aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/ScheduleDAGInstrs.cpp
blob: 17dd729a19a265b1e8dac9c18a3df10e38623c67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
// of MachineInstrs.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDFS.h"
#include "llvm/IR/Operator.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <queue>

using namespace llvm;

#define DEBUG_TYPE "misched"

static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
    cl::ZeroOrMore, cl::init(false),
    cl::desc("Enable use of AA during MI DAG construction"));

static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
    cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));

ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
                                     const MachineLoopInfo *mli,
                                     bool IsPostRAFlag, bool RemoveKillFlags,
                                     LiveIntervals *lis)
    : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis),
      IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
      CanHandleTerminators(false), FirstDbgValue(nullptr) {
  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
  DbgValues.clear();
  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
         "Virtual registers must be removed prior to PostRA scheduling");

  const TargetSubtargetInfo &ST = mf.getSubtarget();
  SchedModel.init(ST.getSchedModel(), &ST, TII);
}

/// getUnderlyingObjectFromInt - This is the function that does the work of
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
  do {
    if (const Operator *U = dyn_cast<Operator>(V)) {
      // If we find a ptrtoint, we can transfer control back to the
      // regular getUnderlyingObjectFromInt.
      if (U->getOpcode() == Instruction::PtrToInt)
        return U->getOperand(0);
      // If we find an add of a constant, a multiplied value, or a phi, it's
      // likely that the other operand will lead us to the base
      // object. We don't have to worry about the case where the
      // object address is somehow being computed by the multiply,
      // because our callers only care when the result is an
      // identifiable object.
      if (U->getOpcode() != Instruction::Add ||
          (!isa<ConstantInt>(U->getOperand(1)) &&
           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
           !isa<PHINode>(U->getOperand(1))))
        return V;
      V = U->getOperand(0);
    } else {
      return V;
    }
    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
  } while (1);
}

/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
static void getUnderlyingObjects(const Value *V,
                                 SmallVectorImpl<Value *> &Objects,
                                 const DataLayout &DL) {
  SmallPtrSet<const Value *, 16> Visited;
  SmallVector<const Value *, 4> Working(1, V);
  do {
    V = Working.pop_back_val();

    SmallVector<Value *, 4> Objs;
    GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);

    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
         I != IE; ++I) {
      V = *I;
      if (!Visited.insert(V).second)
        continue;
      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
        const Value *O =
          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
        if (O->getType()->isPointerTy()) {
          Working.push_back(O);
          continue;
        }
      }
      Objects.push_back(const_cast<Value *>(V));
    }
  } while (!Working.empty());
}

typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
UnderlyingObjectsVector;

/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
/// information and it can be tracked to a normal reference to a known
/// object, return the Value for that object.
static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
                                         const MachineFrameInfo *MFI,
                                         UnderlyingObjectsVector &Objects,
                                         const DataLayout &DL) {
  if (!MI->hasOneMemOperand() ||
      (!(*MI->memoperands_begin())->getValue() &&
       !(*MI->memoperands_begin())->getPseudoValue()) ||
      (*MI->memoperands_begin())->isVolatile())
    return;

  if (const PseudoSourceValue *PSV =
      (*MI->memoperands_begin())->getPseudoValue()) {
    // For now, ignore PseudoSourceValues which may alias LLVM IR values
    // because the code that uses this function has no way to cope with
    // such aliases.
    if (!PSV->isAliased(MFI)) {
      bool MayAlias = PSV->mayAlias(MFI);
      Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
    }
    return;
  }

  const Value *V = (*MI->memoperands_begin())->getValue();
  if (!V)
    return;

  SmallVector<Value *, 4> Objs;
  getUnderlyingObjects(V, Objs, DL);

  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
         I != IE; ++I) {
    V = *I;

    if (!isIdentifiedObject(V)) {
      Objects.clear();
      return;
    }

    Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
  }
}

void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
  BB = bb;
}

void ScheduleDAGInstrs::finishBlock() {
  // Subclasses should no longer refer to the old block.
  BB = nullptr;
}

/// Initialize the DAG and common scheduler state for the current scheduling
/// region. This does not actually create the DAG, only clears it. The
/// scheduling driver may call BuildSchedGraph multiple times per scheduling
/// region.
void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
                                    MachineBasicBlock::iterator begin,
                                    MachineBasicBlock::iterator end,
                                    unsigned regioninstrs) {
  assert(bb == BB && "startBlock should set BB");
  RegionBegin = begin;
  RegionEnd = end;
  NumRegionInstrs = regioninstrs;
}

/// Close the current scheduling region. Don't clear any state in case the
/// driver wants to refer to the previous scheduling region.
void ScheduleDAGInstrs::exitRegion() {
  // Nothing to do.
}

/// addSchedBarrierDeps - Add dependencies from instructions in the current
/// list of instructions being scheduled to scheduling barrier by adding
/// the exit SU to the register defs and use list. This is because we want to
/// make sure instructions which define registers that are either used by
/// the terminator or are live-out are properly scheduled. This is
/// especially important when the definition latency of the return value(s)
/// are too high to be hidden by the branch or when the liveout registers
/// used by instructions in the fallthrough block.
void ScheduleDAGInstrs::addSchedBarrierDeps() {
  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
  ExitSU.setInstr(ExitMI);
  bool AllDepKnown = ExitMI &&
    (ExitMI->isCall() || ExitMI->isBarrier());
  if (ExitMI && AllDepKnown) {
    // If it's a call or a barrier, add dependencies on the defs and uses of
    // instruction.
    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = ExitMI->getOperand(i);
      if (!MO.isReg() || MO.isDef()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;

      if (TRI->isPhysicalRegister(Reg))
        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
      else {
        assert(!IsPostRA && "Virtual register encountered after regalloc.");
        if (MO.readsReg()) // ignore undef operands
          addVRegUseDeps(&ExitSU, i);
      }
    }
  } else {
    // For others, e.g. fallthrough, conditional branch, assume the exit
    // uses all the registers that are livein to the successor blocks.
    assert(Uses.empty() && "Uses in set before adding deps?");
    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
           SE = BB->succ_end(); SI != SE; ++SI)
      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
             E = (*SI)->livein_end(); I != E; ++I) {
        unsigned Reg = *I;
        if (!Uses.contains(Reg))
          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
      }
  }
}

/// MO is an operand of SU's instruction that defines a physical register. Add
/// data dependencies from SU to any uses of the physical register.
void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
  assert(MO.isDef() && "expect physreg def");

  // Ask the target if address-backscheduling is desirable, and if so how much.
  const TargetSubtargetInfo &ST = MF.getSubtarget();

  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
       Alias.isValid(); ++Alias) {
    if (!Uses.contains(*Alias))
      continue;
    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
      SUnit *UseSU = I->SU;
      if (UseSU == SU)
        continue;

      // Adjust the dependence latency using operand def/use information,
      // then allow the target to perform its own adjustments.
      int UseOp = I->OpIdx;
      MachineInstr *RegUse = nullptr;
      SDep Dep;
      if (UseOp < 0)
        Dep = SDep(SU, SDep::Artificial);
      else {
        // Set the hasPhysRegDefs only for physreg defs that have a use within
        // the scheduling region.
        SU->hasPhysRegDefs = true;
        Dep = SDep(SU, SDep::Data, *Alias);
        RegUse = UseSU->getInstr();
      }
      Dep.setLatency(
        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
                                         UseOp));

      ST.adjustSchedDependency(SU, UseSU, Dep);
      UseSU->addPred(Dep);
    }
  }
}

/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
/// this SUnit to following instructions in the same scheduling region that
/// depend the physical register referenced at OperIdx.
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
  MachineInstr *MI = SU->getInstr();
  MachineOperand &MO = MI->getOperand(OperIdx);

  // Optionally add output and anti dependencies. For anti
  // dependencies we use a latency of 0 because for a multi-issue
  // target we want to allow the defining instruction to issue
  // in the same cycle as the using instruction.
  // TODO: Using a latency of 1 here for output dependencies assumes
  //       there's no cost for reusing registers.
  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
       Alias.isValid(); ++Alias) {
    if (!Defs.contains(*Alias))
      continue;
    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
      SUnit *DefSU = I->SU;
      if (DefSU == &ExitSU)
        continue;
      if (DefSU != SU &&
          (Kind != SDep::Output || !MO.isDead() ||
           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
        if (Kind == SDep::Anti)
          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
        else {
          SDep Dep(SU, Kind, /*Reg=*/*Alias);
          Dep.setLatency(
            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
          DefSU->addPred(Dep);
        }
      }
    }
  }

  if (!MO.isDef()) {
    SU->hasPhysRegUses = true;
    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    // retrieve the existing SUnits list for this register's uses.
    // Push this SUnit on the use list.
    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
    if (RemoveKillFlags)
      MO.setIsKill(false);
  }
  else {
    addPhysRegDataDeps(SU, OperIdx);
    unsigned Reg = MO.getReg();

    // clear this register's use list
    if (Uses.contains(Reg))
      Uses.eraseAll(Reg);

    if (!MO.isDead()) {
      Defs.eraseAll(Reg);
    } else if (SU->isCall) {
      // Calls will not be reordered because of chain dependencies (see
      // below). Since call operands are dead, calls may continue to be added
      // to the DefList making dependence checking quadratic in the size of
      // the block. Instead, we leave only one call at the back of the
      // DefList.
      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
      Reg2SUnitsMap::iterator B = P.first;
      Reg2SUnitsMap::iterator I = P.second;
      for (bool isBegin = I == B; !isBegin; /* empty */) {
        isBegin = (--I) == B;
        if (!I->SU->isCall)
          break;
        I = Defs.erase(I);
      }
    }

    // Defs are pushed in the order they are visited and never reordered.
    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
  }
}

/// addVRegDefDeps - Add register output and data dependencies from this SUnit
/// to instructions that occur later in the same scheduling region if they read
/// from or write to the virtual register defined at OperIdx.
///
/// TODO: Hoist loop induction variable increments. This has to be
/// reevaluated. Generally, IV scheduling should be done before coalescing.
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
  const MachineInstr *MI = SU->getInstr();
  unsigned Reg = MI->getOperand(OperIdx).getReg();

  // Singly defined vregs do not have output/anti dependencies.
  // The current operand is a def, so we have at least one.
  // Check here if there are any others...
  if (MRI.hasOneDef(Reg))
    return;

  // Add output dependence to the next nearest def of this vreg.
  //
  // Unless this definition is dead, the output dependence should be
  // transitively redundant with antidependencies from this definition's
  // uses. We're conservative for now until we have a way to guarantee the uses
  // are not eliminated sometime during scheduling. The output dependence edge
  // is also useful if output latency exceeds def-use latency.
  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
  if (DefI == VRegDefs.end())
    VRegDefs.insert(VReg2SUnit(Reg, SU));
  else {
    SUnit *DefSU = DefI->SU;
    if (DefSU != SU && DefSU != &ExitSU) {
      SDep Dep(SU, SDep::Output, Reg);
      Dep.setLatency(
        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
      DefSU->addPred(Dep);
    }
    DefI->SU = SU;
  }
}

/// addVRegUseDeps - Add a register data dependency if the instruction that
/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
/// register antidependency from this SUnit to instructions that occur later in
/// the same scheduling region if they write the virtual register.
///
/// TODO: Handle ExitSU "uses" properly.
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
  MachineInstr *MI = SU->getInstr();
  unsigned Reg = MI->getOperand(OperIdx).getReg();

  // Record this local VReg use.
  VReg2UseMap::iterator UI = VRegUses.find(Reg);
  for (; UI != VRegUses.end(); ++UI) {
    if (UI->SU == SU)
      break;
  }
  if (UI == VRegUses.end())
    VRegUses.insert(VReg2SUnit(Reg, SU));

  // Lookup this operand's reaching definition.
  assert(LIS && "vreg dependencies requires LiveIntervals");
  LiveQueryResult LRQ
    = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
  VNInfo *VNI = LRQ.valueIn();

  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
  assert(VNI && "No value to read by operand");
  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
  // Phis and other noninstructions (after coalescing) have a NULL Def.
  if (Def) {
    SUnit *DefSU = getSUnit(Def);
    if (DefSU) {
      // The reaching Def lives within this scheduling region.
      // Create a data dependence.
      SDep dep(DefSU, SDep::Data, Reg);
      // Adjust the dependence latency using operand def/use information, then
      // allow the target to perform its own adjustments.
      int DefOp = Def->findRegisterDefOperandIdx(Reg);
      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));

      const TargetSubtargetInfo &ST = MF.getSubtarget();
      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
      SU->addPred(dep);
    }
  }

  // Add antidependence to the following def of the vreg it uses.
  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
  if (DefI != VRegDefs.end() && DefI->SU != SU)
    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
}

/// Return true if MI is an instruction we are unable to reason about
/// (like a call or something with unmodeled side effects).
static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
      (MI->hasOrderedMemoryRef() &&
       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
    return true;
  return false;
}

// This MI might have either incomplete info, or known to be unsafe
// to deal with (i.e. volatile object).
static inline bool isUnsafeMemoryObject(MachineInstr *MI,
                                        const MachineFrameInfo *MFI,
                                        const DataLayout &DL) {
  if (!MI || MI->memoperands_empty())
    return true;
  // We purposefully do no check for hasOneMemOperand() here
  // in hope to trigger an assert downstream in order to
  // finish implementation.
  if ((*MI->memoperands_begin())->isVolatile() ||
       MI->hasUnmodeledSideEffects())
    return true;

  if ((*MI->memoperands_begin())->getPseudoValue()) {
    // Similarly to getUnderlyingObjectForInstr:
    // For now, ignore PseudoSourceValues which may alias LLVM IR values
    // because the code that uses this function has no way to cope with
    // such aliases.
    return true;
  }

  const Value *V = (*MI->memoperands_begin())->getValue();
  if (!V)
    return true;

  SmallVector<Value *, 4> Objs;
  getUnderlyingObjects(V, Objs, DL);
  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
         IE = Objs.end(); I != IE; ++I) {
    // Does this pointer refer to a distinct and identifiable object?
    if (!isIdentifiedObject(*I))
      return true;
  }

  return false;
}

/// This returns true if the two MIs need a chain edge betwee them.
/// If these are not even memory operations, we still may need
/// chain deps between them. The question really is - could
/// these two MIs be reordered during scheduling from memory dependency
/// point of view.
static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
                             const DataLayout &DL, MachineInstr *MIa,
                             MachineInstr *MIb) {
  const MachineFunction *MF = MIa->getParent()->getParent();
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();

  // Cover a trivial case - no edge is need to itself.
  if (MIa == MIb)
    return false;
 
  // Let the target decide if memory accesses cannot possibly overlap.
  if ((MIa->mayLoad() || MIa->mayStore()) &&
      (MIb->mayLoad() || MIb->mayStore()))
    if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
      return false;

  // FIXME: Need to handle multiple memory operands to support all targets.
  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
    return true;

  if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL))
    return true;

  // If we are dealing with two "normal" loads, we do not need an edge
  // between them - they could be reordered.
  if (!MIa->mayStore() && !MIb->mayStore())
    return false;

  // To this point analysis is generic. From here on we do need AA.
  if (!AA)
    return true;

  MachineMemOperand *MMOa = *MIa->memoperands_begin();
  MachineMemOperand *MMOb = *MIb->memoperands_begin();

  if (!MMOa->getValue() || !MMOb->getValue())
    return true;

  // The following interface to AA is fashioned after DAGCombiner::isAlias
  // and operates with MachineMemOperand offset with some important
  // assumptions:
  //   - LLVM fundamentally assumes flat address spaces.
  //   - MachineOperand offset can *only* result from legalization and
  //     cannot affect queries other than the trivial case of overlap
  //     checking.
  //   - These offsets never wrap and never step outside
  //     of allocated objects.
  //   - There should never be any negative offsets here.
  //
  // FIXME: Modify API to hide this math from "user"
  // FIXME: Even before we go to AA we can reason locally about some
  // memory objects. It can save compile time, and possibly catch some
  // corner cases not currently covered.

  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");

  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;

  AliasAnalysis::AliasResult AAResult = AA->alias(
      AliasAnalysis::Location(MMOa->getValue(), Overlapa,
                              UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
      AliasAnalysis::Location(MMOb->getValue(), Overlapb,
                              UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));

  return (AAResult != AliasAnalysis::NoAlias);
}

/// This recursive function iterates over chain deps of SUb looking for
/// "latest" node that needs a chain edge to SUa.
static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
                                 const DataLayout &DL, SUnit *SUa, SUnit *SUb,
                                 SUnit *ExitSU, unsigned *Depth,
                                 SmallPtrSetImpl<const SUnit *> &Visited) {
  if (!SUa || !SUb || SUb == ExitSU)
    return *Depth;

  // Remember visited nodes.
  if (!Visited.insert(SUb).second)
      return *Depth;
  // If there is _some_ dependency already in place, do not
  // descend any further.
  // TODO: Need to make sure that if that dependency got eliminated or ignored
  // for any reason in the future, we would not violate DAG topology.
  // Currently it does not happen, but makes an implicit assumption about
  // future implementation.
  //
  // Independently, if we encounter node that is some sort of global
  // object (like a call) we already have full set of dependencies to it
  // and we can stop descending.
  if (SUa->isSucc(SUb) ||
      isGlobalMemoryObject(AA, SUb->getInstr()))
    return *Depth;

  // If we do need an edge, or we have exceeded depth budget,
  // add that edge to the predecessors chain of SUb,
  // and stop descending.
  if (*Depth > 200 ||
      MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
    return *Depth;
  }
  // Track current depth.
  (*Depth)++;
  // Iterate over memory dependencies only.
  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
       I != E; ++I)
    if (I->isNormalMemoryOrBarrier())
      iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited);
  return *Depth;
}

/// This function assumes that "downward" from SU there exist
/// tail/leaf of already constructed DAG. It iterates downward and
/// checks whether SU can be aliasing any node dominated
/// by it.
static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
                            const DataLayout &DL, SUnit *SU, SUnit *ExitSU,
                            std::set<SUnit *> &CheckList,
                            unsigned LatencyToLoad) {
  if (!SU)
    return;

  SmallPtrSet<const SUnit*, 16> Visited;
  unsigned Depth = 0;

  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
       I != IE; ++I) {
    if (SU == *I)
      continue;
    if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) {
      SDep Dep(SU, SDep::MayAliasMem);
      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
      (*I)->addPred(Dep);
    }

    // Iterate recursively over all previously added memory chain
    // successors. Keep track of visited nodes.
    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
         JE = (*I)->Succs.end(); J != JE; ++J)
      if (J->isNormalMemoryOrBarrier())
        iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth,
                         Visited);
  }
}

/// Check whether two objects need a chain edge, if so, add it
/// otherwise remember the rejected SU.
static inline void addChainDependency(AliasAnalysis *AA,
                                      const MachineFrameInfo *MFI,
                                      const DataLayout &DL, SUnit *SUa,
                                      SUnit *SUb, std::set<SUnit *> &RejectList,
                                      unsigned TrueMemOrderLatency = 0,
                                      bool isNormalMemory = false) {
  // If this is a false dependency,
  // do not add the edge, but rememeber the rejected node.
  if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
    Dep.setLatency(TrueMemOrderLatency);
    SUb->addPred(Dep);
  }
  else {
    // Duplicate entries should be ignored.
    RejectList.insert(SUb);
    DEBUG(dbgs() << "\tReject chain dep between SU("
          << SUa->NodeNum << ") and SU("
          << SUb->NodeNum << ")\n");
  }
}

/// Create an SUnit for each real instruction, numbered in top-down toplological
/// order. The instruction order A < B, implies that no edge exists from B to A.
///
/// Map each real instruction to its SUnit.
///
/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
/// instead of pointers.
///
/// MachineScheduler relies on initSUnits numbering the nodes by their order in
/// the original instruction list.
void ScheduleDAGInstrs::initSUnits() {
  // We'll be allocating one SUnit for each real instruction in the region,
  // which is contained within a basic block.
  SUnits.reserve(NumRegionInstrs);

  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
    MachineInstr *MI = I;
    if (MI->isDebugValue())
      continue;

    SUnit *SU = newSUnit(MI);
    MISUnitMap[MI] = SU;

    SU->isCall = MI->isCall();
    SU->isCommutable = MI->isCommutable();

    // Assign the Latency field of SU using target-provided information.
    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());

    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
    //
    // Reserved resources block an instruction from issuing and stall the
    // entire pipeline. These are identified by BufferSize=0.
    //
    // Unbuffered resources prevent execution of subsequent instructions that
    // require the same resources. This is used for in-order execution pipelines
    // within an out-of-order core. These are identified by BufferSize=1.
    if (SchedModel.hasInstrSchedModel()) {
      const MCSchedClassDesc *SC = getSchedClass(SU);
      for (TargetSchedModel::ProcResIter
             PI = SchedModel.getWriteProcResBegin(SC),
             PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
        switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
        case 0:
          SU->hasReservedResource = true;
          break;
        case 1:
          SU->isUnbuffered = true;
          break;
        default:
          break;
        }
      }
    }
  }
}

/// If RegPressure is non-null, compute register pressure as a side effect. The
/// DAG builder is an efficient place to do it because it already visits
/// operands.
void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
                                        RegPressureTracker *RPTracker,
                                        PressureDiffs *PDiffs) {
  const TargetSubtargetInfo &ST = MF.getSubtarget();
  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
                                                       : ST.useAA();
  AliasAnalysis *AAForDep = UseAA ? AA : nullptr;

  MISUnitMap.clear();
  ScheduleDAG::clearDAG();

  // Create an SUnit for each real instruction.
  initSUnits();

  if (PDiffs)
    PDiffs->init(SUnits.size());

  // We build scheduling units by walking a block's instruction list from bottom
  // to top.

  // Remember where a generic side-effecting instruction is as we procede.
  SUnit *BarrierChain = nullptr, *AliasChain = nullptr;

  // Memory references to specific known memory locations are tracked
  // so that they can be given more precise dependencies. We track
  // separately the known memory locations that may alias and those
  // that are known not to alias
  MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
  MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
  std::set<SUnit*> RejectMemNodes;

  // Remove any stale debug info; sometimes BuildSchedGraph is called again
  // without emitting the info from the previous call.
  DbgValues.clear();
  FirstDbgValue = nullptr;

  assert(Defs.empty() && Uses.empty() &&
         "Only BuildGraph should update Defs/Uses");
  Defs.setUniverse(TRI->getNumRegs());
  Uses.setUniverse(TRI->getNumRegs());

  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
  VRegUses.clear();
  VRegDefs.setUniverse(MRI.getNumVirtRegs());
  VRegUses.setUniverse(MRI.getNumVirtRegs());

  // Model data dependencies between instructions being scheduled and the
  // ExitSU.
  addSchedBarrierDeps();

  // Walk the list of instructions, from bottom moving up.
  MachineInstr *DbgMI = nullptr;
  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
       MII != MIE; --MII) {
    MachineInstr *MI = std::prev(MII);
    if (MI && DbgMI) {
      DbgValues.push_back(std::make_pair(DbgMI, MI));
      DbgMI = nullptr;
    }

    if (MI->isDebugValue()) {
      DbgMI = MI;
      continue;
    }
    SUnit *SU = MISUnitMap[MI];
    assert(SU && "No SUnit mapped to this MI");

    if (RPTracker) {
      PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
      RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
      assert(RPTracker->getPos() == std::prev(MII) &&
             "RPTracker can't find MI");
    }

    assert(
        (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
        "Cannot schedule terminators or labels!");

    // Add register-based dependencies (data, anti, and output).
    bool HasVRegDef = false;
    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
      const MachineOperand &MO = MI->getOperand(j);
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;

      if (TRI->isPhysicalRegister(Reg))
        addPhysRegDeps(SU, j);
      else {
        assert(!IsPostRA && "Virtual register encountered!");
        if (MO.isDef()) {
          HasVRegDef = true;
          addVRegDefDeps(SU, j);
        }
        else if (MO.readsReg()) // ignore undef operands
          addVRegUseDeps(SU, j);
      }
    }
    // If we haven't seen any uses in this scheduling region, create a
    // dependence edge to ExitSU to model the live-out latency. This is required
    // for vreg defs with no in-region use, and prefetches with no vreg def.
    //
    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
    // check currently relies on being called before adding chain deps.
    if (SU->NumSuccs == 0 && SU->Latency > 1
        && (HasVRegDef || MI->mayLoad())) {
      SDep Dep(SU, SDep::Artificial);
      Dep.setLatency(SU->Latency - 1);
      ExitSU.addPred(Dep);
    }

    // Add chain dependencies.
    // Chain dependencies used to enforce memory order should have
    // latency of 0 (except for true dependency of Store followed by
    // aliased Load... we estimate that with a single cycle of latency
    // assuming the hardware will bypass)
    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
    // after stack slots are lowered to actual addresses.
    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
    // produce more precise dependence information.
    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
    if (isGlobalMemoryObject(AA, MI)) {
      // Be conservative with these and add dependencies on all memory
      // references, even those that are known to not alias.
      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
          I->second[i]->addPred(SDep(SU, SDep::Barrier));
        }
      }
      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
          SDep Dep(SU, SDep::Barrier);
          Dep.setLatency(TrueMemOrderLatency);
          I->second[i]->addPred(Dep);
        }
      }
      // Add SU to the barrier chain.
      if (BarrierChain)
        BarrierChain->addPred(SDep(SU, SDep::Barrier));
      BarrierChain = SU;
      // This is a barrier event that acts as a pivotal node in the DAG,
      // so it is safe to clear list of exposed nodes.
      adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
                      TrueMemOrderLatency);
      RejectMemNodes.clear();
      NonAliasMemDefs.clear();
      NonAliasMemUses.clear();

      // fall-through
    new_alias_chain:
      // Chain all possibly aliasing memory references through SU.
      if (AliasChain) {
        unsigned ChainLatency = 0;
        if (AliasChain->getInstr()->mayLoad())
          ChainLatency = TrueMemOrderLatency;
        addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
                           RejectMemNodes, ChainLatency);
      }
      AliasChain = SU;
      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
        addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
                           PendingLoads[k], RejectMemNodes,
                           TrueMemOrderLatency);
      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
           AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
                             I->second[i], RejectMemNodes);
      }
      for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
                             I->second[i], RejectMemNodes, TrueMemOrderLatency);
      }
      adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
                      TrueMemOrderLatency);
      PendingLoads.clear();
      AliasMemDefs.clear();
      AliasMemUses.clear();
    } else if (MI->mayStore()) {
      // Add dependence on barrier chain, if needed.
      // There is no point to check aliasing on barrier event. Even if
      // SU and barrier _could_ be reordered, they should not. In addition,
      // we have lost all RejectMemNodes below barrier.
      if (BarrierChain)
        BarrierChain->addPred(SDep(SU, SDep::Barrier));

      UnderlyingObjectsVector Objs;
      getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout());

      if (Objs.empty()) {
        // Treat all other stores conservatively.
        goto new_alias_chain;
      }

      bool MayAlias = false;
      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
           K != KE; ++K) {
        ValueType V = K->getPointer();
        bool ThisMayAlias = K->getInt();
        if (ThisMayAlias)
          MayAlias = true;

        // A store to a specific PseudoSourceValue. Add precise dependencies.
        // Record the def in MemDefs, first adding a dep if there is
        // an existing def.
        MapVector<ValueType, std::vector<SUnit *> >::iterator I =
          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
        MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
        if (I != IE) {
          for (unsigned i = 0, e = I->second.size(); i != e; ++i)
            addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
                               I->second[i], RejectMemNodes, 0, true);

          // If we're not using AA, then we only need one store per object.
          if (!AAForDep)
            I->second.clear();
          I->second.push_back(SU);
        } else {
          if (ThisMayAlias) {
            if (!AAForDep)
              AliasMemDefs[V].clear();
            AliasMemDefs[V].push_back(SU);
          } else {
            if (!AAForDep)
              NonAliasMemDefs[V].clear();
            NonAliasMemDefs[V].push_back(SU);
          }
        }
        // Handle the uses in MemUses, if there are any.
        MapVector<ValueType, std::vector<SUnit *> >::iterator J =
          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
        MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
        if (J != JE) {
          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
            addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
                               J->second[i], RejectMemNodes,
                               TrueMemOrderLatency, true);
          J->second.clear();
        }
      }
      if (MayAlias) {
        // Add dependencies from all the PendingLoads, i.e. loads
        // with no underlying object.
        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
                             PendingLoads[k], RejectMemNodes,
                             TrueMemOrderLatency);
        // Add dependence on alias chain, if needed.
        if (AliasChain)
          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
                             RejectMemNodes);
      }
      adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
                      TrueMemOrderLatency);
    } else if (MI->mayLoad()) {
      bool MayAlias = true;
      if (MI->isInvariantLoad(AA)) {
        // Invariant load, no chain dependencies needed!
      } else {
        UnderlyingObjectsVector Objs;
        getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout());

        if (Objs.empty()) {
          // A load with no underlying object. Depend on all
          // potentially aliasing stores.
          for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
              addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
                                 I->second[i], RejectMemNodes);

          PendingLoads.push_back(SU);
          MayAlias = true;
        } else {
          MayAlias = false;
        }

        for (UnderlyingObjectsVector::iterator
             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
          ValueType V = J->getPointer();
          bool ThisMayAlias = J->getInt();

          if (ThisMayAlias)
            MayAlias = true;

          // A load from a specific PseudoSourceValue. Add precise dependencies.
          MapVector<ValueType, std::vector<SUnit *> >::iterator I =
            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
          MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
          if (I != IE)
            for (unsigned i = 0, e = I->second.size(); i != e; ++i)
              addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
                                 I->second[i], RejectMemNodes, 0, true);
          if (ThisMayAlias)
            AliasMemUses[V].push_back(SU);
          else
            NonAliasMemUses[V].push_back(SU);
        }
        if (MayAlias)
          adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU,
                          RejectMemNodes, /*Latency=*/0);
        // Add dependencies on alias and barrier chains, if needed.
        if (MayAlias && AliasChain)
          addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
                             RejectMemNodes);
        if (BarrierChain)
          BarrierChain->addPred(SDep(SU, SDep::Barrier));
      }
    }
  }
  if (DbgMI)
    FirstDbgValue = DbgMI;

  Defs.clear();
  Uses.clear();
  VRegDefs.clear();
  PendingLoads.clear();
}

/// \brief Initialize register live-range state for updating kills.
void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
  // Start with no live registers.
  LiveRegs.reset();

  // Examine the live-in regs of all successors.
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
       SE = BB->succ_end(); SI != SE; ++SI) {
    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
         E = (*SI)->livein_end(); I != E; ++I) {
      unsigned Reg = *I;
      // Repeat, for reg and all subregs.
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        LiveRegs.set(*SubRegs);
    }
  }
}

bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
  // Setting kill flag...
  if (!MO.isKill()) {
    MO.setIsKill(true);
    return false;
  }

  // If MO itself is live, clear the kill flag...
  if (LiveRegs.test(MO.getReg())) {
    MO.setIsKill(false);
    return false;
  }

  // If any subreg of MO is live, then create an imp-def for that
  // subreg and keep MO marked as killed.
  MO.setIsKill(false);
  bool AllDead = true;
  const unsigned SuperReg = MO.getReg();
  MachineInstrBuilder MIB(MF, MI);
  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
    if (LiveRegs.test(*SubRegs)) {
      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
      AllDead = false;
    }
  }

  if(AllDead)
    MO.setIsKill(true);
  return false;
}

// FIXME: Reuse the LivePhysRegs utility for this.
void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');

  LiveRegs.resize(TRI->getNumRegs());
  BitVector killedRegs(TRI->getNumRegs());

  startBlockForKills(MBB);

  // Examine block from end to start...
  unsigned Count = MBB->size();
  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
       I != E; --Count) {
    MachineInstr *MI = --I;
    if (MI->isDebugValue())
      continue;

    // Update liveness.  Registers that are defed but not used in this
    // instruction are now dead. Mark register and all subregs as they
    // are completely defined.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isRegMask())
        LiveRegs.clearBitsNotInMask(MO.getRegMask());
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;
      if (!MO.isDef()) continue;
      // Ignore two-addr defs.
      if (MI->isRegTiedToUseOperand(i)) continue;

      // Repeat for reg and all subregs.
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        LiveRegs.reset(*SubRegs);
    }

    // Examine all used registers and set/clear kill flag. When a
    // register is used multiple times we only set the kill flag on
    // the first use. Don't set kill flags on undef operands.
    killedRegs.reset();
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
      unsigned Reg = MO.getReg();
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;

      bool kill = false;
      if (!killedRegs.test(Reg)) {
        kill = true;
        // A register is not killed if any subregs are live...
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
          if (LiveRegs.test(*SubRegs)) {
            kill = false;
            break;
          }
        }

        // If subreg is not live, then register is killed if it became
        // live in this instruction
        if (kill)
          kill = !LiveRegs.test(Reg);
      }

      if (MO.isKill() != kill) {
        DEBUG(dbgs() << "Fixing " << MO << " in ");
        // Warning: toggleKillFlag may invalidate MO.
        toggleKillFlag(MI, MO);
        DEBUG(MI->dump());
      }

      killedRegs.set(Reg);
    }

    // Mark any used register (that is not using undef) and subregs as
    // now live...
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
      unsigned Reg = MO.getReg();
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;

      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        LiveRegs.set(*SubRegs);
    }
  }
}

void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  SU->getInstr()->dump();
#endif
}

std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
  std::string s;
  raw_string_ostream oss(s);
  if (SU == &EntrySU)
    oss << "<entry>";
  else if (SU == &ExitSU)
    oss << "<exit>";
  else
    SU->getInstr()->print(oss, /*SkipOpers=*/true);
  return oss.str();
}

/// Return the basic block label. It is not necessarilly unique because a block
/// contains multiple scheduling regions. But it is fine for visualization.
std::string ScheduleDAGInstrs::getDAGName() const {
  return "dag." + BB->getFullName();
}

//===----------------------------------------------------------------------===//
// SchedDFSResult Implementation
//===----------------------------------------------------------------------===//

namespace llvm {
/// \brief Internal state used to compute SchedDFSResult.
class SchedDFSImpl {
  SchedDFSResult &R;

  /// Join DAG nodes into equivalence classes by their subtree.
  IntEqClasses SubtreeClasses;
  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;

  struct RootData {
    unsigned NodeID;
    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
    unsigned SubInstrCount; // Instr count in this tree only, not children.

    RootData(unsigned id): NodeID(id),
                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
                           SubInstrCount(0) {}

    unsigned getSparseSetIndex() const { return NodeID; }
  };

  SparseSet<RootData> RootSet;

public:
  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
    RootSet.setUniverse(R.DFSNodeData.size());
  }

  /// Return true if this node been visited by the DFS traversal.
  ///
  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
  /// ID. Later, SubtreeID is updated but remains valid.
  bool isVisited(const SUnit *SU) const {
    return R.DFSNodeData[SU->NodeNum].SubtreeID
      != SchedDFSResult::InvalidSubtreeID;
  }

  /// Initialize this node's instruction count. We don't need to flag the node
  /// visited until visitPostorder because the DAG cannot have cycles.
  void visitPreorder(const SUnit *SU) {
    R.DFSNodeData[SU->NodeNum].InstrCount =
      SU->getInstr()->isTransient() ? 0 : 1;
  }

  /// Called once for each node after all predecessors are visited. Revisit this
  /// node's predecessors and potentially join them now that we know the ILP of
  /// the other predecessors.
  void visitPostorderNode(const SUnit *SU) {
    // Mark this node as the root of a subtree. It may be joined with its
    // successors later.
    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
    RootData RData(SU->NodeNum);
    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;

    // If any predecessors are still in their own subtree, they either cannot be
    // joined or are large enough to remain separate. If this parent node's
    // total instruction count is not greater than a child subtree by at least
    // the subtree limit, then try to join it now since splitting subtrees is
    // only useful if multiple high-pressure paths are possible.
    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
    for (SUnit::const_pred_iterator
           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
      if (PI->getKind() != SDep::Data)
        continue;
      unsigned PredNum = PI->getSUnit()->NodeNum;
      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);

      // Either link or merge the TreeData entry from the child to the parent.
      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
        // If the predecessor's parent is invalid, this is a tree edge and the
        // current node is the parent.
        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
          RootSet[PredNum].ParentNodeID = SU->NodeNum;
      }
      else if (RootSet.count(PredNum)) {
        // The predecessor is not a root, but is still in the root set. This
        // must be the new parent that it was just joined to. Note that
        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
        // set to the original parent.
        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
        RootSet.erase(PredNum);
      }
    }
    RootSet[SU->NodeNum] = RData;
  }

  /// Called once for each tree edge after calling visitPostOrderNode on the
  /// predecessor. Increment the parent node's instruction count and
  /// preemptively join this subtree to its parent's if it is small enough.
  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
    R.DFSNodeData[Succ->NodeNum].InstrCount
      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
    joinPredSubtree(PredDep, Succ);
  }

  /// Add a connection for cross edges.
  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
  }

  /// Set each node's subtree ID to the representative ID and record connections
  /// between trees.
  void finalize() {
    SubtreeClasses.compress();
    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
    assert(SubtreeClasses.getNumClasses() == RootSet.size()
           && "number of roots should match trees");
    for (SparseSet<RootData>::const_iterator
           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
      unsigned TreeID = SubtreeClasses[RI->NodeID];
      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
      // Note that SubInstrCount may be greater than InstrCount if we joined
      // subtrees across a cross edge. InstrCount will be attributed to the
      // original parent, while SubInstrCount will be attributed to the joined
      // parent.
    }
    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
            << R.DFSNodeData[Idx].SubtreeID << '\n');
    }
    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
         I != E; ++I) {
      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
      if (PredTree == SuccTree)
        continue;
      unsigned Depth = I->first->getDepth();
      addConnection(PredTree, SuccTree, Depth);
      addConnection(SuccTree, PredTree, Depth);
    }
  }

protected:
  /// Join the predecessor subtree with the successor that is its DFS
  /// parent. Apply some heuristics before joining.
  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
                       bool CheckLimit = true) {
    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");

    // Check if the predecessor is already joined.
    const SUnit *PredSU = PredDep.getSUnit();
    unsigned PredNum = PredSU->NodeNum;
    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
      return false;

    // Four is the magic number of successors before a node is considered a
    // pinch point.
    unsigned NumDataSucs = 0;
    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
           SE = PredSU->Succs.end(); SI != SE; ++SI) {
      if (SI->getKind() == SDep::Data) {
        if (++NumDataSucs >= 4)
          return false;
      }
    }
    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
      return false;
    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
    SubtreeClasses.join(Succ->NodeNum, PredNum);
    return true;
  }

  /// Called by finalize() to record a connection between trees.
  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
    if (!Depth)
      return;

    do {
      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
        R.SubtreeConnections[FromTree];
      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
        if (I->TreeID == ToTree) {
          I->Level = std::max(I->Level, Depth);
          return;
        }
      }
      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
  }
};
} // namespace llvm

namespace {
/// \brief Manage the stack used by a reverse depth-first search over the DAG.
class SchedDAGReverseDFS {
  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
public:
  bool isComplete() const { return DFSStack.empty(); }

  void follow(const SUnit *SU) {
    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
  }
  void advance() { ++DFSStack.back().second; }

  const SDep *backtrack() {
    DFSStack.pop_back();
    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
  }

  const SUnit *getCurr() const { return DFSStack.back().first; }

  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }

  SUnit::const_pred_iterator getPredEnd() const {
    return getCurr()->Preds.end();
  }
};
} // anonymous

static bool hasDataSucc(const SUnit *SU) {
  for (SUnit::const_succ_iterator
         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
      return true;
  }
  return false;
}

/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
/// search from this root.
void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
  if (!IsBottomUp)
    llvm_unreachable("Top-down ILP metric is unimplemnted");

  SchedDFSImpl Impl(*this);
  for (ArrayRef<SUnit>::const_iterator
         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
    const SUnit *SU = &*SI;
    if (Impl.isVisited(SU) || hasDataSucc(SU))
      continue;

    SchedDAGReverseDFS DFS;
    Impl.visitPreorder(SU);
    DFS.follow(SU);
    for (;;) {
      // Traverse the leftmost path as far as possible.
      while (DFS.getPred() != DFS.getPredEnd()) {
        const SDep &PredDep = *DFS.getPred();
        DFS.advance();
        // Ignore non-data edges.
        if (PredDep.getKind() != SDep::Data
            || PredDep.getSUnit()->isBoundaryNode()) {
          continue;
        }
        // An already visited edge is a cross edge, assuming an acyclic DAG.
        if (Impl.isVisited(PredDep.getSUnit())) {
          Impl.visitCrossEdge(PredDep, DFS.getCurr());
          continue;
        }
        Impl.visitPreorder(PredDep.getSUnit());
        DFS.follow(PredDep.getSUnit());
      }
      // Visit the top of the stack in postorder and backtrack.
      const SUnit *Child = DFS.getCurr();
      const SDep *PredDep = DFS.backtrack();
      Impl.visitPostorderNode(Child);
      if (PredDep)
        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
      if (DFS.isComplete())
        break;
    }
  }
  Impl.finalize();
}

/// The root of the given SubtreeID was just scheduled. For all subtrees
/// connected to this tree, record the depth of the connection so that the
/// nearest connected subtrees can be prioritized.
void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
  for (SmallVectorImpl<Connection>::const_iterator
         I = SubtreeConnections[SubtreeID].begin(),
         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
    SubtreeConnectLevels[I->TreeID] =
      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
    DEBUG(dbgs() << "  Tree: " << I->TreeID
          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
  }
}

LLVM_DUMP_METHOD
void ILPValue::print(raw_ostream &OS) const {
  OS << InstrCount << " / " << Length << " = ";
  if (!Length)
    OS << "BADILP";
  else
    OS << format("%g", ((double)InstrCount / Length));
}

LLVM_DUMP_METHOD
void ILPValue::dump() const {
  dbgs() << *this << '\n';
}

namespace llvm {

LLVM_DUMP_METHOD
raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
  Val.print(OS);
  return OS;
}

} // namespace llvm