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
// of MachineInstrs.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sched-instrs"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtarget.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallSet.h"
#include <map>
using namespace llvm;

namespace {
  class VISIBILITY_HIDDEN LoopDependencies {
    const MachineLoopInfo &MLI;
    const MachineDominatorTree &MDT;

  public:
    typedef std::map<unsigned, std::pair<const MachineOperand *, unsigned> >
      LoopDeps;
    LoopDeps Deps;

    LoopDependencies(const MachineLoopInfo &mli,
                     const MachineDominatorTree &mdt) :
      MLI(mli), MDT(mdt) {}

    void VisitLoop(const MachineLoop *Loop) {
      Deps.clear();
      MachineBasicBlock *Header = Loop->getHeader();
      SmallSet<unsigned, 8> LoopLiveIns;
      for (MachineBasicBlock::livein_iterator LI = Header->livein_begin(),
           LE = Header->livein_end(); LI != LE; ++LI)
        LoopLiveIns.insert(*LI);

      VisitRegion(MDT.getNode(Header), Loop, LoopLiveIns);
    }

  private:
    void VisitRegion(const MachineDomTreeNode *Node,
                     const MachineLoop *Loop,
                     const SmallSet<unsigned, 8> &LoopLiveIns) {
      MachineBasicBlock *MBB = Node->getBlock();
      if (!Loop->contains(MBB)) return;

      unsigned Count = 0;
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
           I != E; ++I, ++Count) {
        const MachineInstr *MI = I;
        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
          const MachineOperand &MO = MI->getOperand(i);
          if (!MO.isReg() || !MO.isUse())
            continue;
          unsigned MOReg = MO.getReg();
          if (LoopLiveIns.count(MOReg))
            Deps.insert(std::make_pair(MOReg, std::make_pair(&MO, Count)));
        }
      }

      const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
      for (unsigned I = 0, E = Children.size(); I != E; ++I)
        VisitRegion(Children[I], Loop, LoopLiveIns);
    }
  };
}

ScheduleDAGInstrs::ScheduleDAGInstrs(MachineBasicBlock *bb,
                                     const TargetMachine &tm,
                                     const MachineLoopInfo &mli,
                                     const MachineDominatorTree &mdt)
  : ScheduleDAG(0, bb, tm), MLI(mli), MDT(mdt) {}

void ScheduleDAGInstrs::BuildSchedUnits() {
  SUnits.clear();
  SUnits.reserve(BB->size());

  // We build scheduling units by walking a block's instruction list from bottom
  // to top.

  // Remember where defs and uses of each physical register are as we procede.
  std::vector<SUnit *> Defs[TargetRegisterInfo::FirstVirtualRegister] = {};
  std::vector<SUnit *> Uses[TargetRegisterInfo::FirstVirtualRegister] = {};

  // Remember where unknown loads are after the most recent unknown store
  // as we procede.
  std::vector<SUnit *> PendingLoads;

  // Remember where a generic side-effecting instruction is as we procede. If
  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
  // ChainMMO is non-null, then Chain makes only a single memory reference.
  SUnit *Chain = 0;
  MachineMemOperand *ChainMMO = 0;

  // Memory references to specific known memory locations are tracked so that
  // they can be given more precise dependencies.
  std::map<const Value *, SUnit *> MemDefs;
  std::map<const Value *, std::vector<SUnit *> > MemUses;

  // Terminators can perform control transfers, we we need to make sure that
  // all the work of the block is done before the terminator.
  SUnit *Terminator = 0;

  LoopDependencies LoopRegs(MLI, MDT);

  // Track which regs are live into a loop, to help guide back-edge-aware
  // scheduling.
  SmallSet<unsigned, 8> LoopLiveInRegs;
  if (MachineLoop *ML = MLI.getLoopFor(BB))
    if (BB == ML->getLoopLatch()) {
      MachineBasicBlock *Header = ML->getHeader();
      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
           E = Header->livein_end(); I != E; ++I)
        LoopLiveInRegs.insert(*I);
      LoopRegs.VisitLoop(ML);
    }

  // Check to see if the scheduler cares about latencies.
  bool UnitLatencies = ForceUnitLatencies();

  // Ask the target if address-backscheduling is desirable, and if so how much.
  unsigned SpecialAddressLatency =
    TM.getSubtarget<TargetSubtarget>().getSpecialAddressLatency();

  for (MachineBasicBlock::iterator MII = BB->end(), MIE = BB->begin();
       MII != MIE; --MII) {
    MachineInstr *MI = prior(MII);
    const TargetInstrDesc &TID = MI->getDesc();
    SUnit *SU = NewSUnit(MI);

    // Assign the Latency field of SU using target-provided information.
    if (UnitLatencies)
      SU->Latency = 1;
    else
      ComputeLatency(SU);

    // Add register-based dependencies (data, anti, and output).
    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
      const MachineOperand &MO = MI->getOperand(j);
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;

      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
      std::vector<SUnit *> &UseList = Uses[Reg];
      std::vector<SUnit *> &DefList = Defs[Reg];
      // Optionally add output and anti dependencies.
      // TODO: Using a latency of 1 here assumes there's no cost for
      //       reusing registers.
      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
        SUnit *DefSU = DefList[i];
        if (DefSU != SU &&
            (Kind != SDep::Output || !MO.isDead() ||
             !DefSU->getInstr()->registerDefIsDead(Reg)))
          DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
      }
      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
        std::vector<SUnit *> &DefList = Defs[*Alias];
        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
          SUnit *DefSU = DefList[i];
          if (DefSU != SU &&
              (Kind != SDep::Output || !MO.isDead() ||
               !DefSU->getInstr()->registerDefIsDead(Reg)))
            DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
        }
      }

      if (MO.isDef()) {
        // Add any data dependencies.
        unsigned DataLatency = SU->Latency;
        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
          SUnit *UseSU = UseList[i];
          if (UseSU != SU) {
            unsigned LDataLatency = DataLatency;
            // Optionally add in a special extra latency for nodes that
            // feed addresses.
            // TODO: Do this for register aliases too.
            if (SpecialAddressLatency != 0 && !UnitLatencies) {
              MachineInstr *UseMI = UseSU->getInstr();
              const TargetInstrDesc &UseTID = UseMI->getDesc();
              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
                LDataLatency += SpecialAddressLatency;
            }
            UseSU->addPred(SDep(SU, SDep::Data, LDataLatency, Reg));
          }
        }
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
          std::vector<SUnit *> &UseList = Uses[*Alias];
          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
            SUnit *UseSU = UseList[i];
            if (UseSU != SU)
              UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias));
          }
        }

        // If a def is going to wrap back around to the top of the loop,
        // backschedule it.
        // TODO: Blocks in loops without terminators can benefit too.
        if (!UnitLatencies && Terminator && DefList.empty()) {
          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
          if (I != LoopRegs.Deps.end()) {
            const MachineOperand *UseMO = I->second.first;
            unsigned Count = I->second.second;
            const MachineInstr *UseMI = UseMO->getParent();
            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
            const TargetInstrDesc &UseTID = UseMI->getDesc();
            // TODO: If we knew the total depth of the region here, we could
            // handle the case where the whole loop is inside the region but
            // is large enough that the isScheduleHigh trick isn't needed.
            if (UseMOIdx < UseTID.getNumOperands()) {
              // Currently, we only support scheduling regions consisting of
              // single basic blocks. Check to see if the instruction is in
              // the same region by checking to see if it has the same parent.
              if (UseMI->getParent() != MI->getParent()) {
                unsigned Latency = SU->Latency;
                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
                  Latency += SpecialAddressLatency;
                // This is a wild guess as to the portion of the latency which
                // will be overlapped by work done outside the current
                // scheduling region.
                Latency -= std::min(Latency, Count);
                // Add the artifical edge.
                Terminator->addPred(SDep(SU, SDep::Order, Latency,
                                         /*Reg=*/0, /*isNormalMemory=*/false,
                                         /*isMustAlias=*/false,
                                         /*isArtificial=*/true));
              } else if (SpecialAddressLatency > 0 &&
                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
                // The entire loop body is within the current scheduling region
                // and the latency of this operation is assumed to be greater
                // than the latency of the loop.
                // TODO: Recursively mark data-edge predecessors as
                //       isScheduleHigh too.
                SU->isScheduleHigh = true;
              }
            }
            LoopRegs.Deps.erase(I);
          }
        }

        UseList.clear();
        if (!MO.isDead())
          DefList.clear();
        DefList.push_back(SU);
      } else {
        UseList.push_back(SU);
      }
    }

    // Add chain dependencies.
    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
    // after stack slots are lowered to actual addresses.
    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
    // produce more precise dependence information.
    if (TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) {
    new_chain:
      // This is the conservative case. Add dependencies on all memory
      // references.
      if (Chain)
        Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
      Chain = SU;
      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
        PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
      PendingLoads.clear();
      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
           E = MemDefs.end(); I != E; ++I) {
        I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
        I->second = SU;
      }
      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
          I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
        I->second.clear();
      }
      // See if it is known to just have a single memory reference.
      MachineInstr *ChainMI = Chain->getInstr();
      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
      if (!ChainTID.isCall() && !ChainTID.isTerminator() &&
          !ChainTID.hasUnmodeledSideEffects() &&
          ChainMI->hasOneMemOperand() &&
          !ChainMI->memoperands_begin()->isVolatile() &&
          ChainMI->memoperands_begin()->getValue())
        // We know that the Chain accesses one specific memory location.
        ChainMMO = &*ChainMI->memoperands_begin();
      else
        // Unknown memory accesses. Assume the worst.
        ChainMMO = 0;
    } else if (TID.mayStore()) {
      if (MI->hasOneMemOperand() &&
          MI->memoperands_begin()->getValue() &&
          !MI->memoperands_begin()->isVolatile() &&
          isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) {
        // A store to a specific PseudoSourceValue. Add precise dependencies.
        const Value *V = MI->memoperands_begin()->getValue();
        // Handle the def in MemDefs, if there is one.
        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
        if (I != MemDefs.end()) {
          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
                                  /*isNormalMemory=*/true));
          I->second = SU;
        } else {
          MemDefs[V] = SU;
        }
        // Handle the uses in MemUses, if there are any.
        std::map<const Value *, std::vector<SUnit *> >::iterator J =
          MemUses.find(V);
        if (J != MemUses.end()) {
          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
            J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
                                       /*isNormalMemory=*/true));
          J->second.clear();
        }
        // Add a general dependence too, if needed.
        if (Chain)
          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
      } else
        // Treat all other stores conservatively.
        goto new_chain;
    } else if (TID.mayLoad()) {
      if (TII->isInvariantLoad(MI)) {
        // Invariant load, no chain dependencies needed!
      } else if (MI->hasOneMemOperand() &&
                 MI->memoperands_begin()->getValue() &&
                 !MI->memoperands_begin()->isVolatile() &&
                 isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) {
        // A load from a specific PseudoSourceValue. Add precise dependencies.
        const Value *V = MI->memoperands_begin()->getValue();
        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
        if (I != MemDefs.end())
          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
                                  /*isNormalMemory=*/true));
        MemUses[V].push_back(SU);

        // Add a general dependence too, if needed.
        if (Chain && (!ChainMMO ||
                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
      } else if (MI->hasVolatileMemoryRef()) {
        // Treat volatile loads conservatively. Note that this includes
        // cases where memoperand information is unavailable.
        goto new_chain;
      } else {
        // A normal load. Just depend on the general chain.
        if (Chain)
          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
        PendingLoads.push_back(SU);
      }
    }

    // Add chain edges from the terminator to ensure that all the work of the
    // block is completed before any control transfers.
    if (Terminator && SU->Succs.empty())
      Terminator->addPred(SDep(SU, SDep::Order, SU->Latency));
    if (TID.isTerminator() || MI->isLabel())
      Terminator = SU;
  }
}

void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();

  // Compute the latency for the node.  We use the sum of the latencies for
  // all nodes flagged together into this SUnit.
  SU->Latency =
    InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());

  // Simplistic target-independent heuristic: assume that loads take
  // extra time.
  if (InstrItins.isEmpty())
    if (SU->getInstr()->getDesc().mayLoad())
      SU->Latency += 2;
}

void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
  SU->getInstr()->dump();
}

std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
  std::string s;
  raw_string_ostream oss(s);
  SU->getInstr()->print(oss);
  return oss.str();
}

// EmitSchedule - Emit the machine code in scheduled order.
MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
  // For MachineInstr-based scheduling, we're rescheduling the instructions in
  // the block, so start by removing them from the block.
  while (!BB->empty())
    BB->remove(BB->begin());

  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    SUnit *SU = Sequence[i];
    if (!SU) {
      // Null SUnit* is a noop.
      EmitNoop();
      continue;
    }

    BB->push_back(SU->getInstr());
  }

  return BB;
}