1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the FastISel class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Instructions.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
/// SelectBinaryOp - Select and emit code for a binary operator instruction,
/// which has an opcode which directly corresponds to the given ISD opcode.
///
bool FastISel::SelectBinaryOp(Instruction *I, ISD::NodeType ISDOpcode,
DenseMap<const Value*, unsigned> &ValueMap) {
unsigned Op0 = ValueMap[I->getOperand(0)];
unsigned Op1 = ValueMap[I->getOperand(1)];
if (Op0 == 0 || Op1 == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), ISDOpcode, Op0, Op1);
if (ResultReg == 0)
// Target-specific code wasn't able to find a machine opcode for
// the given ISD opcode and type. Halt "fast" selection and bail.
return false;
// We successfully emitted code for the given LLVM Instruction.
ValueMap[I] = ResultReg;
return true;
}
bool FastISel::SelectGetElementPtr(Instruction *I,
DenseMap<const Value*, unsigned> &ValueMap) {
unsigned N = ValueMap[I->getOperand(0)];
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
const Type *Ty = I->getOperand(0)->getType();
MVT VT = MVT::getMVT(Ty, /*HandleUnknown=*/false);
for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
OI != E; ++OI) {
Value *Idx = *OI;
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
if (Field) {
// N = N + Offset
uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
// FIXME: This can be optimized by combining the add with a
// subsequent one.
N = FastEmit_ri(VT.getSimpleVT(), ISD::ADD, N, Offs, VT.getSimpleVT());
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
Ty = StTy->getElementType(Field);
} else {
Ty = cast<SequentialType>(Ty)->getElementType();
// If this is a constant subscript, handle it quickly.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->getZExtValue() == 0) continue;
uint64_t Offs =
TD.getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
N = FastEmit_ri(VT.getSimpleVT(), ISD::ADD, N, Offs, VT.getSimpleVT());
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
continue;
}
// N = N + Idx * ElementSize;
uint64_t ElementSize = TD.getABITypeSize(Ty);
unsigned IdxN = ValueMap[Idx];
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
// If the index is smaller or larger than intptr_t, truncate or extend
// it.
MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
if (IdxVT.bitsLT(VT))
IdxN = FastEmit_r(VT.getSimpleVT(), ISD::SIGN_EXTEND, IdxN);
else if (IdxVT.bitsGT(VT))
IdxN = FastEmit_r(VT.getSimpleVT(), ISD::TRUNCATE, IdxN);
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
// FIXME: If multiple is power of two, turn it into a shift. The
// optimization should be in FastEmit_ri?
IdxN = FastEmit_ri(VT.getSimpleVT(), ISD::MUL, IdxN,
ElementSize, VT.getSimpleVT());
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
N = FastEmit_rr(VT.getSimpleVT(), ISD::ADD, N, IdxN);
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
}
// We successfully emitted code for the given LLVM Instruction.
ValueMap[I] = N;
return true;
}
BasicBlock::iterator
FastISel::SelectInstructions(BasicBlock::iterator Begin,
BasicBlock::iterator End,
DenseMap<const Value*, unsigned> &ValueMap,
MachineBasicBlock *mbb) {
MBB = mbb;
BasicBlock::iterator I = Begin;
for (; I != End; ++I) {
switch (I->getOpcode()) {
case Instruction::Add: {
ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
if (!SelectBinaryOp(I, Opc, ValueMap)) return I; break;
}
case Instruction::Sub: {
ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
if (!SelectBinaryOp(I, Opc, ValueMap)) return I; break;
}
case Instruction::Mul: {
ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
if (!SelectBinaryOp(I, Opc, ValueMap)) return I; break;
}
case Instruction::SDiv:
if (!SelectBinaryOp(I, ISD::SDIV, ValueMap)) return I; break;
case Instruction::UDiv:
if (!SelectBinaryOp(I, ISD::UDIV, ValueMap)) return I; break;
case Instruction::FDiv:
if (!SelectBinaryOp(I, ISD::FDIV, ValueMap)) return I; break;
case Instruction::SRem:
if (!SelectBinaryOp(I, ISD::SREM, ValueMap)) return I; break;
case Instruction::URem:
if (!SelectBinaryOp(I, ISD::UREM, ValueMap)) return I; break;
case Instruction::FRem:
if (!SelectBinaryOp(I, ISD::FREM, ValueMap)) return I; break;
case Instruction::Shl:
if (!SelectBinaryOp(I, ISD::SHL, ValueMap)) return I; break;
case Instruction::LShr:
if (!SelectBinaryOp(I, ISD::SRL, ValueMap)) return I; break;
case Instruction::AShr:
if (!SelectBinaryOp(I, ISD::SRA, ValueMap)) return I; break;
case Instruction::And:
if (!SelectBinaryOp(I, ISD::AND, ValueMap)) return I; break;
case Instruction::Or:
if (!SelectBinaryOp(I, ISD::OR, ValueMap)) return I; break;
case Instruction::Xor:
if (!SelectBinaryOp(I, ISD::XOR, ValueMap)) return I; break;
case Instruction::GetElementPtr:
if (!SelectGetElementPtr(I, ValueMap)) return I;
break;
case Instruction::Br: {
BranchInst *BI = cast<BranchInst>(I);
// For now, check for and handle just the most trivial case: an
// unconditional fall-through branch.
if (BI->isUnconditional()) {
MachineFunction::iterator NextMBB =
next(MachineFunction::iterator(MBB));
if (NextMBB != MF.end() &&
NextMBB->getBasicBlock() == BI->getSuccessor(0)) {
MBB->addSuccessor(NextMBB);
break;
}
}
// Something more complicated. Halt "fast" selection and bail.
return I;
}
default:
// Unhandled instruction. Halt "fast" selection and bail.
return I;
}
}
return I;
}
FastISel::FastISel(MachineFunction &mf)
: MF(mf), MRI(mf.getRegInfo()),
TD(*mf.getTarget().getTargetData()),
TII(*mf.getTarget().getInstrInfo()),
TLI(*mf.getTarget().getTargetLowering()) {
}
FastISel::~FastISel() {}
unsigned FastISel::FastEmit_(MVT::SimpleValueType, ISD::NodeType) {
return 0;
}
unsigned FastISel::FastEmit_r(MVT::SimpleValueType, ISD::NodeType,
unsigned /*Op0*/) {
return 0;
}
unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, ISD::NodeType,
unsigned /*Op0*/, unsigned /*Op0*/) {
return 0;
}
unsigned FastISel::FastEmit_i(MVT::SimpleValueType, uint64_t) {
return 0;
}
unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, ISD::NodeType,
unsigned /*Op0*/, uint64_t Imm,
MVT::SimpleValueType ImmType) {
return 0;
}
/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
/// to emit an instruction with an immediate operand using FastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
/// FastEmit_rr instead.
unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
unsigned Op0, uint64_t Imm,
MVT::SimpleValueType ImmType) {
unsigned ResultReg = 0;
// First check if immediate type is legal. If not, we can't use the ri form.
if (TLI.getOperationAction(ISD::Constant, ImmType) == TargetLowering::Legal)
ResultReg = FastEmit_ri(VT, Opcode, Op0, Imm, ImmType);
if (ResultReg != 0)
return ResultReg;
return FastEmit_rr(VT, Opcode, Op0, FastEmit_i(ImmType, Imm));
}
unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass* RC) {
unsigned ResultReg = MRI.createVirtualRegister(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
BuildMI(MBB, II, ResultReg);
return ResultReg;
}
unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0) {
unsigned ResultReg = MRI.createVirtualRegister(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
BuildMI(MBB, II, ResultReg).addReg(Op0);
return ResultReg;
}
unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, unsigned Op1) {
unsigned ResultReg = MRI.createVirtualRegister(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1);
return ResultReg;
}
|