aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/ScheduleDAGInstrs.cpp
blob: 8e18b3d17fda28e37b3a04a825690cdf6e5ffbd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
// of MachineInstrs.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sched-instrs"
#include "ScheduleDAGInstrs.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtarget.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallSet.h"
using namespace llvm;

ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
                                     const MachineLoopInfo &mli,
                                     const MachineDominatorTree &mdt)
  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {}

/// Run - perform scheduling.
///
void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
                            MachineBasicBlock::iterator begin,
                            MachineBasicBlock::iterator end,
                            unsigned endcount) {
  BB = bb;
  Begin = begin;
  InsertPosIndex = endcount;

  ScheduleDAG::Run(bb, end);
}

/// getOpcode - If this is an Instruction or a ConstantExpr, return the
/// opcode value. Otherwise return UserOp1.
static unsigned getOpcode(const Value *V) {
  if (const Instruction *I = dyn_cast<Instruction>(V))
    return I->getOpcode();
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    return CE->getOpcode();
  // Use UserOp1 to mean there's no opcode.
  return Instruction::UserOp1;
}

/// getUnderlyingObjectFromInt - This is the function that does the work of
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
  do {
    if (const User *U = dyn_cast<User>(V)) {
      // If we find a ptrtoint, we can transfer control back to the
      // regular getUnderlyingObjectFromInt.
      if (getOpcode(U) == Instruction::PtrToInt)
        return U->getOperand(0);
      // If we find an add of a constant or a multiplied value, it's
      // likely that the other operand will lead us to the base
      // object. We don't have to worry about the case where the
      // object address is somehow being computed bt the multiply,
      // because our callers only care when the result is an
      // identifibale object.
      if (getOpcode(U) != Instruction::Add ||
          (!isa<ConstantInt>(U->getOperand(1)) &&
           getOpcode(U->getOperand(1)) != Instruction::Mul))
        return V;
      V = U->getOperand(0);
    } else {
      return V;
    }
    assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
  } while (1);
}

/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObject(const Value *V) {
  // First just call Value::getUnderlyingObject to let it do what it does.
  do {
    V = V->getUnderlyingObject();
    // If it found an inttoptr, use special code to continue climing.
    if (getOpcode(V) != Instruction::IntToPtr)
      break;
    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
    // If that succeeded in finding a pointer, continue the search.
    if (!isa<PointerType>(O->getType()))
      break;
    V = O;
  } while (1);
  return V;
}

/// getUnderlyingObjectForInstr - If this machine instr has memory reference
/// information and it can be tracked to a normal reference to a known
/// object, return the Value for that object. Otherwise return null.
static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) {
  if (!MI->hasOneMemOperand() ||
      !MI->memoperands_begin()->getValue() ||
      MI->memoperands_begin()->isVolatile())
    return 0;

  const Value *V = MI->memoperands_begin()->getValue();
  if (!V)
    return 0;

  V = getUnderlyingObject(V);
  if (!isa<PseudoSourceValue>(V) && !isIdentifiedObject(V))
    return 0;

  return V;
}

void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
  if (MachineLoop *ML = MLI.getLoopFor(BB))
    if (BB == ML->getLoopLatch()) {
      MachineBasicBlock *Header = ML->getHeader();
      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
           E = Header->livein_end(); I != E; ++I)
        LoopLiveInRegs.insert(*I);
      LoopRegs.VisitLoop(ML);
    }
}

void ScheduleDAGInstrs::BuildSchedGraph() {
  // We'll be allocating one SUnit for each instruction, plus one for
  // the region exit node.
  SUnits.reserve(BB->size());

  // We build scheduling units by walking a block's instruction list from bottom
  // to top.

  // Remember where a generic side-effecting instruction is as we procede. If
  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
  // ChainMMO is non-null, then Chain makes only a single memory reference.
  SUnit *Chain = 0;
  MachineMemOperand *ChainMMO = 0;

  // Memory references to specific known memory locations are tracked so that
  // they can be given more precise dependencies.
  std::map<const Value *, SUnit *> MemDefs;
  std::map<const Value *, std::vector<SUnit *> > MemUses;

  // Check to see if the scheduler cares about latencies.
  bool UnitLatencies = ForceUnitLatencies();

  // Ask the target if address-backscheduling is desirable, and if so how much.
  unsigned SpecialAddressLatency =
    TM.getSubtarget<TargetSubtarget>().getSpecialAddressLatency();

  // Walk the list of instructions, from bottom moving up.
  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
       MII != MIE; --MII) {
    MachineInstr *MI = prior(MII);
    const TargetInstrDesc &TID = MI->getDesc();
    assert(!TID.isTerminator() && !MI->isLabel() &&
           "Cannot schedule terminators or labels!");
    // Create the SUnit for this MI.
    SUnit *SU = NewSUnit(MI);

    // Assign the Latency field of SU using target-provided information.
    if (UnitLatencies)
      SU->Latency = 1;
    else
      ComputeLatency(SU);

    // Add register-based dependencies (data, anti, and output).
    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
      const MachineOperand &MO = MI->getOperand(j);
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;

      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
      std::vector<SUnit *> &UseList = Uses[Reg];
      std::vector<SUnit *> &DefList = Defs[Reg];
      // Optionally add output and anti dependencies.
      // TODO: Using a latency of 1 here assumes there's no cost for
      //       reusing registers.
      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
        SUnit *DefSU = DefList[i];
        if (DefSU != SU &&
            (Kind != SDep::Output || !MO.isDead() ||
             !DefSU->getInstr()->registerDefIsDead(Reg)))
          DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
      }
      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
        std::vector<SUnit *> &DefList = Defs[*Alias];
        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
          SUnit *DefSU = DefList[i];
          if (DefSU != SU &&
              (Kind != SDep::Output || !MO.isDead() ||
               !DefSU->getInstr()->registerDefIsDead(Reg)))
            DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
        }
      }

      if (MO.isDef()) {
        // Add any data dependencies.
        unsigned DataLatency = SU->Latency;
        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
          SUnit *UseSU = UseList[i];
          if (UseSU != SU) {
            unsigned LDataLatency = DataLatency;
            // Optionally add in a special extra latency for nodes that
            // feed addresses.
            // TODO: Do this for register aliases too.
            if (SpecialAddressLatency != 0 && !UnitLatencies) {
              MachineInstr *UseMI = UseSU->getInstr();
              const TargetInstrDesc &UseTID = UseMI->getDesc();
              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
                LDataLatency += SpecialAddressLatency;
            }
            UseSU->addPred(SDep(SU, SDep::Data, LDataLatency, Reg));
          }
        }
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
          std::vector<SUnit *> &UseList = Uses[*Alias];
          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
            SUnit *UseSU = UseList[i];
            if (UseSU != SU)
              UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias));
          }
        }

        // If a def is going to wrap back around to the top of the loop,
        // backschedule it.
        if (!UnitLatencies && DefList.empty()) {
          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
          if (I != LoopRegs.Deps.end()) {
            const MachineOperand *UseMO = I->second.first;
            unsigned Count = I->second.second;
            const MachineInstr *UseMI = UseMO->getParent();
            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
            const TargetInstrDesc &UseTID = UseMI->getDesc();
            // TODO: If we knew the total depth of the region here, we could
            // handle the case where the whole loop is inside the region but
            // is large enough that the isScheduleHigh trick isn't needed.
            if (UseMOIdx < UseTID.getNumOperands()) {
              // Currently, we only support scheduling regions consisting of
              // single basic blocks. Check to see if the instruction is in
              // the same region by checking to see if it has the same parent.
              if (UseMI->getParent() != MI->getParent()) {
                unsigned Latency = SU->Latency;
                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
                  Latency += SpecialAddressLatency;
                // This is a wild guess as to the portion of the latency which
                // will be overlapped by work done outside the current
                // scheduling region.
                Latency -= std::min(Latency, Count);
                // Add the artifical edge.
                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
                                    /*Reg=*/0, /*isNormalMemory=*/false,
                                    /*isMustAlias=*/false,
                                    /*isArtificial=*/true));
              } else if (SpecialAddressLatency > 0 &&
                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
                // The entire loop body is within the current scheduling region
                // and the latency of this operation is assumed to be greater
                // than the latency of the loop.
                // TODO: Recursively mark data-edge predecessors as
                //       isScheduleHigh too.
                SU->isScheduleHigh = true;
              }
            }
            LoopRegs.Deps.erase(I);
          }
        }

        UseList.clear();
        if (!MO.isDead())
          DefList.clear();
        DefList.push_back(SU);
      } else {
        UseList.push_back(SU);
      }
    }

    // Add chain dependencies.
    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
    // after stack slots are lowered to actual addresses.
    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
    // produce more precise dependence information.
    if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
    new_chain:
      // This is the conservative case. Add dependencies on all memory
      // references.
      if (Chain)
        Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
      Chain = SU;
      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
        PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
      PendingLoads.clear();
      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
           E = MemDefs.end(); I != E; ++I) {
        I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
        I->second = SU;
      }
      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
          I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
        I->second.clear();
      }
      // See if it is known to just have a single memory reference.
      MachineInstr *ChainMI = Chain->getInstr();
      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
      if (!ChainTID.isCall() &&
          !ChainTID.hasUnmodeledSideEffects() &&
          ChainMI->hasOneMemOperand() &&
          !ChainMI->memoperands_begin()->isVolatile() &&
          ChainMI->memoperands_begin()->getValue())
        // We know that the Chain accesses one specific memory location.
        ChainMMO = &*ChainMI->memoperands_begin();
      else
        // Unknown memory accesses. Assume the worst.
        ChainMMO = 0;
    } else if (TID.mayStore()) {
      if (const Value *V = getUnderlyingObjectForInstr(MI)) {
        // A store to a specific PseudoSourceValue. Add precise dependencies.
        // Handle the def in MemDefs, if there is one.
        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
        if (I != MemDefs.end()) {
          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
                                  /*isNormalMemory=*/true));
          I->second = SU;
        } else {
          MemDefs[V] = SU;
        }
        // Handle the uses in MemUses, if there are any.
        std::map<const Value *, std::vector<SUnit *> >::iterator J =
          MemUses.find(V);
        if (J != MemUses.end()) {
          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
            J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
                                       /*isNormalMemory=*/true));
          J->second.clear();
        }
        // Add dependencies from all the PendingLoads, since without
        // memoperands we must assume they alias anything.
        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
          PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
        // Add a general dependence too, if needed.
        if (Chain)
          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
      } else
        // Treat all other stores conservatively.
        goto new_chain;
    } else if (TID.mayLoad()) {
      if (TII->isInvariantLoad(MI)) {
        // Invariant load, no chain dependencies needed!
      } else if (const Value *V = getUnderlyingObjectForInstr(MI)) {
        // A load from a specific PseudoSourceValue. Add precise dependencies.
        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
        if (I != MemDefs.end())
          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
                                  /*isNormalMemory=*/true));
        MemUses[V].push_back(SU);

        // Add a general dependence too, if needed.
        if (Chain && (!ChainMMO ||
                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
      } else if (MI->hasVolatileMemoryRef()) {
        // Treat volatile loads conservatively. Note that this includes
        // cases where memoperand information is unavailable.
        goto new_chain;
      } else {
        // A normal load. Depend on the general chain, as well as on
        // all stores. In the absense of MachineMemOperand information,
        // we can't even assume that the load doesn't alias well-behaved
        // memory locations.
        if (Chain)
          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
        for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
             E = MemDefs.end(); I != E; ++I)
          I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
        PendingLoads.push_back(SU);
      }
    }
  }

  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
    Defs[i].clear();
    Uses[i].clear();
  }
  PendingLoads.clear();
}

void ScheduleDAGInstrs::FinishBlock() {
  // Nothing to do.
}

void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();

  // Compute the latency for the node.  We use the sum of the latencies for
  // all nodes flagged together into this SUnit.
  SU->Latency =
    InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());

  // Simplistic target-independent heuristic: assume that loads take
  // extra time.
  if (InstrItins.isEmpty())
    if (SU->getInstr()->getDesc().mayLoad())
      SU->Latency += 2;
}

void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
  SU->getInstr()->dump();
}

std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
  std::string s;
  raw_string_ostream oss(s);
  if (SU == &EntrySU)
    oss << "<entry>";
  else if (SU == &ExitSU)
    oss << "<exit>";
  else
    SU->getInstr()->print(oss);
  return oss.str();
}

// EmitSchedule - Emit the machine code in scheduled order.
MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
  // For MachineInstr-based scheduling, we're rescheduling the instructions in
  // the block, so start by removing them from the block.
  while (Begin != InsertPos) {
    MachineBasicBlock::iterator I = Begin;
    ++Begin;
    BB->remove(I);
  }

  // Then re-insert them according to the given schedule.
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    SUnit *SU = Sequence[i];
    if (!SU) {
      // Null SUnit* is a noop.
      EmitNoop();
      continue;
    }

    BB->insert(InsertPos, SU->getInstr());
  }

  // Update the Begin iterator, as the first instruction in the block
  // may have been scheduled later.
  if (!Sequence.empty())
    Begin = Sequence[0]->getInstr();

  return BB;
}