aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
blob: aacee99ed9936865a6b3b77a2824e3693275496a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
// both before and after the DAG is legalized.
//
// FIXME: Missing folds
// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
//  a sequence of multiplies, shifts, and adds.  This should be controlled by
//  some kind of hint from the target that int div is expensive.
// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
//
// FIXME: select C, pow2, pow2 -> something smart
// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
// FIXME: Dead stores -> nuke
// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
// FIXME: mul (x, const) -> shifts + adds
// FIXME: undef values
// FIXME: make truncate see through SIGN_EXTEND and AND
// FIXME: divide by zero is currently left unfolded.  do we want to turn this
//        into an undef?
// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
// 
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dagcombine"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace llvm;

namespace {
  Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined");

  class DAGCombiner {
    SelectionDAG &DAG;
    TargetLowering &TLI;
    bool AfterLegalize;

    // Worklist of all of the nodes that need to be simplified.
    std::vector<SDNode*> WorkList;

    /// AddUsersToWorkList - When an instruction is simplified, add all users of
    /// the instruction to the work lists because they might get more simplified
    /// now.
    ///
    void AddUsersToWorkList(SDNode *N) {
      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
           UI != UE; ++UI)
        WorkList.push_back(*UI);
    }

    /// removeFromWorkList - remove all instances of N from the worklist.
    ///
    void removeFromWorkList(SDNode *N) {
      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
                     WorkList.end());
    }
    
  public:
    void AddToWorkList(SDNode *N) {
      WorkList.push_back(N);
    }
    
    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
      ++NodesCombined;
      DEBUG(std::cerr << "\nReplacing "; N->dump();
            std::cerr << "\nWith: "; To[0].Val->dump();
            std::cerr << " and " << To.size()-1 << " other values\n");
      std::vector<SDNode*> NowDead;
      DAG.ReplaceAllUsesWith(N, To, &NowDead);
      
      // Push the new nodes and any users onto the worklist
      for (unsigned i = 0, e = To.size(); i != e; ++i) {
        WorkList.push_back(To[i].Val);
        AddUsersToWorkList(To[i].Val);
      }
      
      // Nodes can end up on the worklist more than once.  Make sure we do
      // not process a node that has been replaced.
      removeFromWorkList(N);
      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
        removeFromWorkList(NowDead[i]);
      
      // Finally, since the node is now dead, remove it from the graph.
      DAG.DeleteNode(N);
      return SDOperand(N, 0);
    }
    
    SDOperand CombineTo(SDNode *N, SDOperand Res) {
      std::vector<SDOperand> To;
      To.push_back(Res);
      return CombineTo(N, To);
    }
    
    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
      std::vector<SDOperand> To;
      To.push_back(Res0);
      To.push_back(Res1);
      return CombineTo(N, To);
    }
  private:    
    
    /// SimplifyDemandedBits - Check the specified integer node value to see if
    /// it can be simplified or if things it uses can be simplified by bit
    /// propagation.  If so, return true.
    bool SimplifyDemandedBits(SDOperand Op) {
      TargetLowering::TargetLoweringOpt TLO(DAG);
      uint64_t KnownZero, KnownOne;
      uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
        return false;

      // Revisit the node.
      WorkList.push_back(Op.Val);
      
      // Replace the old value with the new one.
      ++NodesCombined;
      DEBUG(std::cerr << "\nReplacing "; TLO.Old.Val->dump();
            std::cerr << "\nWith: "; TLO.New.Val->dump());

      std::vector<SDNode*> NowDead;
      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
      
      // Push the new node and any (possibly new) users onto the worklist.
      WorkList.push_back(TLO.New.Val);
      AddUsersToWorkList(TLO.New.Val);
      
      // Nodes can end up on the worklist more than once.  Make sure we do
      // not process a node that has been replaced.
      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
        removeFromWorkList(NowDead[i]);
      
      // Finally, if the node is now dead, remove it from the graph.  The node
      // may not be dead if the replacement process recursively simplified to
      // something else needing this node.
      if (TLO.Old.Val->use_empty()) {
        removeFromWorkList(TLO.Old.Val);
        DAG.DeleteNode(TLO.Old.Val);
      }
      return true;
    }

    /// visit - call the node-specific routine that knows how to fold each
    /// particular type of node.
    SDOperand visit(SDNode *N);

    // Visitation implementation - Implement dag node combining for different
    // node types.  The semantics are as follows:
    // Return Value:
    //   SDOperand.Val == 0   - No change was made
    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
    //   otherwise            - N should be replaced by the returned Operand.
    //
    SDOperand visitTokenFactor(SDNode *N);
    SDOperand visitADD(SDNode *N);
    SDOperand visitSUB(SDNode *N);
    SDOperand visitMUL(SDNode *N);
    SDOperand visitSDIV(SDNode *N);
    SDOperand visitUDIV(SDNode *N);
    SDOperand visitSREM(SDNode *N);
    SDOperand visitUREM(SDNode *N);
    SDOperand visitMULHU(SDNode *N);
    SDOperand visitMULHS(SDNode *N);
    SDOperand visitAND(SDNode *N);
    SDOperand visitOR(SDNode *N);
    SDOperand visitXOR(SDNode *N);
    SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp);
    SDOperand visitSHL(SDNode *N);
    SDOperand visitSRA(SDNode *N);
    SDOperand visitSRL(SDNode *N);
    SDOperand visitCTLZ(SDNode *N);
    SDOperand visitCTTZ(SDNode *N);
    SDOperand visitCTPOP(SDNode *N);
    SDOperand visitSELECT(SDNode *N);
    SDOperand visitSELECT_CC(SDNode *N);
    SDOperand visitSETCC(SDNode *N);
    SDOperand visitSIGN_EXTEND(SDNode *N);
    SDOperand visitZERO_EXTEND(SDNode *N);
    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
    SDOperand visitTRUNCATE(SDNode *N);
    SDOperand visitBIT_CONVERT(SDNode *N);
    SDOperand visitVBIT_CONVERT(SDNode *N);
    SDOperand visitFADD(SDNode *N);
    SDOperand visitFSUB(SDNode *N);
    SDOperand visitFMUL(SDNode *N);
    SDOperand visitFDIV(SDNode *N);
    SDOperand visitFREM(SDNode *N);
    SDOperand visitFCOPYSIGN(SDNode *N);
    SDOperand visitSINT_TO_FP(SDNode *N);
    SDOperand visitUINT_TO_FP(SDNode *N);
    SDOperand visitFP_TO_SINT(SDNode *N);
    SDOperand visitFP_TO_UINT(SDNode *N);
    SDOperand visitFP_ROUND(SDNode *N);
    SDOperand visitFP_ROUND_INREG(SDNode *N);
    SDOperand visitFP_EXTEND(SDNode *N);
    SDOperand visitFNEG(SDNode *N);
    SDOperand visitFABS(SDNode *N);
    SDOperand visitBRCOND(SDNode *N);
    SDOperand visitBR_CC(SDNode *N);
    SDOperand visitLOAD(SDNode *N);
    SDOperand visitXEXTLOAD(SDNode *N);
    SDOperand visitSTORE(SDNode *N);
    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
    SDOperand visitVINSERT_VECTOR_ELT(SDNode *N);
    SDOperand visitVBUILD_VECTOR(SDNode *N);
    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
    SDOperand visitVVECTOR_SHUFFLE(SDNode *N);

    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
    
    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, 
                               SDOperand N3, ISD::CondCode CC);
    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
                            ISD::CondCode Cond, bool foldBooleans = true);
    SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType);
    SDOperand BuildSDIV(SDNode *N);
    SDOperand BuildUDIV(SDNode *N);    
public:
    DAGCombiner(SelectionDAG &D)
      : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {}
    
    /// Run - runs the dag combiner on all nodes in the work list
    void Run(bool RunningAfterLegalize); 
  };
}

//===----------------------------------------------------------------------===//
//  TargetLowering::DAGCombinerInfo implementation
//===----------------------------------------------------------------------===//

void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
  ((DAGCombiner*)DC)->AddToWorkList(N);
}

SDOperand TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
  return ((DAGCombiner*)DC)->CombineTo(N, To);
}

SDOperand TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDOperand Res) {
  return ((DAGCombiner*)DC)->CombineTo(N, Res);
}


SDOperand TargetLowering::DAGCombinerInfo::
CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
}




//===----------------------------------------------------------------------===//


struct ms {
  int64_t m;  // magic number
  int64_t s;  // shift amount
};

struct mu {
  uint64_t m; // magic number
  int64_t a;  // add indicator
  int64_t s;  // shift amount
};

/// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
/// or -1.
static ms magic32(int32_t d) {
  int32_t p;
  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint32_t two31 = 0x80000000U;
  struct ms mag;
  
  ad = abs(d);
  t = two31 + ((uint32_t)d >> 31);
  anc = t - 1 - t%ad;   // absolute value of nc
  p = 31;               // initialize p
  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
  do {
    p = p + 1;
    q1 = 2*q1;        // update q1 = 2p/abs(nc)
    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
    if (r1 >= anc) {  // must be unsigned comparison
      q1 = q1 + 1;
      r1 = r1 - anc;
    }
    q2 = 2*q2;        // update q2 = 2p/abs(d)
    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
    if (r2 >= ad) {   // must be unsigned comparison
      q2 = q2 + 1;
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));
  
  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
  if (d < 0) mag.m = -mag.m; // resulting magic number
  mag.s = p - 32;            // resulting shift
  return mag;
}

/// magicu - calculate the magic numbers required to codegen an integer udiv as
/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
static mu magicu32(uint32_t d) {
  int32_t p;
  uint32_t nc, delta, q1, r1, q2, r2;
  struct mu magu;
  magu.a = 0;               // initialize "add" indicator
  nc = - 1 - (-d)%d;
  p = 31;                   // initialize p
  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
  do {
    p = p + 1;
    if (r1 >= nc - r1 ) {
      q1 = 2*q1 + 1;  // update q1
      r1 = 2*r1 - nc; // update r1
    }
    else {
      q1 = 2*q1; // update q1
      r1 = 2*r1; // update r1
    }
    if (r2 + 1 >= d - r2) {
      if (q2 >= 0x7FFFFFFF) magu.a = 1;
      q2 = 2*q2 + 1;     // update q2
      r2 = 2*r2 + 1 - d; // update r2
    }
    else {
      if (q2 >= 0x80000000) magu.a = 1;
      q2 = 2*q2;     // update q2
      r2 = 2*r2 + 1; // update r2
    }
    delta = d - 1 - r2;
  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
  magu.m = q2 + 1; // resulting magic number
  magu.s = p - 32;  // resulting shift
  return magu;
}

/// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
/// or -1.
static ms magic64(int64_t d) {
  int64_t p;
  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
  const uint64_t two63 = 9223372036854775808ULL; // 2^63
  struct ms mag;
  
  ad = d >= 0 ? d : -d;
  t = two63 + ((uint64_t)d >> 63);
  anc = t - 1 - t%ad;   // absolute value of nc
  p = 63;               // initialize p
  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
  do {
    p = p + 1;
    q1 = 2*q1;        // update q1 = 2p/abs(nc)
    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
    if (r1 >= anc) {  // must be unsigned comparison
      q1 = q1 + 1;
      r1 = r1 - anc;
    }
    q2 = 2*q2;        // update q2 = 2p/abs(d)
    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
    if (r2 >= ad) {   // must be unsigned comparison
      q2 = q2 + 1;
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));
  
  mag.m = q2 + 1;
  if (d < 0) mag.m = -mag.m; // resulting magic number
  mag.s = p - 64;            // resulting shift
  return mag;
}

/// magicu - calculate the magic numbers required to codegen an integer udiv as
/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
static mu magicu64(uint64_t d)
{
  int64_t p;
  uint64_t nc, delta, q1, r1, q2, r2;
  struct mu magu;
  magu.a = 0;               // initialize "add" indicator
  nc = - 1 - (-d)%d;
  p = 63;                   // initialize p
  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
  do {
    p = p + 1;
    if (r1 >= nc - r1 ) {
      q1 = 2*q1 + 1;  // update q1
      r1 = 2*r1 - nc; // update r1
    }
    else {
      q1 = 2*q1; // update q1
      r1 = 2*r1; // update r1
    }
    if (r2 + 1 >= d - r2) {
      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
      q2 = 2*q2 + 1;     // update q2
      r2 = 2*r2 + 1 - d; // update r2
    }
    else {
      if (q2 >= 0x8000000000000000ull) magu.a = 1;
      q2 = 2*q2;     // update q2
      r2 = 2*r2 + 1; // update r2
    }
    delta = d - 1 - r2;
  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
  magu.m = q2 + 1; // resulting magic number
  magu.s = p - 64;  // resulting shift
  return magu;
}

// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
// that selects between the values 1 and 0, making it equivalent to a setcc.
// Also, set the incoming LHS, RHS, and CC references to the appropriate 
// nodes based on the type of node we are checking.  This simplifies life a
// bit for the callers.
static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
                              SDOperand &CC) {
  if (N.getOpcode() == ISD::SETCC) {
    LHS = N.getOperand(0);
    RHS = N.getOperand(1);
    CC  = N.getOperand(2);
    return true;
  }
  if (N.getOpcode() == ISD::SELECT_CC && 
      N.getOperand(2).getOpcode() == ISD::Constant &&
      N.getOperand(3).getOpcode() == ISD::Constant &&
      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
    LHS = N.getOperand(0);
    RHS = N.getOperand(1);
    CC  = N.getOperand(4);
    return true;
  }
  return false;
}

// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
// one use.  If this is true, it allows the users to invert the operation for
// free when it is profitable to do so.
static bool isOneUseSetCC(SDOperand N) {
  SDOperand N0, N1, N2;
  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
    return true;
  return false;
}

// FIXME: This should probably go in the ISD class rather than being duplicated
// in several files.
static bool isCommutativeBinOp(unsigned Opcode) {
  switch (Opcode) {
    case ISD::ADD:
    case ISD::MUL:
    case ISD::AND:
    case ISD::OR:
    case ISD::XOR: return true;
    default: return false; // FIXME: Need commutative info for user ops!
  }
}

SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
  MVT::ValueType VT = N0.getValueType();
  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
    if (isa<ConstantSDNode>(N1)) {
      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
      AddToWorkList(OpNode.Val);
      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
    } else if (N0.hasOneUse()) {
      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
      AddToWorkList(OpNode.Val);
      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
    }
  }
  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
    if (isa<ConstantSDNode>(N0)) {
      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
      AddToWorkList(OpNode.Val);
      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
    } else if (N1.hasOneUse()) {
      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
      AddToWorkList(OpNode.Val);
      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
    }
  }
  return SDOperand();
}

void DAGCombiner::Run(bool RunningAfterLegalize) {
  // set the instance variable, so that the various visit routines may use it.
  AfterLegalize = RunningAfterLegalize;

  // Add all the dag nodes to the worklist.
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
       E = DAG.allnodes_end(); I != E; ++I)
    WorkList.push_back(I);
  
  // Create a dummy node (which is not added to allnodes), that adds a reference
  // to the root node, preventing it from being deleted, and tracking any
  // changes of the root.
  HandleSDNode Dummy(DAG.getRoot());
  
  
  /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
  TargetLowering::DAGCombinerInfo 
    DagCombineInfo(DAG, !RunningAfterLegalize, this);
  
  // while the worklist isn't empty, inspect the node on the end of it and
  // try and combine it.
  while (!WorkList.empty()) {
    SDNode *N = WorkList.back();
    WorkList.pop_back();
    
    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
    // N is deleted from the DAG, since they too may now be dead or may have a
    // reduced number of uses, allowing other xforms.
    if (N->use_empty() && N != &Dummy) {
      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
        WorkList.push_back(N->getOperand(i).Val);
      
      removeFromWorkList(N);
      DAG.DeleteNode(N);
      continue;
    }
    
    SDOperand RV = visit(N);
    
    // If nothing happened, try a target-specific DAG combine.
    if (RV.Val == 0) {
      if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
          TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
        RV = TLI.PerformDAGCombine(N, DagCombineInfo);
    }
    
    if (RV.Val) {
      ++NodesCombined;
      // If we get back the same node we passed in, rather than a new node or
      // zero, we know that the node must have defined multiple values and
      // CombineTo was used.  Since CombineTo takes care of the worklist 
      // mechanics for us, we have no work to do in this case.
      if (RV.Val != N) {
        DEBUG(std::cerr << "\nReplacing "; N->dump();
              std::cerr << "\nWith: "; RV.Val->dump();
              std::cerr << '\n');
        std::vector<SDNode*> NowDead;
        DAG.ReplaceAllUsesWith(N, std::vector<SDOperand>(1, RV), &NowDead);
          
        // Push the new node and any users onto the worklist
        WorkList.push_back(RV.Val);
        AddUsersToWorkList(RV.Val);
          
        // Nodes can end up on the worklist more than once.  Make sure we do
        // not process a node that has been replaced.
        removeFromWorkList(N);
        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
          removeFromWorkList(NowDead[i]);
        
        // Finally, since the node is now dead, remove it from the graph.
        DAG.DeleteNode(N);
      }
    }
  }
  
  // If the root changed (e.g. it was a dead load, update the root).
  DAG.setRoot(Dummy.getValue());
}

SDOperand DAGCombiner::visit(SDNode *N) {
  switch(N->getOpcode()) {
  default: break;
  case ISD::TokenFactor:        return visitTokenFactor(N);
  case ISD::ADD:                return visitADD(N);
  case ISD::SUB:                return visitSUB(N);
  case ISD::MUL:                return visitMUL(N);
  case ISD::SDIV:               return visitSDIV(N);
  case ISD::UDIV:               return visitUDIV(N);
  case ISD::SREM:               return visitSREM(N);
  case ISD::UREM:               return visitUREM(N);
  case ISD::MULHU:              return visitMULHU(N);
  case ISD::MULHS:              return visitMULHS(N);
  case ISD::AND:                return visitAND(N);
  case ISD::OR:                 return visitOR(N);
  case ISD::XOR:                return visitXOR(N);
  case ISD::SHL:                return visitSHL(N);
  case ISD::SRA:                return visitSRA(N);
  case ISD::SRL:                return visitSRL(N);
  case ISD::CTLZ:               return visitCTLZ(N);
  case ISD::CTTZ:               return visitCTTZ(N);
  case ISD::CTPOP:              return visitCTPOP(N);
  case ISD::SELECT:             return visitSELECT(N);
  case ISD::SELECT_CC:          return visitSELECT_CC(N);
  case ISD::SETCC:              return visitSETCC(N);
  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
  case ISD::TRUNCATE:           return visitTRUNCATE(N);
  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
  case ISD::VBIT_CONVERT:       return visitVBIT_CONVERT(N);
  case ISD::FADD:               return visitFADD(N);
  case ISD::FSUB:               return visitFSUB(N);
  case ISD::FMUL:               return visitFMUL(N);
  case ISD::FDIV:               return visitFDIV(N);
  case ISD::FREM:               return visitFREM(N);
  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
  case ISD::FP_ROUND:           return visitFP_ROUND(N);
  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
  case ISD::FNEG:               return visitFNEG(N);
  case ISD::FABS:               return visitFABS(N);
  case ISD::BRCOND:             return visitBRCOND(N);
  case ISD::BR_CC:              return visitBR_CC(N);
  case ISD::LOAD:               return visitLOAD(N);
  case ISD::EXTLOAD:
  case ISD::SEXTLOAD:
  case ISD::ZEXTLOAD:           return visitXEXTLOAD(N);
  case ISD::STORE:              return visitSTORE(N);
  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
  case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N);
  case ISD::VBUILD_VECTOR:      return visitVBUILD_VECTOR(N);
  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
  case ISD::VVECTOR_SHUFFLE:    return visitVVECTOR_SHUFFLE(N);
  case ISD::VADD:               return visitVBinOp(N, ISD::ADD , ISD::FADD);
  case ISD::VSUB:               return visitVBinOp(N, ISD::SUB , ISD::FSUB);
  case ISD::VMUL:               return visitVBinOp(N, ISD::MUL , ISD::FMUL);
  case ISD::VSDIV:              return visitVBinOp(N, ISD::SDIV, ISD::FDIV);
  case ISD::VUDIV:              return visitVBinOp(N, ISD::UDIV, ISD::UDIV);
  case ISD::VAND:               return visitVBinOp(N, ISD::AND , ISD::AND);
  case ISD::VOR:                return visitVBinOp(N, ISD::OR  , ISD::OR);
  case ISD::VXOR:               return visitVBinOp(N, ISD::XOR , ISD::XOR);
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
  std::vector<SDOperand> Ops;
  bool Changed = false;

  // If the token factor has two operands and one is the entry token, replace
  // the token factor with the other operand.
  if (N->getNumOperands() == 2) {
    if (N->getOperand(0).getOpcode() == ISD::EntryToken)
      return N->getOperand(1);
    if (N->getOperand(1).getOpcode() == ISD::EntryToken)
      return N->getOperand(0);
  }
  
  // fold (tokenfactor (tokenfactor)) -> tokenfactor
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    SDOperand Op = N->getOperand(i);
    if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) {
      AddToWorkList(Op.Val);  // Remove dead node.
      Changed = true;
      for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j)
        Ops.push_back(Op.getOperand(j));
    } else {
      Ops.push_back(Op);
    }
  }
  if (Changed)
    return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops);
  return SDOperand();
}

SDOperand DAGCombiner::visitADD(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N0.getValueType();
  
  // fold (add c1, c2) -> c1+c2
  if (N0C && N1C)
    return DAG.getNode(ISD::ADD, VT, N0, N1);
  // canonicalize constant to RHS
  if (N0C && !N1C)
    return DAG.getNode(ISD::ADD, VT, N1, N0);
  // fold (add x, 0) -> x
  if (N1C && N1C->isNullValue())
    return N0;
  // fold ((c1-A)+c2) -> (c1+c2)-A
  if (N1C && N0.getOpcode() == ISD::SUB)
    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
      return DAG.getNode(ISD::SUB, VT,
                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
                         N0.getOperand(1));
  // reassociate add
  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
  if (RADD.Val != 0)
    return RADD;
  // fold ((0-A) + B) -> B-A
  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
  // fold (A + (0-B)) -> A-B
  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
  // fold (A+(B-A)) -> B
  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
    return N1.getOperand(0);

  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
    return SDOperand();
  
  // fold (a+b) -> (a|b) iff a and b share no bits.
  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
    uint64_t LHSZero, LHSOne;
    uint64_t RHSZero, RHSOne;
    uint64_t Mask = MVT::getIntVTBitMask(VT);
    TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
    if (LHSZero) {
      TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
      
      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
        return DAG.getNode(ISD::OR, VT, N0, N1);
    }
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitSUB(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
  MVT::ValueType VT = N0.getValueType();
  
  // fold (sub x, x) -> 0
  if (N0 == N1)
    return DAG.getConstant(0, N->getValueType(0));
  // fold (sub c1, c2) -> c1-c2
  if (N0C && N1C)
    return DAG.getNode(ISD::SUB, VT, N0, N1);
  // fold (sub x, c) -> (add x, -c)
  if (N1C)
    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
  // fold (A+B)-A -> B
  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
    return N0.getOperand(1);
  // fold (A+B)-B -> A
  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
    return N0.getOperand(0);
  return SDOperand();
}

SDOperand DAGCombiner::visitMUL(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N0.getValueType();
  
  // fold (mul c1, c2) -> c1*c2
  if (N0C && N1C)
    return DAG.getNode(ISD::MUL, VT, N0, N1);
  // canonicalize constant to RHS
  if (N0C && !N1C)
    return DAG.getNode(ISD::MUL, VT, N1, N0);
  // fold (mul x, 0) -> 0
  if (N1C && N1C->isNullValue())
    return N1;
  // fold (mul x, -1) -> 0-x
  if (N1C && N1C->isAllOnesValue())
    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
  // fold (mul x, (1 << c)) -> x << c
  if (N1C && isPowerOf2_64(N1C->getValue()))
    return DAG.getNode(ISD::SHL, VT, N0,
                       DAG.getConstant(Log2_64(N1C->getValue()),
                                       TLI.getShiftAmountTy()));
  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
    // FIXME: If the input is something that is easily negated (e.g. a 
    // single-use add), we should put the negate there.
    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
                       DAG.getNode(ISD::SHL, VT, N0,
                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
                                            TLI.getShiftAmountTy())));
  }

  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
  if (N1C && N0.getOpcode() == ISD::SHL && 
      isa<ConstantSDNode>(N0.getOperand(1))) {
    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
    AddToWorkList(C3.Val);
    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
  }
  
  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
  // use.
  {
    SDOperand Sh(0,0), Y(0,0);
    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
        N0.Val->hasOneUse()) {
      Sh = N0; Y = N1;
    } else if (N1.getOpcode() == ISD::SHL && 
               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
      Sh = N1; Y = N0;
    }
    if (Sh.Val) {
      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
    }
  }
  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && 
      isa<ConstantSDNode>(N0.getOperand(1))) {
    return DAG.getNode(ISD::ADD, VT, 
                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
  }
  
  // reassociate mul
  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
  if (RMUL.Val != 0)
    return RMUL;
  return SDOperand();
}

SDOperand DAGCombiner::visitSDIV(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
  MVT::ValueType VT = N->getValueType(0);

  // fold (sdiv c1, c2) -> c1/c2
  if (N0C && N1C && !N1C->isNullValue())
    return DAG.getNode(ISD::SDIV, VT, N0, N1);
  // fold (sdiv X, 1) -> X
  if (N1C && N1C->getSignExtended() == 1LL)
    return N0;
  // fold (sdiv X, -1) -> 0-X
  if (N1C && N1C->isAllOnesValue())
    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
  // If we know the sign bits of both operands are zero, strength reduce to a
  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
  if (TLI.MaskedValueIsZero(N1, SignBit) &&
      TLI.MaskedValueIsZero(N0, SignBit))
    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
  // fold (sdiv X, pow2) -> simple ops after legalize
  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
      (isPowerOf2_64(N1C->getSignExtended()) || 
       isPowerOf2_64(-N1C->getSignExtended()))) {
    // If dividing by powers of two is cheap, then don't perform the following
    // fold.
    if (TLI.isPow2DivCheap())
      return SDOperand();
    int64_t pow2 = N1C->getSignExtended();
    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
    unsigned lg2 = Log2_64(abs2);
    // Splat the sign bit into the register
    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
                                                TLI.getShiftAmountTy()));
    AddToWorkList(SGN.Val);
    // Add (N0 < 0) ? abs2 - 1 : 0;
    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
                                                TLI.getShiftAmountTy()));
    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
    AddToWorkList(SRL.Val);
    AddToWorkList(ADD.Val);    // Divide by pow2
    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
    // If we're dividing by a positive value, we're done.  Otherwise, we must
    // negate the result.
    if (pow2 > 0)
      return SRA;
    AddToWorkList(SRA.Val);
    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
  }
  // if integer divide is expensive and we satisfy the requirements, emit an
  // alternate sequence.
  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && 
      !TLI.isIntDivCheap()) {
    SDOperand Op = BuildSDIV(N);
    if (Op.Val) return Op;
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitUDIV(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (udiv c1, c2) -> c1/c2
  if (N0C && N1C && !N1C->isNullValue())
    return DAG.getNode(ISD::UDIV, VT, N0, N1);
  // fold (udiv x, (1 << c)) -> x >>u c
  if (N1C && isPowerOf2_64(N1C->getValue()))
    return DAG.getNode(ISD::SRL, VT, N0, 
                       DAG.getConstant(Log2_64(N1C->getValue()),
                                       TLI.getShiftAmountTy()));
  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
  if (N1.getOpcode() == ISD::SHL) {
    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
      if (isPowerOf2_64(SHC->getValue())) {
        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
                                    DAG.getConstant(Log2_64(SHC->getValue()),
                                                    ADDVT));
        AddToWorkList(Add.Val);
        return DAG.getNode(ISD::SRL, VT, N0, Add);
      }
    }
  }
  // fold (udiv x, c) -> alternate
  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
    SDOperand Op = BuildUDIV(N);
    if (Op.Val) return Op;
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitSREM(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (srem c1, c2) -> c1%c2
  if (N0C && N1C && !N1C->isNullValue())
    return DAG.getNode(ISD::SREM, VT, N0, N1);
  // If we know the sign bits of both operands are zero, strength reduce to a
  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
  if (TLI.MaskedValueIsZero(N1, SignBit) &&
      TLI.MaskedValueIsZero(N0, SignBit))
    return DAG.getNode(ISD::UREM, VT, N0, N1);
  return SDOperand();
}

SDOperand DAGCombiner::visitUREM(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (urem c1, c2) -> c1%c2
  if (N0C && N1C && !N1C->isNullValue())
    return DAG.getNode(ISD::UREM, VT, N0, N1);
  // fold (urem x, pow2) -> (and x, pow2-1)
  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
  if (N1.getOpcode() == ISD::SHL) {
    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
      if (isPowerOf2_64(SHC->getValue())) {
        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
        AddToWorkList(Add.Val);
        return DAG.getNode(ISD::AND, VT, N0, Add);
      }
    }
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitMULHS(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  
  // fold (mulhs x, 0) -> 0
  if (N1C && N1C->isNullValue())
    return N1;
  // fold (mulhs x, 1) -> (sra x, size(x)-1)
  if (N1C && N1C->getValue() == 1)
    return DAG.getNode(ISD::SRA, N0.getValueType(), N0, 
                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
                                       TLI.getShiftAmountTy()));
  return SDOperand();
}

SDOperand DAGCombiner::visitMULHU(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  
  // fold (mulhu x, 0) -> 0
  if (N1C && N1C->isNullValue())
    return N1;
  // fold (mulhu x, 1) -> 0
  if (N1C && N1C->getValue() == 1)
    return DAG.getConstant(0, N0.getValueType());
  return SDOperand();
}

SDOperand DAGCombiner::visitAND(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  SDOperand LL, LR, RL, RR, CC0, CC1;
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N1.getValueType();
  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
  
  // fold (and c1, c2) -> c1&c2
  if (N0C && N1C)
    return DAG.getNode(ISD::AND, VT, N0, N1);
  // canonicalize constant to RHS
  if (N0C && !N1C)
    return DAG.getNode(ISD::AND, VT, N1, N0);
  // fold (and x, -1) -> x
  if (N1C && N1C->isAllOnesValue())
    return N0;
  // if (and x, c) is known to be zero, return 0
  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
    return DAG.getConstant(0, VT);
  // reassociate and
  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
  if (RAND.Val != 0)
    return RAND;
  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
  if (N1C && N0.getOpcode() == ISD::OR)
    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
        return N1;
  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
    if (TLI.MaskedValueIsZero(N0.getOperand(0),
                              ~N1C->getValue() & InMask)) {
      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
                                   N0.getOperand(0));
      
      // Replace uses of the AND with uses of the Zero extend node.
      CombineTo(N, Zext);
      
      // We actually want to replace all uses of the any_extend with the
      // zero_extend, to avoid duplicating things.  This will later cause this
      // AND to be folded.
      CombineTo(N0.Val, Zext);
      return SDOperand();
    }
  }
  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
    
    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
        MVT::isInteger(LL.getValueType())) {
      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
        AddToWorkList(ORNode.Val);
        return DAG.getSetCC(VT, ORNode, LR, Op1);
      }
      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
        AddToWorkList(ANDNode.Val);
        return DAG.getSetCC(VT, ANDNode, LR, Op1);
      }
      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
        AddToWorkList(ORNode.Val);
        return DAG.getSetCC(VT, ORNode, LR, Op1);
      }
    }
    // canonicalize equivalent to ll == rl
    if (LL == RR && LR == RL) {
      Op1 = ISD::getSetCCSwappedOperands(Op1);
      std::swap(RL, RR);
    }
    if (LL == RL && LR == RR) {
      bool isInteger = MVT::isInteger(LL.getValueType());
      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
      if (Result != ISD::SETCC_INVALID)
        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
    }
  }
  // fold (and (zext x), (zext y)) -> (zext (and x, y))
  if (N0.getOpcode() == ISD::ZERO_EXTEND && 
      N1.getOpcode() == ISD::ZERO_EXTEND &&
      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
    SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(),
                                    N0.getOperand(0), N1.getOperand(0));
    AddToWorkList(ANDNode.Val);
    return DAG.getNode(ISD::ZERO_EXTEND, VT, ANDNode);
  }
  // fold (and (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (and x, y))
  if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) ||
       (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) ||
       (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) &&
      N0.getOperand(1) == N1.getOperand(1)) {
    SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(),
                                    N0.getOperand(0), N1.getOperand(0));
    AddToWorkList(ANDNode.Val);
    return DAG.getNode(N0.getOpcode(), VT, ANDNode, N0.getOperand(1));
  }
  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
  // fold (and (sra)) -> (and (srl)) when possible.
  if (!MVT::isVector(VT) &&
      SimplifyDemandedBits(SDOperand(N, 0)))
    return SDOperand();
  // fold (zext_inreg (extload x)) -> (zextload x)
  if (N0.getOpcode() == ISD::EXTLOAD) {
    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
    // If we zero all the possible extended bits, then we can turn this into
    // a zextload if we are running before legalize or the operation is legal.
    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
                                         N0.getOperand(1), N0.getOperand(2),
                                         EVT);
      AddToWorkList(N);
      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
      return SDOperand();
    }
  }
  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
  if (N0.getOpcode() == ISD::SEXTLOAD && N0.hasOneUse()) {
    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
    // If we zero all the possible extended bits, then we can turn this into
    // a zextload if we are running before legalize or the operation is legal.
    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
                                         N0.getOperand(1), N0.getOperand(2),
                                         EVT);
      AddToWorkList(N);
      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
      return SDOperand();
    }
  }
  
  // fold (and (load x), 255) -> (zextload x, i8)
  // fold (and (extload x, i16), 255) -> (zextload x, i8)
  if (N1C &&
      (N0.getOpcode() == ISD::LOAD || N0.getOpcode() == ISD::EXTLOAD ||
       N0.getOpcode() == ISD::ZEXTLOAD) &&
      N0.hasOneUse()) {
    MVT::ValueType EVT, LoadedVT;
    if (N1C->getValue() == 255)
      EVT = MVT::i8;
    else if (N1C->getValue() == 65535)
      EVT = MVT::i16;
    else if (N1C->getValue() == ~0U)
      EVT = MVT::i32;
    else
      EVT = MVT::Other;
    
    LoadedVT = N0.getOpcode() == ISD::LOAD ? VT :
                           cast<VTSDNode>(N0.getOperand(3))->getVT();
    if (EVT != MVT::Other && LoadedVT > EVT) {
      MVT::ValueType PtrType = N0.getOperand(1).getValueType();
      // For big endian targets, we need to add an offset to the pointer to load
      // the correct bytes.  For little endian systems, we merely need to read
      // fewer bytes from the same pointer.
      unsigned PtrOff =
        (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
      SDOperand NewPtr = N0.getOperand(1);
      if (!TLI.isLittleEndian())
        NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
                             DAG.getConstant(PtrOff, PtrType));
      AddToWorkList(NewPtr.Val);
      SDOperand Load =
        DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), NewPtr,
                       N0.getOperand(2), EVT);
      AddToWorkList(N);
      CombineTo(N0.Val, Load, Load.getValue(1));
      return SDOperand();
    }
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitOR(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  SDOperand LL, LR, RL, RR, CC0, CC1;
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N1.getValueType();
  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
  
  // fold (or c1, c2) -> c1|c2
  if (N0C && N1C)
    return DAG.getNode(ISD::OR, VT, N0, N1);
  // canonicalize constant to RHS
  if (N0C && !N1C)
    return DAG.getNode(ISD::OR, VT, N1, N0);
  // fold (or x, 0) -> x
  if (N1C && N1C->isNullValue())
    return N0;
  // fold (or x, -1) -> -1
  if (N1C && N1C->isAllOnesValue())
    return N1;
  // fold (or x, c) -> c iff (x & ~c) == 0
  if (N1C && 
      TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
    return N1;
  // reassociate or
  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
  if (ROR.Val != 0)
    return ROR;
  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
             isa<ConstantSDNode>(N0.getOperand(1))) {
    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
                                                 N1),
                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
  }
  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
    
    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
        MVT::isInteger(LL.getValueType())) {
      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
      if (cast<ConstantSDNode>(LR)->getValue() == 0 && 
          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
        AddToWorkList(ORNode.Val);
        return DAG.getSetCC(VT, ORNode, LR, Op1);
      }
      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && 
          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
        AddToWorkList(ANDNode.Val);
        return DAG.getSetCC(VT, ANDNode, LR, Op1);
      }
    }
    // canonicalize equivalent to ll == rl
    if (LL == RR && LR == RL) {
      Op1 = ISD::getSetCCSwappedOperands(Op1);
      std::swap(RL, RR);
    }
    if (LL == RL && LR == RR) {
      bool isInteger = MVT::isInteger(LL.getValueType());
      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
      if (Result != ISD::SETCC_INVALID)
        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
    }
  }
  // fold (or (zext x), (zext y)) -> (zext (or x, y))
  if (N0.getOpcode() == ISD::ZERO_EXTEND && 
      N1.getOpcode() == ISD::ZERO_EXTEND &&
      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
    SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(),
                                   N0.getOperand(0), N1.getOperand(0));
    AddToWorkList(ORNode.Val);
    return DAG.getNode(ISD::ZERO_EXTEND, VT, ORNode);
  }
  // fold (or (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (or x, y))
  if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) ||
       (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) ||
       (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) &&
      N0.getOperand(1) == N1.getOperand(1)) {
    SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(),
                                   N0.getOperand(0), N1.getOperand(0));
    AddToWorkList(ORNode.Val);
    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
  }
  // canonicalize shl to left side in a shl/srl pair, to match rotate
  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
    std::swap(N0, N1);
  // check for rotl, rotr
  if (N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SRL &&
      N0.getOperand(0) == N1.getOperand(0) &&
      TLI.isOperationLegal(ISD::ROTL, VT) && TLI.isTypeLegal(VT)) {
    // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
    if (N0.getOperand(1).getOpcode() == ISD::Constant &&
        N1.getOperand(1).getOpcode() == ISD::Constant) {
      uint64_t c1val = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
      uint64_t c2val = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
      if ((c1val + c2val) == OpSizeInBits)
        return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
    }
    // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
    if (N1.getOperand(1).getOpcode() == ISD::SUB &&
        N0.getOperand(1) == N1.getOperand(1).getOperand(1))
      if (ConstantSDNode *SUBC = 
          dyn_cast<ConstantSDNode>(N1.getOperand(1).getOperand(0)))
        if (SUBC->getValue() == OpSizeInBits)
          return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
    // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
    if (N0.getOperand(1).getOpcode() == ISD::SUB &&
        N1.getOperand(1) == N0.getOperand(1).getOperand(1))
      if (ConstantSDNode *SUBC = 
          dyn_cast<ConstantSDNode>(N0.getOperand(1).getOperand(0)))
        if (SUBC->getValue() == OpSizeInBits) {
          if (TLI.isOperationLegal(ISD::ROTR, VT) && TLI.isTypeLegal(VT))
            return DAG.getNode(ISD::ROTR, VT, N0.getOperand(0), 
                               N1.getOperand(1));
          else
            return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0),
                               N0.getOperand(1));
        }
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitXOR(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  SDOperand LHS, RHS, CC;
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N0.getValueType();
  
  // fold (xor c1, c2) -> c1^c2
  if (N0C && N1C)
    return DAG.getNode(ISD::XOR, VT, N0, N1);
  // canonicalize constant to RHS
  if (N0C && !N1C)
    return DAG.getNode(ISD::XOR, VT, N1, N0);
  // fold (xor x, 0) -> x
  if (N1C && N1C->isNullValue())
    return N0;
  // reassociate xor
  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
  if (RXOR.Val != 0)
    return RXOR;
  // fold !(x cc y) -> (x !cc y)
  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
    bool isInt = MVT::isInteger(LHS.getValueType());
    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
                                               isInt);
    if (N0.getOpcode() == ISD::SETCC)
      return DAG.getSetCC(VT, LHS, RHS, NotCC);
    if (N0.getOpcode() == ISD::SELECT_CC)
      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
    assert(0 && "Unhandled SetCC Equivalent!");
    abort();
  }
  // fold !(x or y) -> (!x and !y) iff x or y are setcc
  if (N1C && N1C->getValue() == 1 && 
      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
      return DAG.getNode(NewOpcode, VT, LHS, RHS);
    }
  }
  // fold !(x or y) -> (!x and !y) iff x or y are constants
  if (N1C && N1C->isAllOnesValue() && 
      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
      return DAG.getNode(NewOpcode, VT, LHS, RHS);
    }
  }
  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
  if (N1C && N0.getOpcode() == ISD::XOR) {
    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
    if (N00C)
      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
    if (N01C)
      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
  }
  // fold (xor x, x) -> 0
  if (N0 == N1) {
    if (!MVT::isVector(VT)) {
      return DAG.getConstant(0, VT);
    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
      // Produce a vector of zeros.
      SDOperand El = DAG.getConstant(0, MVT::getVectorBaseType(VT));
      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
      return DAG.getNode(ISD::BUILD_VECTOR, VT, Ops);
    }
  }
  // fold (xor (zext x), (zext y)) -> (zext (xor x, y))
  if (N0.getOpcode() == ISD::ZERO_EXTEND && 
      N1.getOpcode() == ISD::ZERO_EXTEND &&
      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
    SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(),
                                   N0.getOperand(0), N1.getOperand(0));
    AddToWorkList(XORNode.Val);
    return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
  }
  // fold (xor (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (xor x, y))
  if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) ||
       (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) ||
       (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) &&
      N0.getOperand(1) == N1.getOperand(1)) {
    SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(),
                                    N0.getOperand(0), N1.getOperand(0));
    AddToWorkList(XORNode.Val);
    return DAG.getNode(N0.getOpcode(), VT, XORNode, N0.getOperand(1));
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitSHL(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N0.getValueType();
  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
  
  // fold (shl c1, c2) -> c1<<c2
  if (N0C && N1C)
    return DAG.getNode(ISD::SHL, VT, N0, N1);
  // fold (shl 0, x) -> 0
  if (N0C && N0C->isNullValue())
    return N0;
  // fold (shl x, c >= size(x)) -> undef
  if (N1C && N1C->getValue() >= OpSizeInBits)
    return DAG.getNode(ISD::UNDEF, VT);
  // fold (shl x, 0) -> x
  if (N1C && N1C->isNullValue())
    return N0;
  // if (shl x, c) is known to be zero, return 0
  if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
    return DAG.getConstant(0, VT);
  if (SimplifyDemandedBits(SDOperand(N, 0)))
    return SDOperand();
  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
  if (N1C && N0.getOpcode() == ISD::SHL && 
      N0.getOperand(1).getOpcode() == ISD::Constant) {
    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
    uint64_t c2 = N1C->getValue();
    if (c1 + c2 > OpSizeInBits)
      return DAG.getConstant(0, VT);
    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), 
                       DAG.getConstant(c1 + c2, N1.getValueType()));
  }
  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
  //                               (srl (and x, -1 << c1), c1-c2)
  if (N1C && N0.getOpcode() == ISD::SRL && 
      N0.getOperand(1).getOpcode() == ISD::Constant) {
    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
    uint64_t c2 = N1C->getValue();
    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
                                 DAG.getConstant(~0ULL << c1, VT));
    if (c2 > c1)
      return DAG.getNode(ISD::SHL, VT, Mask, 
                         DAG.getConstant(c2-c1, N1.getValueType()));
    else
      return DAG.getNode(ISD::SRL, VT, Mask, 
                         DAG.getConstant(c1-c2, N1.getValueType()));
  }
  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
  // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1<<c2)
  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && 
      isa<ConstantSDNode>(N0.getOperand(1))) {
    return DAG.getNode(ISD::ADD, VT, 
                       DAG.getNode(ISD::SHL, VT, N0.getOperand(0), N1),
                       DAG.getNode(ISD::SHL, VT, N0.getOperand(1), N1));
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitSRA(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N0.getValueType();
  
  // fold (sra c1, c2) -> c1>>c2
  if (N0C && N1C)
    return DAG.getNode(ISD::SRA, VT, N0, N1);
  // fold (sra 0, x) -> 0
  if (N0C && N0C->isNullValue())
    return N0;
  // fold (sra -1, x) -> -1
  if (N0C && N0C->isAllOnesValue())
    return N0;
  // fold (sra x, c >= size(x)) -> undef
  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
    return DAG.getNode(ISD::UNDEF, VT);
  // fold (sra x, 0) -> x
  if (N1C && N1C->isNullValue())
    return N0;
  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
  // sext_inreg.
  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
    MVT::ValueType EVT;
    switch (LowBits) {
    default: EVT = MVT::Other; break;
    case  1: EVT = MVT::i1;    break;
    case  8: EVT = MVT::i8;    break;
    case 16: EVT = MVT::i16;   break;
    case 32: EVT = MVT::i32;   break;
    }
    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
                         DAG.getValueType(EVT));
  }
  
  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
  if (N1C && N0.getOpcode() == ISD::SRA) {
    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
      unsigned Sum = N1C->getValue() + C1->getValue();
      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
                         DAG.getConstant(Sum, N1C->getValueType(0)));
    }
  }
  
  // If the sign bit is known to be zero, switch this to a SRL.
  if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
    return DAG.getNode(ISD::SRL, VT, N0, N1);
  return SDOperand();
}

SDOperand DAGCombiner::visitSRL(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  MVT::ValueType VT = N0.getValueType();
  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
  
  // fold (srl c1, c2) -> c1 >>u c2
  if (N0C && N1C)
    return DAG.getNode(ISD::SRL, VT, N0, N1);
  // fold (srl 0, x) -> 0
  if (N0C && N0C->isNullValue())
    return N0;
  // fold (srl x, c >= size(x)) -> undef
  if (N1C && N1C->getValue() >= OpSizeInBits)
    return DAG.getNode(ISD::UNDEF, VT);
  // fold (srl x, 0) -> x
  if (N1C && N1C->isNullValue())
    return N0;
  // if (srl x, c) is known to be zero, return 0
  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
    return DAG.getConstant(0, VT);
  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
  if (N1C && N0.getOpcode() == ISD::SRL && 
      N0.getOperand(1).getOpcode() == ISD::Constant) {
    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
    uint64_t c2 = N1C->getValue();
    if (c1 + c2 > OpSizeInBits)
      return DAG.getConstant(0, VT);
    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), 
                       DAG.getConstant(c1 + c2, N1.getValueType()));
  }
  
  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
  if (N1C && N0.getOpcode() == ISD::CTLZ && 
      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
    TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
    
    // If any of the input bits are KnownOne, then the input couldn't be all
    // zeros, thus the result of the srl will always be zero.
    if (KnownOne) return DAG.getConstant(0, VT);
    
    // If all of the bits input the to ctlz node are known to be zero, then
    // the result of the ctlz is "32" and the result of the shift is one.
    uint64_t UnknownBits = ~KnownZero & Mask;
    if (UnknownBits == 0) return DAG.getConstant(1, VT);
    
    // Otherwise, check to see if there is exactly one bit input to the ctlz.
    if ((UnknownBits & (UnknownBits-1)) == 0) {
      // Okay, we know that only that the single bit specified by UnknownBits
      // could be set on input to the CTLZ node.  If this bit is set, the SRL
      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
      // to an SRL,XOR pair, which is likely to simplify more.
      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
      SDOperand Op = N0.getOperand(0);
      if (ShAmt) {
        Op = DAG.getNode(ISD::SRL, VT, Op,
                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
        AddToWorkList(Op.Val);
      }
      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
    }
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);

  // fold (ctlz c1) -> c2
  if (N0C)
    return DAG.getNode(ISD::CTLZ, VT, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (cttz c1) -> c2
  if (N0C)
    return DAG.getNode(ISD::CTTZ, VT, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (ctpop c1) -> c2
  if (N0C)
    return DAG.getNode(ISD::CTPOP, VT, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitSELECT(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  SDOperand N2 = N->getOperand(2);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
  MVT::ValueType VT = N->getValueType(0);

  // fold select C, X, X -> X
  if (N1 == N2)
    return N1;
  // fold select true, X, Y -> X
  if (N0C && !N0C->isNullValue())
    return N1;
  // fold select false, X, Y -> Y
  if (N0C && N0C->isNullValue())
    return N2;
  // fold select C, 1, X -> C | X
  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
    return DAG.getNode(ISD::OR, VT, N0, N2);
  // fold select C, 0, X -> ~C & X
  // FIXME: this should check for C type == X type, not i1?
  if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
    AddToWorkList(XORNode.Val);
    return DAG.getNode(ISD::AND, VT, XORNode, N2);
  }
  // fold select C, X, 1 -> ~C | X
  if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
    AddToWorkList(XORNode.Val);
    return DAG.getNode(ISD::OR, VT, XORNode, N1);
  }
  // fold select C, X, 0 -> C & X
  // FIXME: this should check for C type == X type, not i1?
  if (MVT::i1 == VT && N2C && N2C->isNullValue())
    return DAG.getNode(ISD::AND, VT, N0, N1);
  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
  if (MVT::i1 == VT && N0 == N1)
    return DAG.getNode(ISD::OR, VT, N0, N2);
  // fold X ? Y : X --> X ? Y : 0 --> X & Y
  if (MVT::i1 == VT && N0 == N2)
    return DAG.getNode(ISD::AND, VT, N0, N1);
  // If we can fold this based on the true/false value, do so.
  if (SimplifySelectOps(N, N1, N2))
    return SDOperand();
  // fold selects based on a setcc into other things, such as min/max/abs
  if (N0.getOpcode() == ISD::SETCC)
    // FIXME:
    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
    // having to say they don't support SELECT_CC on every type the DAG knows
    // about, since there is no way to mark an opcode illegal at all value types
    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
                         N1, N2, N0.getOperand(2));
    else
      return SimplifySelect(N0, N1, N2);
  return SDOperand();
}

SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  SDOperand N2 = N->getOperand(2);
  SDOperand N3 = N->getOperand(3);
  SDOperand N4 = N->getOperand(4);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
  
  // Determine if the condition we're dealing with is constant
  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
  
  // fold select_cc lhs, rhs, x, x, cc -> x
  if (N2 == N3)
    return N2;
  
  // If we can fold this based on the true/false value, do so.
  if (SimplifySelectOps(N, N2, N3))
    return SDOperand();
  
  // fold select_cc into other things, such as min/max/abs
  return SimplifySelectCC(N0, N1, N2, N3, CC);
}

SDOperand DAGCombiner::visitSETCC(SDNode *N) {
  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
                       cast<CondCodeSDNode>(N->getOperand(2))->get());
}

SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);

  // fold (sext c1) -> c1
  if (N0C)
    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
  // fold (sext (sext x)) -> (sext x)
  if (N0.getOpcode() == ISD::SIGN_EXTEND)
    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
  // fold (sext (truncate x)) -> (sextinreg x) iff x size == sext size.
  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
      (!AfterLegalize || 
       TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType())))
    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
                       DAG.getValueType(N0.getValueType()));
  // fold (sext (load x)) -> (sext (truncate (sextload x)))
  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
      (!AfterLegalize||TLI.isOperationLegal(ISD::SEXTLOAD, N0.getValueType()))){
    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
                                       N0.getOperand(1), N0.getOperand(2),
                                       N0.getValueType());
    CombineTo(N, ExtLoad);
    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
              ExtLoad.getValue(1));
    return SDOperand();
  }

  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
  if ((N0.getOpcode() == ISD::SEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
      N0.hasOneUse()) {
    SDOperand ExtLoad = DAG.getNode(ISD::SEXTLOAD, VT, N0.getOperand(0),
                                    N0.getOperand(1), N0.getOperand(2),
                                    N0.getOperand(3));
    CombineTo(N, ExtLoad);
    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
              ExtLoad.getValue(1));
    return SDOperand();
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);

  // fold (zext c1) -> c1
  if (N0C)
    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
  // fold (zext (zext x)) -> (zext x)
  if (N0.getOpcode() == ISD::ZERO_EXTEND)
    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
  // fold (zext (truncate x)) -> (zextinreg x) iff x size == zext size.
  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, N0.getValueType())))
    return DAG.getZeroExtendInReg(N0.getOperand(0), N0.getValueType());
  // fold (zext (load x)) -> (zext (truncate (zextload x)))
  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
      (!AfterLegalize||TLI.isOperationLegal(ISD::ZEXTLOAD, N0.getValueType()))){
    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
                                       N0.getOperand(1), N0.getOperand(2),
                                       N0.getValueType());
    CombineTo(N, ExtLoad);
    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
              ExtLoad.getValue(1));
    return SDOperand();
  }

  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
  if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
      N0.hasOneUse()) {
    SDOperand ExtLoad = DAG.getNode(ISD::ZEXTLOAD, VT, N0.getOperand(0),
                                    N0.getOperand(1), N0.getOperand(2),
                                    N0.getOperand(3));
    CombineTo(N, ExtLoad);
    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
              ExtLoad.getValue(1));
    return SDOperand();
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
  unsigned EVTBits = MVT::getSizeInBits(EVT);
  
  // fold (sext_in_reg c1) -> c1
  if (N0C) {
    SDOperand Truncate = DAG.getConstant(N0C->getValue(), EVT);
    return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate);
  }
  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt1
  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 
      cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) {
    return N0;
  }
  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
  }
  // fold (sext_in_reg (assert_sext x)) -> (assert_sext x)
  if (N0.getOpcode() == ISD::AssertSext && 
      cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) {
    return N0;
  }
  // fold (sext_in_reg (sextload x)) -> (sextload x)
  if (N0.getOpcode() == ISD::SEXTLOAD && 
      cast<VTSDNode>(N0.getOperand(3))->getVT() <= EVT) {
    return N0;
  }
  // fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1
  if (N0.getOpcode() == ISD::SETCC &&
      TLI.getSetCCResultContents() == 
        TargetLowering::ZeroOrNegativeOneSetCCResult)
    return N0;
  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero
  if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
    return DAG.getZeroExtendInReg(N0, EVT);
  // fold (sext_in_reg (srl x)) -> sra x
  if (N0.getOpcode() == ISD::SRL && 
      N0.getOperand(1).getOpcode() == ISD::Constant &&
      cast<ConstantSDNode>(N0.getOperand(1))->getValue() == EVTBits) {
    return DAG.getNode(ISD::SRA, N0.getValueType(), N0.getOperand(0), 
                       N0.getOperand(1));
  }
  // fold (sext_inreg (extload x)) -> (sextload x)
  if (N0.getOpcode() == ISD::EXTLOAD && 
      EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
      (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
                                       N0.getOperand(1), N0.getOperand(2),
                                       EVT);
    CombineTo(N, ExtLoad);
    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
    return SDOperand();
  }
  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
  if (N0.getOpcode() == ISD::ZEXTLOAD && N0.hasOneUse() &&
      EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
      (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
                                       N0.getOperand(1), N0.getOperand(2),
                                       EVT);
    CombineTo(N, ExtLoad);
    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
    return SDOperand();
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);

  // noop truncate
  if (N0.getValueType() == N->getValueType(0))
    return N0;
  // fold (truncate c1) -> c1
  if (N0C)
    return DAG.getNode(ISD::TRUNCATE, VT, N0);
  // fold (truncate (truncate x)) -> (truncate x)
  if (N0.getOpcode() == ISD::TRUNCATE)
    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){
    if (N0.getValueType() < VT)
      // if the source is smaller than the dest, we still need an extend
      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
    else if (N0.getValueType() > VT)
      // if the source is larger than the dest, than we just need the truncate
      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
    else
      // if the source and dest are the same type, we can drop both the extend
      // and the truncate
      return N0.getOperand(0);
  }
  // fold (truncate (load x)) -> (smaller load x)
  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
    assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) &&
           "Cannot truncate to larger type!");
    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
    // For big endian targets, we need to add an offset to the pointer to load
    // the correct bytes.  For little endian systems, we merely need to read
    // fewer bytes from the same pointer.
    uint64_t PtrOff = 
      (MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8;
    SDOperand NewPtr = TLI.isLittleEndian() ? N0.getOperand(1) : 
      DAG.getNode(ISD::ADD, PtrType, N0.getOperand(1),
                  DAG.getConstant(PtrOff, PtrType));
    AddToWorkList(NewPtr.Val);
    SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), NewPtr,N0.getOperand(2));
    AddToWorkList(N);
    CombineTo(N0.Val, Load, Load.getValue(1));
    return SDOperand();
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  MVT::ValueType VT = N->getValueType(0);

  // If the input is a constant, let getNode() fold it.
  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
    if (Res.Val != N) return Res;
  }
  
  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));

  // fold (conv (load x)) -> (load (conv*)x)
  // FIXME: These xforms need to know that the resultant load doesn't need a 
  // higher alignment than the original!
  if (0 && N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
    SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), N0.getOperand(1),
                                 N0.getOperand(2));
    AddToWorkList(N);
    CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
              Load.getValue(1));
    return Load;
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  MVT::ValueType VT = N->getValueType(0);

  // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
  // First check to see if this is all constant.
  if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() &&
      VT == MVT::Vector) {
    bool isSimple = true;
    for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i)
      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
          N0.getOperand(i).getOpcode() != ISD::Constant &&
          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
        isSimple = false; 
        break;
      }
        
    if (isSimple) {
      MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT();
      return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT);
    }
  }
  
  return SDOperand();
}

/// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the 
/// destination element value type.
SDOperand DAGCombiner::
ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
  
  // If this is already the right type, we're done.
  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
  
  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
  
  // If this is a conversion of N elements of one type to N elements of another
  // type, convert each element.  This handles FP<->INT cases.
  if (SrcBitSize == DstBitSize) {
    std::vector<SDOperand> Ops;
    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i)
      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
    Ops.push_back(*(BV->op_end()-2)); // Add num elements.
    Ops.push_back(DAG.getValueType(DstEltVT));
    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
  }
  
  // Otherwise, we're growing or shrinking the elements.  To avoid having to
  // handle annoying details of growing/shrinking FP values, we convert them to
  // int first.
  if (MVT::isFloatingPoint(SrcEltVT)) {
    // Convert the input float vector to a int vector where the elements are the
    // same sizes.
    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
    BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val;
    SrcEltVT = IntVT;
  }
  
  // Now we know the input is an integer vector.  If the output is a FP type,
  // convert to integer first, then to FP of the right size.
  if (MVT::isFloatingPoint(DstEltVT)) {
    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
    SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val;
    
    // Next, convert to FP elements of the same size.
    return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT);
  }
  
  // Okay, we know the src/dst types are both integers of differing types.
  // Handling growing first.
  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
  if (SrcBitSize < DstBitSize) {
    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
    
    std::vector<SDOperand> Ops;
    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e;
         i += NumInputsPerOutput) {
      bool isLE = TLI.isLittleEndian();
      uint64_t NewBits = 0;
      bool EltIsUndef = true;
      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
        // Shift the previously computed bits over.
        NewBits <<= SrcBitSize;
        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
        if (Op.getOpcode() == ISD::UNDEF) continue;
        EltIsUndef = false;
        
        NewBits |= cast<ConstantSDNode>(Op)->getValue();
      }
      
      if (EltIsUndef)
        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
      else
        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
    }

    Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
    Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
  }
  
  // Finally, this must be the case where we are shrinking elements: each input
  // turns into multiple outputs.
  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
  std::vector<SDOperand> Ops;
  for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
      continue;
    }
    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();

    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
      OpVal >>= DstBitSize;
      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
    }

    // For big endian targets, swap the order of the pieces of each element.
    if (!TLI.isLittleEndian())
      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
  }
  Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
  Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
  return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
}



SDOperand DAGCombiner::visitFADD(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (fadd c1, c2) -> c1+c2
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FADD, VT, N0, N1);
  // canonicalize constant to RHS
  if (N0CFP && !N1CFP)
    return DAG.getNode(ISD::FADD, VT, N1, N0);
  // fold (A + (-B)) -> A-B
  if (N1.getOpcode() == ISD::FNEG)
    return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0));
  // fold ((-A) + B) -> B-A
  if (N0.getOpcode() == ISD::FNEG)
    return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0));
  return SDOperand();
}

SDOperand DAGCombiner::visitFSUB(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (fsub c1, c2) -> c1-c2
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FSUB, VT, N0, N1);
  // fold (A-(-B)) -> A+B
  if (N1.getOpcode() == ISD::FNEG)
    return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0));
  return SDOperand();
}

SDOperand DAGCombiner::visitFMUL(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  MVT::ValueType VT = N->getValueType(0);

  // fold (fmul c1, c2) -> c1*c2
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FMUL, VT, N0, N1);
  // canonicalize constant to RHS
  if (N0CFP && !N1CFP)
    return DAG.getNode(ISD::FMUL, VT, N1, N0);
  // fold (fmul X, 2.0) -> (fadd X, X)
  if (N1CFP && N1CFP->isExactlyValue(+2.0))
    return DAG.getNode(ISD::FADD, VT, N0, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitFDIV(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  MVT::ValueType VT = N->getValueType(0);

  // fold (fdiv c1, c2) -> c1/c2
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FDIV, VT, N0, N1);
  return SDOperand();
}

SDOperand DAGCombiner::visitFREM(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  MVT::ValueType VT = N->getValueType(0);

  // fold (frem c1, c2) -> fmod(c1,c2)
  if (N0CFP && N1CFP)
    return DAG.getNode(ISD::FREM, VT, N0, N1);
  return SDOperand();
}

SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
  MVT::ValueType VT = N->getValueType(0);

  if (N0CFP && N1CFP)  // Constant fold
    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
  
  if (N1CFP) {
    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
    union {
      double d;
      int64_t i;
    } u;
    u.d = N1CFP->getValue();
    if (u.i >= 0)
      return DAG.getNode(ISD::FABS, VT, N0);
    else
      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
  }
  
  // copysign(fabs(x), y) -> copysign(x, y)
  // copysign(fneg(x), y) -> copysign(x, y)
  // copysign(copysign(x,z), y) -> copysign(x, y)
  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
      N0.getOpcode() == ISD::FCOPYSIGN)
    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);

  // copysign(x, abs(y)) -> abs(x)
  if (N1.getOpcode() == ISD::FABS)
    return DAG.getNode(ISD::FABS, VT, N0);
  
  // copysign(x, copysign(y,z)) -> copysign(x, z)
  if (N1.getOpcode() == ISD::FCOPYSIGN)
    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
  
  // copysign(x, fp_extend(y)) -> copysign(x, y)
  // copysign(x, fp_round(y)) -> copysign(x, y)
  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
  
  return SDOperand();
}



SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (sint_to_fp c1) -> c1fp
  if (N0C)
    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);

  // fold (uint_to_fp c1) -> c1fp
  if (N0C)
    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (fp_to_sint c1fp) -> c1
  if (N0CFP)
    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (fp_to_uint c1fp) -> c1
  if (N0CFP)
    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (fp_round c1fp) -> c1fp
  if (N0CFP)
    return DAG.getNode(ISD::FP_ROUND, VT, N0);
  
  // fold (fp_round (fp_extend x)) -> x
  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
    return N0.getOperand(0);
  
  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
    AddToWorkList(Tmp.Val);
    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  MVT::ValueType VT = N->getValueType(0);
  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  
  // fold (fp_round_inreg c1fp) -> c1fp
  if (N0CFP) {
    SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
  }
  return SDOperand();
}

SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (fp_extend c1fp) -> c1fp
  if (N0CFP)
    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
  return SDOperand();
}

SDOperand DAGCombiner::visitFNEG(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);

  // fold (fneg c1) -> -c1
  if (N0CFP)
    return DAG.getNode(ISD::FNEG, VT, N0);
  // fold (fneg (sub x, y)) -> (sub y, x)
  if (N0.getOpcode() == ISD::SUB)
    return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0));
  // fold (fneg (fneg x)) -> x
  if (N0.getOpcode() == ISD::FNEG)
    return N0.getOperand(0);
  return SDOperand();
}

SDOperand DAGCombiner::visitFABS(SDNode *N) {
  SDOperand N0 = N->getOperand(0);
  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
  MVT::ValueType VT = N->getValueType(0);
  
  // fold (fabs c1) -> fabs(c1)
  if (N0CFP)
    return DAG.getNode(ISD::FABS, VT, N0);
  // fold (fabs (fabs x)) -> (fabs x)
  if (N0.getOpcode() == ISD::FABS)
    return N->getOperand(0);
  // fold (fabs (fneg x)) -> (fabs x)
  // fold (fabs (fcopysign x, y)) -> (fabs x)
  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
  
  return SDOperand();
}

SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
  SDOperand Chain = N->getOperand(0);
  SDOperand N1 = N->getOperand(1);
  SDOperand N2 = N->getOperand(2);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
  
  // never taken branch, fold to chain
  if (N1C && N1C->isNullValue())
    return Chain;
  // unconditional branch
  if (N1C && N1C->getValue() == 1)
    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
  // on the target.
  if (N1.getOpcode() == ISD::SETCC && 
      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
                       N1.getOperand(0), N1.getOperand(1), N2);
  }
  return SDOperand();
}

// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
//
SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
  
  // Use SimplifySetCC  to simplify SETCC's.
  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);

  // fold br_cc true, dest -> br dest (unconditional branch)
  if (SCCC && SCCC->getValue())
    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
                       N->getOperand(4));
  // fold br_cc false, dest -> unconditional fall through
  if (SCCC && SCCC->isNullValue())
    return N->getOperand(0);
  // fold to a simpler setcc
  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), 
                       Simp.getOperand(2), Simp.getOperand(0),
                       Simp.getOperand(1), N->getOperand(4));
  return SDOperand();
}

SDOperand DAGCombiner::visitLOAD(SDNode *N) {
  SDOperand Chain    = N->getOperand(0);
  SDOperand Ptr      = N->getOperand(1);
  SDOperand SrcValue = N->getOperand(2);

  // If there are no uses of the loaded value, change uses of the chain value
  // into uses of the chain input (i.e. delete the dead load).
  if (N->hasNUsesOfValue(0, 0))
    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
  
  // If this load is directly stored, replace the load value with the stored
  // value.
  // TODO: Handle store large -> read small portion.
  // TODO: Handle TRUNCSTORE/EXTLOAD
  if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
      Chain.getOperand(1).getValueType() == N->getValueType(0))
    return CombineTo(N, Chain.getOperand(1), Chain);
  
  return SDOperand();
}

/// visitXEXTLOAD - Handle EXTLOAD/ZEXTLOAD/SEXTLOAD.
SDOperand DAGCombiner::visitXEXTLOAD(SDNode *N) {
  SDOperand Chain    = N->getOperand(0);
  SDOperand Ptr      = N->getOperand(1);
  SDOperand SrcValue = N->getOperand(2);
  SDOperand EVT      = N->getOperand(3);
  
  // If there are no uses of the loaded value, change uses of the chain value
  // into uses of the chain input (i.e. delete the dead load).
  if (N->hasNUsesOfValue(0, 0))
    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
  
  return SDOperand();
}

SDOperand DAGCombiner::visitSTORE(SDNode *N) {
  SDOperand Chain    = N->getOperand(0);
  SDOperand Value    = N->getOperand(1);
  SDOperand Ptr      = N->getOperand(2);
  SDOperand SrcValue = N->getOperand(3);
 
  // If this is a store that kills a previous store, remove the previous store.
  if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
      Chain.Val->hasOneUse() /* Avoid introducing DAG cycles */ &&
      // Make sure that these stores are the same value type:
      // FIXME: we really care that the second store is >= size of the first.
      Value.getValueType() == Chain.getOperand(1).getValueType()) {
    // Create a new store of Value that replaces both stores.
    SDNode *PrevStore = Chain.Val;
    if (PrevStore->getOperand(1) == Value) // Same value multiply stored.
      return Chain;
    SDOperand NewStore = DAG.getNode(ISD::STORE, MVT::Other,
                                     PrevStore->getOperand(0), Value, Ptr,
                                     SrcValue);
    CombineTo(N, NewStore);                 // Nuke this store.
    CombineTo(PrevStore, NewStore);  // Nuke the previous store.
    return SDOperand(N, 0);
  }
  
  // If this is a store of a bit convert, store the input value.
  // FIXME: This needs to know that the resultant store does not need a 
  // higher alignment than the original.
  if (0 && Value.getOpcode() == ISD::BIT_CONVERT)
    return DAG.getNode(ISD::STORE, MVT::Other, Chain, Value.getOperand(0),
                       Ptr, SrcValue);
  
  return SDOperand();
}

SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
  SDOperand InVec = N->getOperand(0);
  SDOperand InVal = N->getOperand(1);
  SDOperand EltNo = N->getOperand(2);
  
  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
  // vector with the inserted element.
  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
    std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
    if (Elt < Ops.size())
      Ops[Elt] = InVal;
    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), Ops);
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) {
  SDOperand InVec = N->getOperand(0);
  SDOperand InVal = N->getOperand(1);
  SDOperand EltNo = N->getOperand(2);
  SDOperand NumElts = N->getOperand(3);
  SDOperand EltType = N->getOperand(4);
  
  // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
  // vector with the inserted element.
  if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
    std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
    if (Elt < Ops.size()-2)
      Ops[Elt] = InVal;
    return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(), Ops);
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) {
  unsigned NumInScalars = N->getNumOperands()-2;
  SDOperand NumElts = N->getOperand(NumInScalars);
  SDOperand EltType = N->getOperand(NumInScalars+1);

  // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
  // operations.  If so, and if the EXTRACT_ELT vector inputs come from at most
  // two distinct vectors, turn this into a shuffle node.
  SDOperand VecIn1, VecIn2;
  for (unsigned i = 0; i != NumInScalars; ++i) {
    // Ignore undef inputs.
    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    
    // If this input is something other than a VEXTRACT_VECTOR_ELT with a
    // constant index, bail out.
    if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT ||
        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
      VecIn1 = VecIn2 = SDOperand(0, 0);
      break;
    }
    
    // If the input vector type disagrees with the result of the vbuild_vector,
    // we can't make a shuffle.
    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
    if (*(ExtractedFromVec.Val->op_end()-2) != NumElts ||
        *(ExtractedFromVec.Val->op_end()-1) != EltType) {
      VecIn1 = VecIn2 = SDOperand(0, 0);
      break;
    }
    
    // Otherwise, remember this.  We allow up to two distinct input vectors.
    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
      continue;
    
    if (VecIn1.Val == 0) {
      VecIn1 = ExtractedFromVec;
    } else if (VecIn2.Val == 0) {
      VecIn2 = ExtractedFromVec;
    } else {
      // Too many inputs.
      VecIn1 = VecIn2 = SDOperand(0, 0);
      break;
    }
  }
  
  // If everything is good, we can make a shuffle operation.
  if (VecIn1.Val) {
    std::vector<SDOperand> BuildVecIndices;
    for (unsigned i = 0; i != NumInScalars; ++i) {
      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
        continue;
      }
      
      SDOperand Extract = N->getOperand(i);
      
      // If extracting from the first vector, just use the index directly.
      if (Extract.getOperand(0) == VecIn1) {
        BuildVecIndices.push_back(Extract.getOperand(1));
        continue;
      }

      // Otherwise, use InIdx + VecSize
      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars, MVT::i32));
    }
    
    // Add count and size info.
    BuildVecIndices.push_back(NumElts);
    BuildVecIndices.push_back(DAG.getValueType(MVT::i32));
    
    // Return the new VVECTOR_SHUFFLE node.
    std::vector<SDOperand> Ops;
    Ops.push_back(VecIn1);
    if (VecIn2.Val) {
      Ops.push_back(VecIn2);
    } else {
       // Use an undef vbuild_vector as input for the second operand.
      std::vector<SDOperand> UnOps(NumInScalars,
                                   DAG.getNode(ISD::UNDEF, 
                                           cast<VTSDNode>(EltType)->getVT()));
      UnOps.push_back(NumElts);
      UnOps.push_back(EltType);
      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, UnOps));
    }
    Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector, BuildVecIndices));
    Ops.push_back(NumElts);
    Ops.push_back(EltType);
    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops);
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
  SDOperand ShufMask = N->getOperand(2);
  unsigned NumElts = ShufMask.getNumOperands();

  // If the shuffle mask is an identity operation on the LHS, return the LHS.
  bool isIdentity = true;
  for (unsigned i = 0; i != NumElts; ++i) {
    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
      isIdentity = false;
      break;
    }
  }
  if (isIdentity) return N->getOperand(0);

  // If the shuffle mask is an identity operation on the RHS, return the RHS.
  isIdentity = true;
  for (unsigned i = 0; i != NumElts; ++i) {
    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
      isIdentity = false;
      break;
    }
  }
  if (isIdentity) return N->getOperand(1);
  
  // If the LHS and the RHS are the same node, turn the RHS into an undef.
  if (N->getOperand(0) == N->getOperand(1)) {
    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
    // first operand.
    std::vector<SDOperand> MappedOps;
    for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) {
      if (cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() >= NumElts) {
        unsigned NewIdx = 
           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
      } else {
        MappedOps.push_back(ShufMask.getOperand(i));
      }
    }
    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
                           MappedOps);
    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
                       N->getOperand(0), 
                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
                       ShufMask);
  }
 
  return SDOperand();
}

SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) {
  SDOperand ShufMask = N->getOperand(2);
  unsigned NumElts = ShufMask.getNumOperands()-2;
  
  // If the shuffle mask is an identity operation on the LHS, return the LHS.
  bool isIdentity = true;
  for (unsigned i = 0; i != NumElts; ++i) {
    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
      isIdentity = false;
      break;
    }
  }
  if (isIdentity) return N->getOperand(0);
  
  // If the shuffle mask is an identity operation on the RHS, return the RHS.
  isIdentity = true;
  for (unsigned i = 0; i != NumElts; ++i) {
    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
      isIdentity = false;
      break;
    }
  }
  if (isIdentity) return N->getOperand(1);

  return SDOperand();
}

/// visitVBinOp - Visit a binary vector operation, like VADD.  IntOp indicates
/// the scalar operation of the vop if it is operating on an integer vector
/// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp, 
                                   ISD::NodeType FPOp) {
  MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT();
  ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp;
  SDOperand LHS = N->getOperand(0);
  SDOperand RHS = N->getOperand(1);
  
  // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
  // this operation.
  if (LHS.getOpcode() == ISD::VBUILD_VECTOR && 
      RHS.getOpcode() == ISD::VBUILD_VECTOR) {
    std::vector<SDOperand> Ops;
    for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) {
      SDOperand LHSOp = LHS.getOperand(i);
      SDOperand RHSOp = RHS.getOperand(i);
      // If these two elements can't be folded, bail out.
      if ((LHSOp.getOpcode() != ISD::UNDEF &&
           LHSOp.getOpcode() != ISD::Constant &&
           LHSOp.getOpcode() != ISD::ConstantFP) ||
          (RHSOp.getOpcode() != ISD::UNDEF &&
           RHSOp.getOpcode() != ISD::Constant &&
           RHSOp.getOpcode() != ISD::ConstantFP))
        break;
      Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp));
      assert((Ops.back().getOpcode() == ISD::UNDEF ||
              Ops.back().getOpcode() == ISD::Constant ||
              Ops.back().getOpcode() == ISD::ConstantFP) &&
             "Scalar binop didn't fold!");
    }
    
    if (Ops.size() == LHS.getNumOperands()-2) {
      Ops.push_back(*(LHS.Val->op_end()-2));
      Ops.push_back(*(LHS.Val->op_end()-1));
      return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
    }
  }
  
  return SDOperand();
}

SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
  
  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
  // If we got a simplified select_cc node back from SimplifySelectCC, then
  // break it down into a new SETCC node, and a new SELECT node, and then return
  // the SELECT node, since we were called with a SELECT node.
  if (SCC.Val) {
    // Check to see if we got a select_cc back (to turn into setcc/select).
    // Otherwise, just return whatever node we got back, like fabs.
    if (SCC.getOpcode() == ISD::SELECT_CC) {
      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
                                    SCC.getOperand(0), SCC.getOperand(1), 
                                    SCC.getOperand(4));
      AddToWorkList(SETCC.Val);
      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
                         SCC.getOperand(3), SETCC);
    }
    return SCC;
  }
  return SDOperand();
}

/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
/// are the two values being selected between, see if we can simplify the
/// select.
///
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS, 
                                    SDOperand RHS) {
  
  // If this is a select from two identical things, try to pull the operation
  // through the select.
  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
#if 0
    std::cerr << "SELECT: ["; LHS.Val->dump();
    std::cerr << "] ["; RHS.Val->dump();
    std::cerr << "]\n";
#endif
    
    // If this is a load and the token chain is identical, replace the select
    // of two loads with a load through a select of the address to load from.
    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
    // constants have been dropped into the constant pool.
    if ((LHS.getOpcode() == ISD::LOAD ||
         LHS.getOpcode() == ISD::EXTLOAD ||
         LHS.getOpcode() == ISD::ZEXTLOAD ||
         LHS.getOpcode() == ISD::SEXTLOAD) &&
        // Token chains must be identical.
        LHS.getOperand(0) == RHS.getOperand(0) &&
        // If this is an EXTLOAD, the VT's must match.
        (LHS.getOpcode() == ISD::LOAD ||
         LHS.getOperand(3) == RHS.getOperand(3))) {
      // FIXME: this conflates two src values, discarding one.  This is not
      // the right thing to do, but nothing uses srcvalues now.  When they do,
      // turn SrcValue into a list of locations.
      SDOperand Addr;
      if (TheSelect->getOpcode() == ISD::SELECT)
        Addr = DAG.getNode(ISD::SELECT, LHS.getOperand(1).getValueType(),
                           TheSelect->getOperand(0), LHS.getOperand(1),
                           RHS.getOperand(1));
      else
        Addr = DAG.getNode(ISD::SELECT_CC, LHS.getOperand(1).getValueType(),
                           TheSelect->getOperand(0),
                           TheSelect->getOperand(1), 
                           LHS.getOperand(1), RHS.getOperand(1),
                           TheSelect->getOperand(4));
      
      SDOperand Load;
      if (LHS.getOpcode() == ISD::LOAD)
        Load = DAG.getLoad(TheSelect->getValueType(0), LHS.getOperand(0),
                           Addr, LHS.getOperand(2));
      else
        Load = DAG.getExtLoad(LHS.getOpcode(), TheSelect->getValueType(0),
                              LHS.getOperand(0), Addr, LHS.getOperand(2),
                              cast<VTSDNode>(LHS.getOperand(3))->getVT());
      // Users of the select now use the result of the load.
      CombineTo(TheSelect, Load);
      
      // Users of the old loads now use the new load's chain.  We know the
      // old-load value is dead now.
      CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
      CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
      return true;
    }
  }
  
  return false;
}

SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1, 
                                        SDOperand N2, SDOperand N3,
                                        ISD::CondCode CC) {
  
  MVT::ValueType VT = N2.getValueType();
  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);

  // Determine if the condition we're dealing with is constant
  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);

  // fold select_cc true, x, y -> x
  if (SCCC && SCCC->getValue())
    return N2;
  // fold select_cc false, x, y -> y
  if (SCCC && SCCC->getValue() == 0)
    return N3;
  
  // Check to see if we can simplify the select into an fabs node
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
    // Allow either -0.0 or 0.0
    if (CFP->getValue() == 0.0) {
      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
          N2 == N3.getOperand(0))
        return DAG.getNode(ISD::FABS, VT, N0);
      
      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
          N2.getOperand(0) == N3)
        return DAG.getNode(ISD::FABS, VT, N3);
    }
  }
  
  // Check to see if we can perform the "gzip trick", transforming
  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
  if (N1C && N1C->isNullValue() && N3C && N3C->isNullValue() &&
      MVT::isInteger(N0.getValueType()) && 
      MVT::isInteger(N2.getValueType()) && CC == ISD::SETLT) {
    MVT::ValueType XType = N0.getValueType();
    MVT::ValueType AType = N2.getValueType();
    if (XType >= AType) {
      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
      // single-bit constant.
      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
        unsigned ShCtV = Log2_64(N2C->getValue());
        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
        AddToWorkList(Shift.Val);
        if (XType > AType) {
          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
          AddToWorkList(Shift.Val);
        }
        return DAG.getNode(ISD::AND, AType, Shift, N2);
      }
      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
                                                    TLI.getShiftAmountTy()));
      AddToWorkList(Shift.Val);
      if (XType > AType) {
        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
        AddToWorkList(Shift.Val);
      }
      return DAG.getNode(ISD::AND, AType, Shift, N2);
    }
  }
  
  // fold select C, 16, 0 -> shl C, 4
  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
    // Get a SetCC of the condition
    // FIXME: Should probably make sure that setcc is legal if we ever have a
    // target where it isn't.
    SDOperand Temp, SCC;
    // cast from setcc result type to select result type
    if (AfterLegalize) {
      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
      Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
    } else {
      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
    }
    AddToWorkList(SCC.Val);
    AddToWorkList(Temp.Val);
    // shl setcc result by log2 n2c
    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
                       DAG.getConstant(Log2_64(N2C->getValue()),
                                       TLI.getShiftAmountTy()));
  }
    
  // Check to see if this is the equivalent of setcc
  // FIXME: Turn all of these into setcc if setcc if setcc is legal
  // otherwise, go ahead with the folds.
  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
    MVT::ValueType XType = N0.getValueType();
    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
      if (Res.getValueType() != VT)
        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
      return Res;
    }
    
    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && 
        TLI.isOperationLegal(ISD::CTLZ, XType)) {
      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
      return DAG.getNode(ISD::SRL, XType, Ctlz, 
                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
                                         TLI.getShiftAmountTy()));
    }
    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { 
      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
                                    N0);
      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0, 
                                    DAG.getConstant(~0ULL, XType));
      return DAG.getNode(ISD::SRL, XType, 
                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
                                         TLI.getShiftAmountTy()));
    }
    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
                                                   TLI.getShiftAmountTy()));
      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
    }
  }
  
  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) {
    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0))) {
      MVT::ValueType XType = N0.getValueType();
      if (SubC->isNullValue() && MVT::isInteger(XType)) {
        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
                                                    TLI.getShiftAmountTy()));
        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
        AddToWorkList(Shift.Val);
        AddToWorkList(Add.Val);
        return DAG.getNode(ISD::XOR, XType, Add, Shift);
      }
    }
  }

  return SDOperand();
}

SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
                                     SDOperand N1, ISD::CondCode Cond,
                                     bool foldBooleans) {
  // These setcc operations always fold.
  switch (Cond) {
  default: break;
  case ISD::SETFALSE:
  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
  case ISD::SETTRUE:
  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
  }

  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
    uint64_t C1 = N1C->getValue();
    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val)) {
      uint64_t C0 = N0C->getValue();

      // Sign extend the operands if required
      if (ISD::isSignedIntSetCC(Cond)) {
        C0 = N0C->getSignExtended();
        C1 = N1C->getSignExtended();
      }

      switch (Cond) {
      default: assert(0 && "Unknown integer setcc!");
      case ISD::SETEQ:  return DAG.getConstant(C0 == C1, VT);
      case ISD::SETNE:  return DAG.getConstant(C0 != C1, VT);
      case ISD::SETULT: return DAG.getConstant(C0 <  C1, VT);
      case ISD::SETUGT: return DAG.getConstant(C0 >  C1, VT);
      case ISD::SETULE: return DAG.getConstant(C0 <= C1, VT);
      case ISD::SETUGE: return DAG.getConstant(C0 >= C1, VT);
      case ISD::SETLT:  return DAG.getConstant((int64_t)C0 <  (int64_t)C1, VT);
      case ISD::SETGT:  return DAG.getConstant((int64_t)C0 >  (int64_t)C1, VT);
      case ISD::SETLE:  return DAG.getConstant((int64_t)C0 <= (int64_t)C1, VT);
      case ISD::SETGE:  return DAG.getConstant((int64_t)C0 >= (int64_t)C1, VT);
      }
    } else {
      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());

        // If the comparison constant has bits in the upper part, the
        // zero-extended value could never match.
        if (C1 & (~0ULL << InSize)) {
          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
          switch (Cond) {
          case ISD::SETUGT:
          case ISD::SETUGE:
          case ISD::SETEQ: return DAG.getConstant(0, VT);
          case ISD::SETULT:
          case ISD::SETULE:
          case ISD::SETNE: return DAG.getConstant(1, VT);
          case ISD::SETGT:
          case ISD::SETGE:
            // True if the sign bit of C1 is set.
            return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT);
          case ISD::SETLT:
          case ISD::SETLE:
            // True if the sign bit of C1 isn't set.
            return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT);
          default:
            break;
          }
        }

        // Otherwise, we can perform the comparison with the low bits.
        switch (Cond) {
        case ISD::SETEQ:
        case ISD::SETNE:
        case ISD::SETUGT:
        case ISD::SETUGE:
        case ISD::SETULT:
        case ISD::SETULE:
          return DAG.getSetCC(VT, N0.getOperand(0),
                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
                          Cond);
        default:
          break;   // todo, be more careful with signed comparisons
        }
      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
        MVT::ValueType ExtDstTy = N0.getValueType();
        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);

        // If the extended part has any inconsistent bits, it cannot ever
        // compare equal.  In other words, they have to be all ones or all
        // zeros.
        uint64_t ExtBits =
          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
          return DAG.getConstant(Cond == ISD::SETNE, VT);
        
        SDOperand ZextOp;
        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
        if (Op0Ty == ExtSrcTy) {
          ZextOp = N0.getOperand(0);
        } else {
          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
                               DAG.getConstant(Imm, Op0Ty));
        }
        AddToWorkList(ZextOp.Val);
        // Otherwise, make this a use of a zext.
        return DAG.getSetCC(VT, ZextOp, 
                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)), 
                                            ExtDstTy),
                            Cond);
      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
                 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
                 (N0.getOpcode() == ISD::XOR ||
                  (N0.getOpcode() == ISD::AND && 
                   N0.getOperand(0).getOpcode() == ISD::XOR &&
                   N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
                 isa<ConstantSDNode>(N0.getOperand(1)) &&
                 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We can
        // only do this if the top bits are known zero.
        if (TLI.MaskedValueIsZero(N1, 
                                  MVT::getIntVTBitMask(N0.getValueType())-1)) {
          // Okay, get the un-inverted input value.
          SDOperand Val;
          if (N0.getOpcode() == ISD::XOR)
            Val = N0.getOperand(0);
          else {
            assert(N0.getOpcode() == ISD::AND && 
                   N0.getOperand(0).getOpcode() == ISD::XOR);
            // ((X^1)&1)^1 -> X & 1
            Val = DAG.getNode(ISD::AND, N0.getValueType(),
                              N0.getOperand(0).getOperand(0), N0.getOperand(1));
          }
          return DAG.getSetCC(VT, Val, N1,
                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
        }
      }
      
      uint64_t MinVal, MaxVal;
      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
      if (ISD::isSignedIntSetCC(Cond)) {
        MinVal = 1ULL << (OperandBitSize-1);
        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
          MaxVal = ~0ULL >> (65-OperandBitSize);
        else
          MaxVal = 0;
      } else {
        MinVal = 0;
        MaxVal = ~0ULL >> (64-OperandBitSize);
      }

      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
        --C1;                                          // X >= C0 --> X > (C0-1)
        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
      }

      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
        ++C1;                                          // X <= C0 --> X < (C0+1)
        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
      }

      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
        return DAG.getConstant(0, VT);      // X < MIN --> false

      // Canonicalize setgt X, Min --> setne X, Min
      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
      // Canonicalize setlt X, Max --> setne X, Max
      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);

      // If we have setult X, 1, turn it into seteq X, 0
      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
                        ISD::SETEQ);
      // If we have setugt X, Max-1, turn it into seteq X, Max
      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
                        ISD::SETEQ);

      // If we have "setcc X, C0", check to see if we can shrink the immediate
      // by changing cc.

      // SETUGT X, SINTMAX  -> SETLT X, 0
      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
          C1 == (~0ULL >> (65-OperandBitSize)))
        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
                            ISD::SETLT);

      // FIXME: Implement the rest of these.

      // Fold bit comparisons when we can.
      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
        if (ConstantSDNode *AndRHS =
                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
            // Perform the xform if the AND RHS is a single bit.
            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
              return DAG.getNode(ISD::SRL, VT, N0,
                             DAG.getConstant(Log2_64(AndRHS->getValue()),
                                                   TLI.getShiftAmountTy()));
            }
          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
            // (X & 8) == 8  -->  (X & 8) >> 3
            // Perform the xform if C1 is a single bit.
            if ((C1 & (C1-1)) == 0) {
              return DAG.getNode(ISD::SRL, VT, N0,
                             DAG.getConstant(Log2_64(C1),TLI.getShiftAmountTy()));
            }
          }
        }
    }
  } else if (isa<ConstantSDNode>(N0.Val)) {
      // Ensure that the constant occurs on the RHS.
    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
  }

  if (ConstantFPSDNode *N0C = dyn_cast<ConstantFPSDNode>(N0.Val))
    if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
      double C0 = N0C->getValue(), C1 = N1C->getValue();

      switch (Cond) {
      default: break; // FIXME: Implement the rest of these!
      case ISD::SETEQ:  return DAG.getConstant(C0 == C1, VT);
      case ISD::SETNE:  return DAG.getConstant(C0 != C1, VT);
      case ISD::SETLT:  return DAG.getConstant(C0 < C1, VT);
      case ISD::SETGT:  return DAG.getConstant(C0 > C1, VT);
      case ISD::SETLE:  return DAG.getConstant(C0 <= C1, VT);
      case ISD::SETGE:  return DAG.getConstant(C0 >= C1, VT);
      }
    } else {
      // Ensure that the constant occurs on the RHS.
      return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
    }

  if (N0 == N1) {
    // We can always fold X == Y for integer setcc's.
    if (MVT::isInteger(N0.getValueType()))
      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
    unsigned UOF = ISD::getUnorderedFlavor(Cond);
    if (UOF == 2)   // FP operators that are undefined on NaNs.
      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
      return DAG.getConstant(UOF, VT);
    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
    // if it is not already.
    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
    if (NewCond != Cond)
      return DAG.getSetCC(VT, N0, N1, NewCond);
  }

  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
      MVT::isInteger(N0.getValueType())) {
    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
        N0.getOpcode() == ISD::XOR) {
      // Simplify (X+Y) == (X+Z) -->  Y == Z
      if (N0.getOpcode() == N1.getOpcode()) {
        if (N0.getOperand(0) == N1.getOperand(0))
          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
        if (N0.getOperand(1) == N1.getOperand(1))
          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
        if (isCommutativeBinOp(N0.getOpcode())) {
          // If X op Y == Y op X, try other combinations.
          if (N0.getOperand(0) == N1.getOperand(1))
            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
          if (N0.getOperand(1) == N1.getOperand(0))
            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
        }
      }
      
      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
          // Turn (X+C1) == C2 --> X == C2-C1
          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
            return DAG.getSetCC(VT, N0.getOperand(0),
                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
                                N0.getValueType()), Cond);
          }
          
          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
          if (N0.getOpcode() == ISD::XOR)
            // If we know that all of the inverted bits are zero, don't bother
            // performing the inversion.
            if (TLI.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
              return DAG.getSetCC(VT, N0.getOperand(0),
                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
                                              N0.getValueType()), Cond);
        }
        
        // Turn (C1-X) == C2 --> X == C1-C2
        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
            return DAG.getSetCC(VT, N0.getOperand(1),
                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
                                             N0.getValueType()), Cond);
          }
        }          
      }

      // Simplify (X+Z) == X -->  Z == 0
      if (N0.getOperand(0) == N1)
        return DAG.getSetCC(VT, N0.getOperand(1),
                        DAG.getConstant(0, N0.getValueType()), Cond);
      if (N0.getOperand(1) == N1) {
        if (isCommutativeBinOp(N0.getOpcode()))
          return DAG.getSetCC(VT, N0.getOperand(0),
                          DAG.getConstant(0, N0.getValueType()), Cond);
        else {
          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
          // (Z-X) == X  --> Z == X<<1
          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
                                     N1, 
                                     DAG.getConstant(1,TLI.getShiftAmountTy()));
          AddToWorkList(SH.Val);
          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
        }
      }
    }

    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
        N1.getOpcode() == ISD::XOR) {
      // Simplify  X == (X+Z) -->  Z == 0
      if (N1.getOperand(0) == N0) {
        return DAG.getSetCC(VT, N1.getOperand(1),
                        DAG.getConstant(0, N1.getValueType()), Cond);
      } else if (N1.getOperand(1) == N0) {
        if (isCommutativeBinOp(N1.getOpcode())) {
          return DAG.getSetCC(VT, N1.getOperand(0),
                          DAG.getConstant(0, N1.getValueType()), Cond);
        } else {
          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
          // X == (Z-X)  --> X<<1 == Z
          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, 
                                     DAG.getConstant(1,TLI.getShiftAmountTy()));
          AddToWorkList(SH.Val);
          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
        }
      }
    }
  }

  // Fold away ALL boolean setcc's.
  SDOperand Temp;
  if (N0.getValueType() == MVT::i1 && foldBooleans) {
    switch (Cond) {
    default: assert(0 && "Unknown integer setcc!");
    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
      AddToWorkList(Temp.Val);
      break;
    case ISD::SETNE:  // X != Y   -->  (X^Y)
      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
      break;
    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
      AddToWorkList(Temp.Val);
      break;
    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
      AddToWorkList(Temp.Val);
      break;
    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
      AddToWorkList(Temp.Val);
      break;
    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
      break;
    }
    if (VT != MVT::i1) {
      AddToWorkList(N0.Val);
      // FIXME: If running after legalize, we probably can't do this.
      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
    }
    return N0;
  }

  // Could not fold it.
  return SDOperand();
}

/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number.  See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
  MVT::ValueType VT = N->getValueType(0);
  
  // Check to see if we can do this.
  if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
    return SDOperand();       // BuildSDIV only operates on i32 or i64
  if (!TLI.isOperationLegal(ISD::MULHS, VT))
    return SDOperand();       // Make sure the target supports MULHS.
  
  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
  
  // Multiply the numerator (operand 0) by the magic value
  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
                            DAG.getConstant(magics.m, VT));
  // If d > 0 and m < 0, add the numerator
  if (d > 0 && magics.m < 0) { 
    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
    AddToWorkList(Q.Val);
  }
  // If d < 0 and m > 0, subtract the numerator.
  if (d < 0 && magics.m > 0) {
    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
    AddToWorkList(Q.Val);
  }
  // Shift right algebraic if shift value is nonzero
  if (magics.s > 0) {
    Q = DAG.getNode(ISD::SRA, VT, Q, 
                    DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
    AddToWorkList(Q.Val);
  }
  // Extract the sign bit and add it to the quotient
  SDOperand T =
    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
                                                 TLI.getShiftAmountTy()));
  AddToWorkList(T.Val);
  return DAG.getNode(ISD::ADD, VT, Q, T);
}

/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number.  See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
  MVT::ValueType VT = N->getValueType(0);
  
  // Check to see if we can do this.
  if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
    return SDOperand();       // BuildUDIV only operates on i32 or i64
  if (!TLI.isOperationLegal(ISD::MULHU, VT))
    return SDOperand();       // Make sure the target supports MULHU.
  
  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
  
  // Multiply the numerator (operand 0) by the magic value
  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
                            DAG.getConstant(magics.m, VT));
  AddToWorkList(Q.Val);

  if (magics.a == 0) {
    return DAG.getNode(ISD::SRL, VT, Q, 
                       DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
  } else {
    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
    AddToWorkList(NPQ.Val);
    NPQ = DAG.getNode(ISD::SRL, VT, NPQ, 
                      DAG.getConstant(1, TLI.getShiftAmountTy()));
    AddToWorkList(NPQ.Val);
    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
    AddToWorkList(NPQ.Val);
    return DAG.getNode(ISD::SRL, VT, NPQ, 
                       DAG.getConstant(magics.s-1, TLI.getShiftAmountTy()));
  }
}

// SelectionDAG::Combine - This is the entry point for the file.
//
void SelectionDAG::Combine(bool RunningAfterLegalize) {
  /// run - This is the main entry point to this class.
  ///
  DAGCombiner(*this).Run(RunningAfterLegalize);
}