aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
blob: 2b8d47bf25733b08987b230372ba9c5c8e20938f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::Legalize method.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <map>
using namespace llvm;

#ifndef NDEBUG
static cl::opt<bool>
ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
                 cl::desc("Pop up a window to show dags before legalize"));
#else
static const bool ViewLegalizeDAGs = 0;
#endif

//===----------------------------------------------------------------------===//
/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it.  This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing.  For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
///
namespace {
class VISIBILITY_HIDDEN SelectionDAGLegalize {
  TargetLowering &TLI;
  SelectionDAG &DAG;

  // Libcall insertion helpers.
  
  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
  /// legalized.  We use this to ensure that calls are properly serialized
  /// against each other, including inserted libcalls.
  SDOperand LastCALLSEQ_END;
  
  /// IsLegalizingCall - This member is used *only* for purposes of providing
  /// helpful assertions that a libcall isn't created while another call is 
  /// being legalized (which could lead to non-serialized call sequences).
  bool IsLegalizingCall;
  
  enum LegalizeAction {
    Legal,      // The target natively supports this operation.
    Promote,    // This operation should be executed in a larger type.
    Expand      // Try to expand this to other ops, otherwise use a libcall.
  };
  
  /// ValueTypeActions - This is a bitvector that contains two bits for each
  /// value type, where the two bits correspond to the LegalizeAction enum.
  /// This can be queried with "getTypeAction(VT)".
  TargetLowering::ValueTypeActionImpl ValueTypeActions;

  /// LegalizedNodes - For nodes that are of legal width, and that have more
  /// than one use, this map indicates what regularized operand to use.  This
  /// allows us to avoid legalizing the same thing more than once.
  DenseMap<SDOperand, SDOperand> LegalizedNodes;

  /// PromotedNodes - For nodes that are below legal width, and that have more
  /// than one use, this map indicates what promoted value to use.  This allows
  /// us to avoid promoting the same thing more than once.
  DenseMap<SDOperand, SDOperand> PromotedNodes;

  /// ExpandedNodes - For nodes that need to be expanded this map indicates
  /// which which operands are the expanded version of the input.  This allows
  /// us to avoid expanding the same node more than once.
  DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes;

  /// SplitNodes - For vector nodes that need to be split, this map indicates
  /// which which operands are the split version of the input.  This allows us
  /// to avoid splitting the same node more than once.
  std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes;
  
  /// ScalarizedNodes - For nodes that need to be converted from vector types to
  /// scalar types, this contains the mapping of ones we have already
  /// processed to the result.
  std::map<SDOperand, SDOperand> ScalarizedNodes;
  
  void AddLegalizedOperand(SDOperand From, SDOperand To) {
    LegalizedNodes.insert(std::make_pair(From, To));
    // If someone requests legalization of the new node, return itself.
    if (From != To)
      LegalizedNodes.insert(std::make_pair(To, To));
  }
  void AddPromotedOperand(SDOperand From, SDOperand To) {
    bool isNew = PromotedNodes.insert(std::make_pair(From, To));
    assert(isNew && "Got into the map somehow?");
    // If someone requests legalization of the new node, return itself.
    LegalizedNodes.insert(std::make_pair(To, To));
  }

public:

  SelectionDAGLegalize(SelectionDAG &DAG);

  /// getTypeAction - Return how we should legalize values of this type, either
  /// it is already legal or we need to expand it into multiple registers of
  /// smaller integer type, or we need to promote it to a larger type.
  LegalizeAction getTypeAction(MVT::ValueType VT) const {
    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
  }

  /// isTypeLegal - Return true if this type is legal on this target.
  ///
  bool isTypeLegal(MVT::ValueType VT) const {
    return getTypeAction(VT) == Legal;
  }

  void LegalizeDAG();

private:
  /// HandleOp - Legalize, Promote, or Expand the specified operand as
  /// appropriate for its type.
  void HandleOp(SDOperand Op);
    
  /// LegalizeOp - We know that the specified value has a legal type.
  /// Recursively ensure that the operands have legal types, then return the
  /// result.
  SDOperand LegalizeOp(SDOperand O);
  
  /// UnrollVectorOp - We know that the given vector has a legal type, however
  /// the operation it performs is not legal and is an operation that we have
  /// no way of lowering.  "Unroll" the vector, splitting out the scalars and
  /// operating on each element individually.
  SDOperand UnrollVectorOp(SDOperand O);

  /// PromoteOp - Given an operation that produces a value in an invalid type,
  /// promote it to compute the value into a larger type.  The produced value
  /// will have the correct bits for the low portion of the register, but no
  /// guarantee is made about the top bits: it may be zero, sign-extended, or
  /// garbage.
  SDOperand PromoteOp(SDOperand O);

  /// ExpandOp - Expand the specified SDOperand into its two component pieces
  /// Lo&Hi.  Note that the Op MUST be an expanded type.  As a result of this,
  /// the LegalizeNodes map is filled in for any results that are not expanded,
  /// the ExpandedNodes map is filled in for any results that are expanded, and
  /// the Lo/Hi values are returned.   This applies to integer types and Vector
  /// types.
  void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi);

  /// SplitVectorOp - Given an operand of vector type, break it down into
  /// two smaller values.
  void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi);
  
  /// ScalarizeVectorOp - Given an operand of single-element vector type
  /// (e.g. v1f32), convert it into the equivalent operation that returns a
  /// scalar (e.g. f32) value.
  SDOperand ScalarizeVectorOp(SDOperand O);
  
  /// isShuffleLegal - Return true if a vector shuffle is legal with the
  /// specified mask and type.  Targets can specify exactly which masks they
  /// support and the code generator is tasked with not creating illegal masks.
  ///
  /// Note that this will also return true for shuffles that are promoted to a
  /// different type.
  ///
  /// If this is a legal shuffle, this method returns the (possibly promoted)
  /// build_vector Mask.  If it's not a legal shuffle, it returns null.
  SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const;
  
  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);

  void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC);
    
  SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned,
                          SDOperand &Hi);
  SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy,
                          SDOperand Source);

  SDOperand EmitStackConvert(SDOperand SrcOp, MVT::ValueType SlotVT, 
                             MVT::ValueType DestVT);
  SDOperand ExpandBUILD_VECTOR(SDNode *Node);
  SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node);
  SDOperand ExpandLegalINT_TO_FP(bool isSigned,
                                 SDOperand LegalOp,
                                 MVT::ValueType DestVT);
  SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT,
                                  bool isSigned);
  SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT,
                                  bool isSigned);

  SDOperand ExpandBSWAP(SDOperand Op);
  SDOperand ExpandBitCount(unsigned Opc, SDOperand Op);
  bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt,
                   SDOperand &Lo, SDOperand &Hi);
  void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt,
                        SDOperand &Lo, SDOperand &Hi);

  SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op);
  SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op);
};
}

/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the
/// specified mask and type.  Targets can specify exactly which masks they
/// support and the code generator is tasked with not creating illegal masks.
///
/// Note that this will also return true for shuffles that are promoted to a
/// different type.
SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 
                                             SDOperand Mask) const {
  switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) {
  default: return 0;
  case TargetLowering::Legal:
  case TargetLowering::Custom:
    break;
  case TargetLowering::Promote: {
    // If this is promoted to a different type, convert the shuffle mask and
    // ask if it is legal in the promoted type!
    MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT);

    // If we changed # elements, change the shuffle mask.
    unsigned NumEltsGrowth =
      MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT);
    assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
    if (NumEltsGrowth > 1) {
      // Renumber the elements.
      SmallVector<SDOperand, 8> Ops;
      for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) {
        SDOperand InOp = Mask.getOperand(i);
        for (unsigned j = 0; j != NumEltsGrowth; ++j) {
          if (InOp.getOpcode() == ISD::UNDEF)
            Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
          else {
            unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue();
            Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32));
          }
        }
      }
      Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size());
    }
    VT = NVT;
    break;
  }
  }
  return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0;
}

SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
  : TLI(dag.getTargetLoweringInfo()), DAG(dag),
    ValueTypeActions(TLI.getValueTypeActions()) {
  assert(MVT::LAST_VALUETYPE <= 32 &&
         "Too many value types for ValueTypeActions to hold!");
}

/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order
/// contains all of a nodes operands before it contains the node.
static void ComputeTopDownOrdering(SelectionDAG &DAG,
                                   SmallVector<SDNode*, 64> &Order) {

  DenseMap<SDNode*, unsigned> Visited;
  std::vector<SDNode*> Worklist;
  Worklist.reserve(128);
  
  // Compute ordering from all of the leaves in the graphs, those (like the
  // entry node) that have no operands.
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
       E = DAG.allnodes_end(); I != E; ++I) {
    if (I->getNumOperands() == 0) {
      Visited[I] = 0 - 1U;
      Worklist.push_back(I);
    }
  }
  
  while (!Worklist.empty()) {
    SDNode *N = Worklist.back();
    Worklist.pop_back();
    
    if (++Visited[N] != N->getNumOperands())
      continue;  // Haven't visited all operands yet
    
    Order.push_back(N);

    // Now that we have N in, add anything that uses it if all of their operands
    // are now done.
    for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
         UI != E; ++UI)
      Worklist.push_back(*UI);
  }

  assert(Order.size() == Visited.size() &&
         Order.size() == 
         (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) &&
         "Error: DAG is cyclic!");
}


void SelectionDAGLegalize::LegalizeDAG() {
  LastCALLSEQ_END = DAG.getEntryNode();
  IsLegalizingCall = false;
  
  // The legalize process is inherently a bottom-up recursive process (users
  // legalize their uses before themselves).  Given infinite stack space, we
  // could just start legalizing on the root and traverse the whole graph.  In
  // practice however, this causes us to run out of stack space on large basic
  // blocks.  To avoid this problem, compute an ordering of the nodes where each
  // node is only legalized after all of its operands are legalized.
  SmallVector<SDNode*, 64> Order;
  ComputeTopDownOrdering(DAG, Order);
  
  for (unsigned i = 0, e = Order.size(); i != e; ++i)
    HandleOp(SDOperand(Order[i], 0));

  // Finally, it's possible the root changed.  Get the new root.
  SDOperand OldRoot = DAG.getRoot();
  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
  DAG.setRoot(LegalizedNodes[OldRoot]);

  ExpandedNodes.clear();
  LegalizedNodes.clear();
  PromotedNodes.clear();
  SplitNodes.clear();
  ScalarizedNodes.clear();

  // Remove dead nodes now.
  DAG.RemoveDeadNodes();
}


/// FindCallEndFromCallStart - Given a chained node that is part of a call
/// sequence, find the CALLSEQ_END node that terminates the call sequence.
static SDNode *FindCallEndFromCallStart(SDNode *Node) {
  if (Node->getOpcode() == ISD::CALLSEQ_END)
    return Node;
  if (Node->use_empty())
    return 0;   // No CallSeqEnd
  
  // The chain is usually at the end.
  SDOperand TheChain(Node, Node->getNumValues()-1);
  if (TheChain.getValueType() != MVT::Other) {
    // Sometimes it's at the beginning.
    TheChain = SDOperand(Node, 0);
    if (TheChain.getValueType() != MVT::Other) {
      // Otherwise, hunt for it.
      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
        if (Node->getValueType(i) == MVT::Other) {
          TheChain = SDOperand(Node, i);
          break;
        }
          
      // Otherwise, we walked into a node without a chain.  
      if (TheChain.getValueType() != MVT::Other)
        return 0;
    }
  }
  
  for (SDNode::use_iterator UI = Node->use_begin(),
       E = Node->use_end(); UI != E; ++UI) {
    
    // Make sure to only follow users of our token chain.
    SDNode *User = *UI;
    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
      if (User->getOperand(i) == TheChain)
        if (SDNode *Result = FindCallEndFromCallStart(User))
          return Result;
  }
  return 0;
}

/// FindCallStartFromCallEnd - Given a chained node that is part of a call 
/// sequence, find the CALLSEQ_START node that initiates the call sequence.
static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
  assert(Node && "Didn't find callseq_start for a call??");
  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
  
  assert(Node->getOperand(0).getValueType() == MVT::Other &&
         "Node doesn't have a token chain argument!");
  return FindCallStartFromCallEnd(Node->getOperand(0).Val);
}

/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
/// see if any uses can reach Dest.  If no dest operands can get to dest, 
/// legalize them, legalize ourself, and return false, otherwise, return true.
///
/// Keep track of the nodes we fine that actually do lead to Dest in
/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
///
bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
  if (N == Dest) return true;  // N certainly leads to Dest :)
  
  // If we've already processed this node and it does lead to Dest, there is no
  // need to reprocess it.
  if (NodesLeadingTo.count(N)) return true;
  
  // If the first result of this node has been already legalized, then it cannot
  // reach N.
  switch (getTypeAction(N->getValueType(0))) {
  case Legal: 
    if (LegalizedNodes.count(SDOperand(N, 0))) return false;
    break;
  case Promote:
    if (PromotedNodes.count(SDOperand(N, 0))) return false;
    break;
  case Expand:
    if (ExpandedNodes.count(SDOperand(N, 0))) return false;
    break;
  }
  
  // Okay, this node has not already been legalized.  Check and legalize all
  // operands.  If none lead to Dest, then we can legalize this node.
  bool OperandsLeadToDest = false;
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
      LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo);

  if (OperandsLeadToDest) {
    NodesLeadingTo.insert(N);
    return true;
  }

  // Okay, this node looks safe, legalize it and return false.
  HandleOp(SDOperand(N, 0));
  return false;
}

/// HandleOp - Legalize, Promote, or Expand the specified operand as
/// appropriate for its type.
void SelectionDAGLegalize::HandleOp(SDOperand Op) {
  MVT::ValueType VT = Op.getValueType();
  switch (getTypeAction(VT)) {
  default: assert(0 && "Bad type action!");
  case Legal:   (void)LegalizeOp(Op); break;
  case Promote: (void)PromoteOp(Op); break;
  case Expand:
    if (!MVT::isVector(VT)) {
      // If this is an illegal scalar, expand it into its two component
      // pieces.
      SDOperand X, Y;
      if (Op.getOpcode() == ISD::TargetConstant)
        break;  // Allow illegal target nodes.
      ExpandOp(Op, X, Y);
    } else if (MVT::getVectorNumElements(VT) == 1) {
      // If this is an illegal single element vector, convert it to a
      // scalar operation.
      (void)ScalarizeVectorOp(Op);
    } else {
      // Otherwise, this is an illegal multiple element vector.
      // Split it in half and legalize both parts.
      SDOperand X, Y;
      SplitVectorOp(Op, X, Y);
    }
    break;
  }
}

/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
/// a load from the constant pool.
static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
                                  SelectionDAG &DAG, TargetLowering &TLI) {
  bool Extend = false;

  // If a FP immediate is precise when represented as a float and if the
  // target can do an extending load from float to double, we put it into
  // the constant pool as a float, even if it's is statically typed as a
  // double.
  MVT::ValueType VT = CFP->getValueType(0);
  bool isDouble = VT == MVT::f64;
  ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT),
                                      CFP->getValueAPF());
  if (!UseCP) {
    if (VT!=MVT::f64 && VT!=MVT::f32)
      assert(0 && "Invalid type expansion");
    return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(),
                           isDouble ? MVT::i64 : MVT::i32);
  }

  if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) &&
      // Only do this if the target has a native EXTLOAD instruction from f32.
      // Do not try to be clever about long doubles (so far)
      TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) {
    LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy));
    VT = MVT::f32;
    Extend = true;
  }

  SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
  if (Extend) {
    return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(),
                          CPIdx, PseudoSourceValue::getConstantPool(),
                          0, MVT::f32);
  } else {
    return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
                       PseudoSourceValue::getConstantPool(), 0);
  }
}


/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise
/// operations.
static
SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT,
                                      SelectionDAG &DAG, TargetLowering &TLI) {
  MVT::ValueType VT = Node->getValueType(0);
  MVT::ValueType SrcVT = Node->getOperand(1).getValueType();
  assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) &&
         "fcopysign expansion only supported for f32 and f64");
  MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32;

  // First get the sign bit of second operand.
  SDOperand Mask1 = (SrcVT == MVT::f64)
    ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT)
    : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT);
  Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1);
  SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1));
  SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1);
  // Shift right or sign-extend it if the two operands have different types.
  int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT);
  if (SizeDiff > 0) {
    SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit,
                          DAG.getConstant(SizeDiff, TLI.getShiftAmountTy()));
    SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit);
  } else if (SizeDiff < 0)
    SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit);

  // Clear the sign bit of first operand.
  SDOperand Mask2 = (VT == MVT::f64)
    ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT)
    : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT);
  Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2);
  SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
  Result = DAG.getNode(ISD::AND, NVT, Result, Mask2);

  // Or the value with the sign bit.
  Result = DAG.getNode(ISD::OR, NVT, Result, SignBit);
  return Result;
}

/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
static
SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
                               TargetLowering &TLI) {
  SDOperand Chain = ST->getChain();
  SDOperand Ptr = ST->getBasePtr();
  SDOperand Val = ST->getValue();
  MVT::ValueType VT = Val.getValueType();
  int Alignment = ST->getAlignment();
  int SVOffset = ST->getSrcValueOffset();
  if (MVT::isFloatingPoint(ST->getMemoryVT())) {
    // Expand to a bitconvert of the value to the integer type of the 
    // same size, then a (misaligned) int store.
    MVT::ValueType intVT;
    if (VT==MVT::f64)
      intVT = MVT::i64;
    else if (VT==MVT::f32)
      intVT = MVT::i32;
    else
      assert(0 && "Unaligned load of unsupported floating point type");

    SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val);
    return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(),
                        SVOffset, ST->isVolatile(), Alignment);
  }
  assert(MVT::isInteger(ST->getMemoryVT()) &&
         "Unaligned store of unknown type.");
  // Get the half-size VT
  MVT::ValueType NewStoredVT = ST->getMemoryVT() - 1;
  int NumBits = MVT::getSizeInBits(NewStoredVT);
  int IncrementSize = NumBits / 8;

  // Divide the stored value in two parts.
  SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
  SDOperand Lo = Val;
  SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount);

  // Store the two parts
  SDOperand Store1, Store2;
  Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr,
                             ST->getSrcValue(), SVOffset, NewStoredVT,
                             ST->isVolatile(), Alignment);
  Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
  Alignment = MinAlign(Alignment, IncrementSize);
  Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr,
                             ST->getSrcValue(), SVOffset + IncrementSize,
                             NewStoredVT, ST->isVolatile(), Alignment);

  return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2);
}

/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
static
SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
                              TargetLowering &TLI) {
  int SVOffset = LD->getSrcValueOffset();
  SDOperand Chain = LD->getChain();
  SDOperand Ptr = LD->getBasePtr();
  MVT::ValueType VT = LD->getValueType(0);
  MVT::ValueType LoadedVT = LD->getMemoryVT();
  if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT)) {
    // Expand to a (misaligned) integer load of the same size,
    // then bitconvert to floating point.
    MVT::ValueType intVT;
    if (LoadedVT == MVT::f64)
      intVT = MVT::i64;
    else if (LoadedVT == MVT::f32)
      intVT = MVT::i32;
    else
      assert(0 && "Unaligned load of unsupported floating point type");

    SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(),
                                    SVOffset, LD->isVolatile(), 
                                    LD->getAlignment());
    SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad);
    if (LoadedVT != VT)
      Result = DAG.getNode(ISD::FP_EXTEND, VT, Result);

    SDOperand Ops[] = { Result, Chain };
    return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 
                       Ops, 2);
  }
  assert((MVT::isInteger(LoadedVT) || MVT::isVector(LoadedVT)) &&
         "Unaligned load of unsupported type.");

  // Compute the new VT that is half the size of the old one.  We either have an
  // integer MVT or we have a vector MVT.
  unsigned NumBits = MVT::getSizeInBits(LoadedVT);
  MVT::ValueType NewLoadedVT;
  if (!MVT::isVector(LoadedVT)) {
    NewLoadedVT = MVT::getIntegerType(NumBits/2);
  } else {
    // FIXME: This is not right for <1 x anything> it is also not right for
    // non-power-of-two vectors.
    NewLoadedVT = MVT::getVectorType(MVT::getVectorElementType(LoadedVT),
                                     MVT::getVectorNumElements(LoadedVT)/2);
  }
  NumBits >>= 1;
  
  unsigned Alignment = LD->getAlignment();
  unsigned IncrementSize = NumBits / 8;
  ISD::LoadExtType HiExtType = LD->getExtensionType();

  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
  if (HiExtType == ISD::NON_EXTLOAD)
    HiExtType = ISD::ZEXTLOAD;

  // Load the value in two parts
  SDOperand Lo, Hi;
  if (TLI.isLittleEndian()) {
    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(),
                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
    Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(),
                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
                        MinAlign(Alignment, IncrementSize));
  } else {
    Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset,
                        NewLoadedVT,LD->isVolatile(), Alignment);
    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(),
                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
                        MinAlign(Alignment, IncrementSize));
  }

  // aggregate the two parts
  SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
  SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount);
  Result = DAG.getNode(ISD::OR, VT, Result, Lo);

  SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
                             Hi.getValue(1));

  SDOperand Ops[] = { Result, TF };
  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2);
}

/// UnrollVectorOp - We know that the given vector has a legal type, however
/// the operation it performs is not legal and is an operation that we have
/// no way of lowering.  "Unroll" the vector, splitting out the scalars and
/// operating on each element individually.
SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) {
  MVT::ValueType VT = Op.getValueType();
  assert(isTypeLegal(VT) &&
         "Caller should expand or promote operands that are not legal!");
  assert(Op.Val->getNumValues() == 1 &&
         "Can't unroll a vector with multiple results!");
  unsigned NE = MVT::getVectorNumElements(VT);
  MVT::ValueType EltVT = MVT::getVectorElementType(VT);

  SmallVector<SDOperand, 8> Scalars;
  SmallVector<SDOperand, 4> Operands(Op.getNumOperands());
  for (unsigned i = 0; i != NE; ++i) {
    for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
      SDOperand Operand = Op.getOperand(j);
      MVT::ValueType OperandVT = Operand.getValueType();
      if (MVT::isVector(OperandVT)) {
        // A vector operand; extract a single element.
        MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT);
        Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
                                  OperandEltVT,
                                  Operand,
                                  DAG.getConstant(i, MVT::i32));
      } else {
        // A scalar operand; just use it as is.
        Operands[j] = Operand;
      }
    }
    Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT,
                                  &Operands[0], Operands.size()));
  }

  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size());
}

/// GetFPLibCall - Return the right libcall for the given floating point type.
static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT,
                                   RTLIB::Libcall Call_F32,
                                   RTLIB::Libcall Call_F64,
                                   RTLIB::Libcall Call_F80,
                                   RTLIB::Libcall Call_PPCF128) {
  return
    VT == MVT::f32 ? Call_F32 :
    VT == MVT::f64 ? Call_F64 :
    VT == MVT::f80 ? Call_F80 :
    VT == MVT::ppcf128 ? Call_PPCF128 :
    RTLIB::UNKNOWN_LIBCALL;
}

/// LegalizeOp - We know that the specified value has a legal type, and
/// that its operands are legal.  Now ensure that the operation itself
/// is legal, recursively ensuring that the operands' operations remain
/// legal.
SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) {
  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
    return Op;
  
  assert(isTypeLegal(Op.getValueType()) &&
         "Caller should expand or promote operands that are not legal!");
  SDNode *Node = Op.Val;

  // If this operation defines any values that cannot be represented in a
  // register on this target, make sure to expand or promote them.
  if (Node->getNumValues() > 1) {
    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
      if (getTypeAction(Node->getValueType(i)) != Legal) {
        HandleOp(Op.getValue(i));
        assert(LegalizedNodes.count(Op) &&
               "Handling didn't add legal operands!");
        return LegalizedNodes[Op];
      }
  }

  // Note that LegalizeOp may be reentered even from single-use nodes, which
  // means that we always must cache transformed nodes.
  DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op);
  if (I != LegalizedNodes.end()) return I->second;

  SDOperand Tmp1, Tmp2, Tmp3, Tmp4;
  SDOperand Result = Op;
  bool isCustom = false;
  
  switch (Node->getOpcode()) {
  case ISD::FrameIndex:
  case ISD::EntryToken:
  case ISD::Register:
  case ISD::BasicBlock:
  case ISD::TargetFrameIndex:
  case ISD::TargetJumpTable:
  case ISD::TargetConstant:
  case ISD::TargetConstantFP:
  case ISD::TargetConstantPool:
  case ISD::TargetGlobalAddress:
  case ISD::TargetGlobalTLSAddress:
  case ISD::TargetExternalSymbol:
  case ISD::VALUETYPE:
  case ISD::SRCVALUE:
  case ISD::MEMOPERAND:
  case ISD::STRING:
  case ISD::CONDCODE:
    // Primitives must all be legal.
    assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) &&
           "This must be legal!");
    break;
  default:
    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
      // If this is a target node, legalize it by legalizing the operands then
      // passing it through.
      SmallVector<SDOperand, 8> Ops;
      for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
        Ops.push_back(LegalizeOp(Node->getOperand(i)));

      Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size());

      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
        AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
      return Result.getValue(Op.ResNo);
    }
    // Otherwise this is an unhandled builtin node.  splat.
#ifndef NDEBUG
    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to legalize this operator!");
    abort();
  case ISD::GLOBAL_OFFSET_TABLE:
  case ISD::GlobalAddress:
  case ISD::GlobalTLSAddress:
  case ISD::ExternalSymbol:
  case ISD::ConstantPool:
  case ISD::JumpTable: // Nothing to do.
    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Op, DAG);
      if (Tmp1.Val) Result = Tmp1;
      // FALLTHROUGH if the target doesn't want to lower this op after all.
    case TargetLowering::Legal:
      break;
    }
    break;
  case ISD::FRAMEADDR:
  case ISD::RETURNADDR:
    // The only option for these nodes is to custom lower them.  If the target
    // does not custom lower them, then return zero.
    Tmp1 = TLI.LowerOperation(Op, DAG);
    if (Tmp1.Val) 
      Result = Tmp1;
    else
      Result = DAG.getConstant(0, TLI.getPointerTy());
    break;
  case ISD::FRAME_TO_ARGS_OFFSET: {
    MVT::ValueType VT = Node->getValueType(0);
    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Custom:
      Result = TLI.LowerOperation(Op, DAG);
      if (Result.Val) break;
      // Fall Thru
    case TargetLowering::Legal:
      Result = DAG.getConstant(0, VT);
      break;
    }
    }
    break;
  case ISD::EXCEPTIONADDR: {
    Tmp1 = LegalizeOp(Node->getOperand(0));
    MVT::ValueType VT = Node->getValueType(0);
    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Expand: {
        unsigned Reg = TLI.getExceptionAddressRegister();
        Result = DAG.getCopyFromReg(Tmp1, Reg, VT);
      }
      break;
    case TargetLowering::Custom:
      Result = TLI.LowerOperation(Op, DAG);
      if (Result.Val) break;
      // Fall Thru
    case TargetLowering::Legal: {
      SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 };
      Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
                           Ops, 2);
      break;
    }
    }
    }
    if (Result.Val->getNumValues() == 1) break;

    assert(Result.Val->getNumValues() == 2 &&
           "Cannot return more than two values!");

    // Since we produced two values, make sure to remember that we
    // legalized both of them.
    Tmp1 = LegalizeOp(Result);
    Tmp2 = LegalizeOp(Result.getValue(1));
    AddLegalizedOperand(Op.getValue(0), Tmp1);
    AddLegalizedOperand(Op.getValue(1), Tmp2);
    return Op.ResNo ? Tmp2 : Tmp1;
  case ISD::EHSELECTION: {
    Tmp1 = LegalizeOp(Node->getOperand(0));
    Tmp2 = LegalizeOp(Node->getOperand(1));
    MVT::ValueType VT = Node->getValueType(0);
    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Expand: {
        unsigned Reg = TLI.getExceptionSelectorRegister();
        Result = DAG.getCopyFromReg(Tmp2, Reg, VT);
      }
      break;
    case TargetLowering::Custom:
      Result = TLI.LowerOperation(Op, DAG);
      if (Result.Val) break;
      // Fall Thru
    case TargetLowering::Legal: {
      SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 };
      Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
                           Ops, 2);
      break;
    }
    }
    }
    if (Result.Val->getNumValues() == 1) break;

    assert(Result.Val->getNumValues() == 2 &&
           "Cannot return more than two values!");

    // Since we produced two values, make sure to remember that we
    // legalized both of them.
    Tmp1 = LegalizeOp(Result);
    Tmp2 = LegalizeOp(Result.getValue(1));
    AddLegalizedOperand(Op.getValue(0), Tmp1);
    AddLegalizedOperand(Op.getValue(1), Tmp2);
    return Op.ResNo ? Tmp2 : Tmp1;
  case ISD::EH_RETURN: {
    MVT::ValueType VT = Node->getValueType(0);
    // The only "good" option for this node is to custom lower it.
    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    default: assert(0 && "This action is not supported at all!");
    case TargetLowering::Custom:
      Result = TLI.LowerOperation(Op, DAG);
      if (Result.Val) break;
      // Fall Thru
    case TargetLowering::Legal:
      // Target does not know, how to lower this, lower to noop
      Result = LegalizeOp(Node->getOperand(0));
      break;
    }
    }
    break;
  case ISD::AssertSext:
  case ISD::AssertZext:
    Tmp1 = LegalizeOp(Node->getOperand(0));
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
    break;
  case ISD::MERGE_VALUES:
    // Legalize eliminates MERGE_VALUES nodes.
    Result = Node->getOperand(Op.ResNo);
    break;
  case ISD::CopyFromReg:
    Tmp1 = LegalizeOp(Node->getOperand(0));
    Result = Op.getValue(0);
    if (Node->getNumValues() == 2) {
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
    } else {
      assert(Node->getNumValues() == 3 && "Invalid copyfromreg!");
      if (Node->getNumOperands() == 3) {
        Tmp2 = LegalizeOp(Node->getOperand(2));
        Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2);
      } else {
        Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
      }
      AddLegalizedOperand(Op.getValue(2), Result.getValue(2));
    }
    // Since CopyFromReg produces two values, make sure to remember that we
    // legalized both of them.
    AddLegalizedOperand(Op.getValue(0), Result);
    AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
    return Result.getValue(Op.ResNo);
  case ISD::UNDEF: {
    MVT::ValueType VT = Op.getValueType();
    switch (TLI.getOperationAction(ISD::UNDEF, VT)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Expand:
      if (MVT::isInteger(VT))
        Result = DAG.getConstant(0, VT);
      else if (MVT::isFloatingPoint(VT))
        Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)),
                                   VT);
      else
        assert(0 && "Unknown value type!");
      break;
    case TargetLowering::Legal:
      break;
    }
    break;
  }
    
  case ISD::INTRINSIC_W_CHAIN:
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_VOID: {
    SmallVector<SDOperand, 8> Ops;
    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
      Ops.push_back(LegalizeOp(Node->getOperand(i)));
    Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
    
    // Allow the target to custom lower its intrinsics if it wants to.
    if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 
        TargetLowering::Custom) {
      Tmp3 = TLI.LowerOperation(Result, DAG);
      if (Tmp3.Val) Result = Tmp3;
    }

    if (Result.Val->getNumValues() == 1) break;

    // Must have return value and chain result.
    assert(Result.Val->getNumValues() == 2 &&
           "Cannot return more than two values!");

    // Since loads produce two values, make sure to remember that we 
    // legalized both of them.
    AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
    AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
    return Result.getValue(Op.ResNo);
  }    

  case ISD::LOCATION:
    assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!");
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the input chain.
    
    switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) {
    case TargetLowering::Promote:
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Expand: {
      MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
      bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other);
      bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other);
      
      if (MMI && (useDEBUG_LOC || useLABEL)) {
        const std::string &FName =
          cast<StringSDNode>(Node->getOperand(3))->getValue();
        const std::string &DirName = 
          cast<StringSDNode>(Node->getOperand(4))->getValue();
        unsigned SrcFile = MMI->RecordSource(DirName, FName);

        SmallVector<SDOperand, 8> Ops;
        Ops.push_back(Tmp1);  // chain
        SDOperand LineOp = Node->getOperand(1);
        SDOperand ColOp = Node->getOperand(2);
        
        if (useDEBUG_LOC) {
          Ops.push_back(LineOp);  // line #
          Ops.push_back(ColOp);  // col #
          Ops.push_back(DAG.getConstant(SrcFile, MVT::i32));  // source file id
          Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size());
        } else {
          unsigned Line = cast<ConstantSDNode>(LineOp)->getValue();
          unsigned Col = cast<ConstantSDNode>(ColOp)->getValue();
          unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile);
          Ops.push_back(DAG.getConstant(ID, MVT::i32));
          Ops.push_back(DAG.getConstant(0, MVT::i32)); // a debug label
          Result = DAG.getNode(ISD::LABEL, MVT::Other, &Ops[0], Ops.size());
        }
      } else {
        Result = Tmp1;  // chain
      }
      break;
    }
    case TargetLowering::Legal:
      if (Tmp1 != Node->getOperand(0) ||
          getTypeAction(Node->getOperand(1).getValueType()) == Promote) {
        SmallVector<SDOperand, 8> Ops;
        Ops.push_back(Tmp1);
        if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) {
          Ops.push_back(Node->getOperand(1));  // line # must be legal.
          Ops.push_back(Node->getOperand(2));  // col # must be legal.
        } else {
          // Otherwise promote them.
          Ops.push_back(PromoteOp(Node->getOperand(1)));
          Ops.push_back(PromoteOp(Node->getOperand(2)));
        }
        Ops.push_back(Node->getOperand(3));  // filename must be legal.
        Ops.push_back(Node->getOperand(4));  // working dir # must be legal.
        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
      }
      break;
    }
    break;

  case ISD::DECLARE:
    assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!");
    switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
      Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the address.
      Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the variable.
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
      break;
    }
    break;    
    
  case ISD::DEBUG_LOC:
    assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!");
    switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
      Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the line #.
      Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the col #.
      Tmp4 = LegalizeOp(Node->getOperand(3));  // Legalize the source file id.
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4);
      break;
    }
    break;    

  case ISD::LABEL:
    assert(Node->getNumOperands() == 3 && "Invalid LABEL node!");
    switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
      Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the label id.
      Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the "flavor" operand.
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
      break;
    case TargetLowering::Expand:
      Result = LegalizeOp(Node->getOperand(0));
      break;
    }
    break;

  case ISD::Constant: {
    ConstantSDNode *CN = cast<ConstantSDNode>(Node);
    unsigned opAction =
      TLI.getOperationAction(ISD::Constant, CN->getValueType(0));

    // We know we don't need to expand constants here, constants only have one
    // value and we check that it is fine above.

    if (opAction == TargetLowering::Custom) {
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val)
        Result = Tmp1;
    }
    break;
  }
  case ISD::ConstantFP: {
    // Spill FP immediates to the constant pool if the target cannot directly
    // codegen them.  Targets often have some immediate values that can be
    // efficiently generated into an FP register without a load.  We explicitly
    // leave these constants as ConstantFP nodes for the target to deal with.
    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);

    // Check to see if this FP immediate is already legal.
    bool isLegal = false;
    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
           E = TLI.legal_fpimm_end(); I != E; ++I)
      if (CFP->isExactlyValue(*I)) {
        isLegal = true;
        break;
      }

    // If this is a legal constant, turn it into a TargetConstantFP node.
    if (isLegal) {
      Result = DAG.getTargetConstantFP(CFP->getValueAPF(), 
                                       CFP->getValueType(0));
      break;
    }

    switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Custom:
      Tmp3 = TLI.LowerOperation(Result, DAG);
      if (Tmp3.Val) {
        Result = Tmp3;
        break;
      }
      // FALLTHROUGH
    case TargetLowering::Expand:
      Result = ExpandConstantFP(CFP, true, DAG, TLI);
    }
    break;
  }
  case ISD::TokenFactor:
    if (Node->getNumOperands() == 2) {
      Tmp1 = LegalizeOp(Node->getOperand(0));
      Tmp2 = LegalizeOp(Node->getOperand(1));
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    } else if (Node->getNumOperands() == 3) {
      Tmp1 = LegalizeOp(Node->getOperand(0));
      Tmp2 = LegalizeOp(Node->getOperand(1));
      Tmp3 = LegalizeOp(Node->getOperand(2));
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
    } else {
      SmallVector<SDOperand, 8> Ops;
      // Legalize the operands.
      for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
        Ops.push_back(LegalizeOp(Node->getOperand(i)));
      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
    }
    break;
    
  case ISD::FORMAL_ARGUMENTS:
  case ISD::CALL:
    // The only option for this is to custom lower it.
    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
    assert(Tmp3.Val && "Target didn't custom lower this node!");

    // The number of incoming and outgoing values should match; unless the final
    // outgoing value is a flag.
    assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() ||
            (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 &&
             Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) ==
               MVT::Flag)) &&
           "Lowering call/formal_arguments produced unexpected # results!");
    
    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
    // remember that we legalized all of them, so it doesn't get relegalized.
    for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) {
      if (Tmp3.Val->getValueType(i) == MVT::Flag)
        continue;
      Tmp1 = LegalizeOp(Tmp3.getValue(i));
      if (Op.ResNo == i)
        Tmp2 = Tmp1;
      AddLegalizedOperand(SDOperand(Node, i), Tmp1);
    }
    return Tmp2;
   case ISD::EXTRACT_SUBREG: {
      Tmp1 = LegalizeOp(Node->getOperand(0));
      ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1));
      assert(idx && "Operand must be a constant");
      Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0));
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    }
    break;
  case ISD::INSERT_SUBREG: {
      Tmp1 = LegalizeOp(Node->getOperand(0));
      Tmp2 = LegalizeOp(Node->getOperand(1));      
      ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2));
      assert(idx && "Operand must be a constant");
      Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0));
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
    }
    break;      
  case ISD::BUILD_VECTOR:
    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Custom:
      Tmp3 = TLI.LowerOperation(Result, DAG);
      if (Tmp3.Val) {
        Result = Tmp3;
        break;
      }
      // FALLTHROUGH
    case TargetLowering::Expand:
      Result = ExpandBUILD_VECTOR(Result.Val);
      break;
    }
    break;
  case ISD::INSERT_VECTOR_ELT:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // InVec
    Tmp3 = LegalizeOp(Node->getOperand(2));  // InEltNo

    // The type of the value to insert may not be legal, even though the vector
    // type is legal.  Legalize/Promote accordingly.  We do not handle Expand
    // here.
    switch (getTypeAction(Node->getOperand(1).getValueType())) {
    default: assert(0 && "Cannot expand insert element operand");
    case Legal:   Tmp2 = LegalizeOp(Node->getOperand(1)); break;
    case Promote: Tmp2 = PromoteOp(Node->getOperand(1));  break;
    }
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
    
    switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT,
                                   Node->getValueType(0))) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal:
      break;
    case TargetLowering::Custom:
      Tmp4 = TLI.LowerOperation(Result, DAG);
      if (Tmp4.Val) {
        Result = Tmp4;
        break;
      }
      // FALLTHROUGH
    case TargetLowering::Expand: {
      // If the insert index is a constant, codegen this as a scalar_to_vector,
      // then a shuffle that inserts it into the right position in the vector.
      if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) {
        // SCALAR_TO_VECTOR requires that the type of the value being inserted
        // match the element type of the vector being created.
        if (Tmp2.getValueType() == 
            MVT::getVectorElementType(Op.getValueType())) {
          SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 
                                        Tmp1.getValueType(), Tmp2);
          
          unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType());
          MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts);
          MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT);
          
          // We generate a shuffle of InVec and ScVec, so the shuffle mask
          // should be 0,1,2,3,4,5... with the appropriate element replaced with
          // elt 0 of the RHS.
          SmallVector<SDOperand, 8> ShufOps;
          for (unsigned i = 0; i != NumElts; ++i) {
            if (i != InsertPos->getValue())
              ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT));
            else
              ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT));
          }
          SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT,
                                           &ShufOps[0], ShufOps.size());
          
          Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(),
                               Tmp1, ScVec, ShufMask);
          Result = LegalizeOp(Result);
          break;
        }
      }
      
      // If the target doesn't support this, we have to spill the input vector
      // to a temporary stack slot, update the element, then reload it.  This is
      // badness.  We could also load the value into a vector register (either
      // with a "move to register" or "extload into register" instruction, then
      // permute it into place, if the idx is a constant and if the idx is
      // supported by the target.
      MVT::ValueType VT    = Tmp1.getValueType();
      MVT::ValueType EltVT = MVT::getVectorElementType(VT);
      MVT::ValueType IdxVT = Tmp3.getValueType();
      MVT::ValueType PtrVT = TLI.getPointerTy();
      SDOperand StackPtr = DAG.CreateStackTemporary(VT);

      FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr.Val);
      int SPFI = StackPtrFI->getIndex();

      // Store the vector.
      SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr,
                                  PseudoSourceValue::getFixedStack(),
                                  SPFI);

      // Truncate or zero extend offset to target pointer type.
      unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
      Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3);
      // Add the offset to the index.
      unsigned EltSize = MVT::getSizeInBits(EltVT)/8;
      Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
      SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr);
      // Store the scalar value.
      Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2,
                             PseudoSourceValue::getFixedStack(), SPFI, EltVT);
      // Load the updated vector.
      Result = DAG.getLoad(VT, Ch, StackPtr,
                           PseudoSourceValue::getFixedStack(), SPFI);
      break;
    }
    }
    break;
  case ISD::SCALAR_TO_VECTOR:
    if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) {
      Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node));
      break;
    }
    
    Tmp1 = LegalizeOp(Node->getOperand(0));  // InVal
    Result = DAG.UpdateNodeOperands(Result, Tmp1);
    switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR,
                                   Node->getValueType(0))) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal:
      break;
    case TargetLowering::Custom:
      Tmp3 = TLI.LowerOperation(Result, DAG);
      if (Tmp3.Val) {
        Result = Tmp3;
        break;
      }
      // FALLTHROUGH
    case TargetLowering::Expand:
      Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node));
      break;
    }
    break;
  case ISD::VECTOR_SHUFFLE:
    Tmp1 = LegalizeOp(Node->getOperand(0));   // Legalize the input vectors,
    Tmp2 = LegalizeOp(Node->getOperand(1));   // but not the shuffle mask.
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));

    // Allow targets to custom lower the SHUFFLEs they support.
    switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) {
    default: assert(0 && "Unknown operation action!");
    case TargetLowering::Legal:
      assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) &&
             "vector shuffle should not be created if not legal!");
      break;
    case TargetLowering::Custom:
      Tmp3 = TLI.LowerOperation(Result, DAG);
      if (Tmp3.Val) {
        Result = Tmp3;
        break;
      }
      // FALLTHROUGH
    case TargetLowering::Expand: {
      MVT::ValueType VT = Node->getValueType(0);
      MVT::ValueType EltVT = MVT::getVectorElementType(VT);
      MVT::ValueType PtrVT = TLI.getPointerTy();
      SDOperand Mask = Node->getOperand(2);
      unsigned NumElems = Mask.getNumOperands();
      SmallVector<SDOperand,8> Ops;
      for (unsigned i = 0; i != NumElems; ++i) {
        SDOperand Arg = Mask.getOperand(i);
        if (Arg.getOpcode() == ISD::UNDEF) {
          Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT));
        } else {
          assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
          unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
          if (Idx < NumElems)
            Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1,
                                      DAG.getConstant(Idx, PtrVT)));
          else
            Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2,
                                      DAG.getConstant(Idx - NumElems, PtrVT)));
        }
      }
      Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
      break;
    }
    case TargetLowering::Promote: {
      // Change base type to a different vector type.
      MVT::ValueType OVT = Node->getValueType(0);
      MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);

      // Cast the two input vectors.
      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1);
      Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2);
      
      // Convert the shuffle mask to the right # elements.
      Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0);
      assert(Tmp3.Val && "Shuffle not legal?");
      Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3);
      Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result);
      break;
    }
    }
    break;
  
  case ISD::EXTRACT_VECTOR_ELT:
    Tmp1 = Node->getOperand(0);
    Tmp2 = LegalizeOp(Node->getOperand(1));
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    Result = ExpandEXTRACT_VECTOR_ELT(Result);
    break;

  case ISD::EXTRACT_SUBVECTOR: 
    Tmp1 = Node->getOperand(0);
    Tmp2 = LegalizeOp(Node->getOperand(1));
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    Result = ExpandEXTRACT_SUBVECTOR(Result);
    break;
    
  case ISD::CALLSEQ_START: {
    SDNode *CallEnd = FindCallEndFromCallStart(Node);
    
    // Recursively Legalize all of the inputs of the call end that do not lead
    // to this call start.  This ensures that any libcalls that need be inserted
    // are inserted *before* the CALLSEQ_START.
    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node,
                                   NodesLeadingTo);
    }

    // Now that we legalized all of the inputs (which may have inserted
    // libcalls) create the new CALLSEQ_START node.
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.

    // Merge in the last call, to ensure that this call start after the last
    // call ended.
    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
      Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
      Tmp1 = LegalizeOp(Tmp1);
    }
      
    // Do not try to legalize the target-specific arguments (#1+).
    if (Tmp1 != Node->getOperand(0)) {
      SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end());
      Ops[0] = Tmp1;
      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
    }
    
    // Remember that the CALLSEQ_START is legalized.
    AddLegalizedOperand(Op.getValue(0), Result);
    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
    
    // Now that the callseq_start and all of the non-call nodes above this call
    // sequence have been legalized, legalize the call itself.  During this 
    // process, no libcalls can/will be inserted, guaranteeing that no calls
    // can overlap.
    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
    SDOperand InCallSEQ = LastCALLSEQ_END;
    // Note that we are selecting this call!
    LastCALLSEQ_END = SDOperand(CallEnd, 0);
    IsLegalizingCall = true;
    
    // Legalize the call, starting from the CALLSEQ_END.
    LegalizeOp(LastCALLSEQ_END);
    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
    return Result;
  }
  case ISD::CALLSEQ_END:
    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
    // will cause this node to be legalized as well as handling libcalls right.
    if (LastCALLSEQ_END.Val != Node) {
      LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0));
      DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op);
      assert(I != LegalizedNodes.end() &&
             "Legalizing the call start should have legalized this node!");
      return I->second;
    }
    
    // Otherwise, the call start has been legalized and everything is going 
    // according to plan.  Just legalize ourselves normally here.
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    // Do not try to legalize the target-specific arguments (#1+), except for
    // an optional flag input.
    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
      if (Tmp1 != Node->getOperand(0)) {
        SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end());
        Ops[0] = Tmp1;
        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
      }
    } else {
      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
      if (Tmp1 != Node->getOperand(0) ||
          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
        SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end());
        Ops[0] = Tmp1;
        Ops.back() = Tmp2;
        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
      }
    }
    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
    // This finishes up call legalization.
    IsLegalizingCall = false;
    
    // If the CALLSEQ_END node has a flag, remember that we legalized it.
    AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
    if (Node->getNumValues() == 2)
      AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
    return Result.getValue(Op.ResNo);
  case ISD::DYNAMIC_STACKALLOC: {
    MVT::ValueType VT = Node->getValueType(0);
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the size.
    Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the alignment.
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);

    Tmp1 = Result.getValue(0);
    Tmp2 = Result.getValue(1);
    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Expand: {
      unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
      assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
             " not tell us which reg is the stack pointer!");
      SDOperand Chain = Tmp1.getOperand(0);

      // Chain the dynamic stack allocation so that it doesn't modify the stack
      // pointer when other instructions are using the stack.
      Chain = DAG.getCALLSEQ_START(Chain,
                                   DAG.getConstant(0, TLI.getPointerTy()));

      SDOperand Size  = Tmp2.getOperand(1);
      SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT);
      Chain = SP.getValue(1);
      unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue();
      unsigned StackAlign =
        TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
      if (Align > StackAlign)
        SP = DAG.getNode(ISD::AND, VT, SP,
                         DAG.getConstant(-(uint64_t)Align, VT));
      Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size);       // Value
      Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1);     // Output chain

      Tmp2 =
        DAG.getCALLSEQ_END(Chain,
                           DAG.getConstant(0, TLI.getPointerTy()),
                           DAG.getConstant(0, TLI.getPointerTy()),
                           SDOperand());

      Tmp1 = LegalizeOp(Tmp1);
      Tmp2 = LegalizeOp(Tmp2);
      break;
    }
    case TargetLowering::Custom:
      Tmp3 = TLI.LowerOperation(Tmp1, DAG);
      if (Tmp3.Val) {
        Tmp1 = LegalizeOp(Tmp3);
        Tmp2 = LegalizeOp(Tmp3.getValue(1));
      }
      break;
    case TargetLowering::Legal:
      break;
    }
    // Since this op produce two values, make sure to remember that we
    // legalized both of them.
    AddLegalizedOperand(SDOperand(Node, 0), Tmp1);
    AddLegalizedOperand(SDOperand(Node, 1), Tmp2);
    return Op.ResNo ? Tmp2 : Tmp1;
  }
  case ISD::INLINEASM: {
    SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end());
    bool Changed = false;
    // Legalize all of the operands of the inline asm, in case they are nodes
    // that need to be expanded or something.  Note we skip the asm string and
    // all of the TargetConstant flags.
    SDOperand Op = LegalizeOp(Ops[0]);
    Changed = Op != Ops[0];
    Ops[0] = Op;

    bool HasInFlag = Ops.back().getValueType() == MVT::Flag;
    for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) {
      unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3;
      for (++i; NumVals; ++i, --NumVals) {
        SDOperand Op = LegalizeOp(Ops[i]);
        if (Op != Ops[i]) {
          Changed = true;
          Ops[i] = Op;
        }
      }
    }

    if (HasInFlag) {
      Op = LegalizeOp(Ops.back());
      Changed |= Op != Ops.back();
      Ops.back() = Op;
    }
    
    if (Changed)
      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
      
    // INLINE asm returns a chain and flag, make sure to add both to the map.
    AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
    AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
    return Result.getValue(Op.ResNo);
  }
  case ISD::BR:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    // Ensure that libcalls are emitted before a branch.
    Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
    Tmp1 = LegalizeOp(Tmp1);
    LastCALLSEQ_END = DAG.getEntryNode();
    
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
    break;
  case ISD::BRIND:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    // Ensure that libcalls are emitted before a branch.
    Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
    Tmp1 = LegalizeOp(Tmp1);
    LastCALLSEQ_END = DAG.getEntryNode();
    
    switch (getTypeAction(Node->getOperand(1).getValueType())) {
    default: assert(0 && "Indirect target must be legal type (pointer)!");
    case Legal:
      Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
      break;
    }
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    break;
  case ISD::BR_JT:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    // Ensure that libcalls are emitted before a branch.
    Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
    Tmp1 = LegalizeOp(Tmp1);
    LastCALLSEQ_END = DAG.getEntryNode();

    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the jumptable node.
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));

    switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) {  
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    case TargetLowering::Expand: {
      SDOperand Chain = Result.getOperand(0);
      SDOperand Table = Result.getOperand(1);
      SDOperand Index = Result.getOperand(2);

      MVT::ValueType PTy = TLI.getPointerTy();
      MachineFunction &MF = DAG.getMachineFunction();
      unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
      Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy));
      SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table);
      
      SDOperand LD;
      switch (EntrySize) {
      default: assert(0 && "Size of jump table not supported yet."); break;
      case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr,
                               PseudoSourceValue::getJumpTable(), 0); break;
      case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr,
                               PseudoSourceValue::getJumpTable(), 0); break;
      }

      Addr = LD;
      if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
        // For PIC, the sequence is:
        // BRIND(load(Jumptable + index) + RelocBase)
        // RelocBase can be JumpTable, GOT or some sort of global base.
        if (PTy != MVT::i32)
          Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr);
        Addr = DAG.getNode(ISD::ADD, PTy, Addr,
                           TLI.getPICJumpTableRelocBase(Table, DAG));
      }
      Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr);
    }
    }
    break;
  case ISD::BRCOND:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    // Ensure that libcalls are emitted before a return.
    Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
    Tmp1 = LegalizeOp(Tmp1);
    LastCALLSEQ_END = DAG.getEntryNode();

    switch (getTypeAction(Node->getOperand(1).getValueType())) {
    case Expand: assert(0 && "It's impossible to expand bools");
    case Legal:
      Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
      break;
    case Promote:
      Tmp2 = PromoteOp(Node->getOperand(1));  // Promote the condition.
      
      // The top bits of the promoted condition are not necessarily zero, ensure
      // that the value is properly zero extended.
      if (!DAG.MaskedValueIsZero(Tmp2, 
                                 MVT::getIntVTBitMask(Tmp2.getValueType())^1))
        Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1);
      break;
    }

    // Basic block destination (Op#2) is always legal.
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
      
    switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) {  
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    case TargetLowering::Expand:
      // Expand brcond's setcc into its constituent parts and create a BR_CC
      // Node.
      if (Tmp2.getOpcode() == ISD::SETCC) {
        Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2),
                             Tmp2.getOperand(0), Tmp2.getOperand(1),
                             Node->getOperand(2));
      } else {
        Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 
                             DAG.getCondCode(ISD::SETNE), Tmp2,
                             DAG.getConstant(0, Tmp2.getValueType()),
                             Node->getOperand(2));
      }
      break;
    }
    break;
  case ISD::BR_CC:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    // Ensure that libcalls are emitted before a branch.
    Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
    Tmp1 = LegalizeOp(Tmp1);
    Tmp2 = Node->getOperand(2);              // LHS 
    Tmp3 = Node->getOperand(3);              // RHS
    Tmp4 = Node->getOperand(1);              // CC

    LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4);
    LastCALLSEQ_END = DAG.getEntryNode();

    // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands,
    // the LHS is a legal SETCC itself.  In this case, we need to compare
    // the result against zero to select between true and false values.
    if (Tmp3.Val == 0) {
      Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
      Tmp4 = DAG.getCondCode(ISD::SETNE);
    }
    
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 
                                    Node->getOperand(4));
      
    switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) {
    default: assert(0 && "Unexpected action for BR_CC!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp4 = TLI.LowerOperation(Result, DAG);
      if (Tmp4.Val) Result = Tmp4;
      break;
    }
    break;
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(Node);
    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.

    ISD::LoadExtType ExtType = LD->getExtensionType();
    if (ExtType == ISD::NON_EXTLOAD) {
      MVT::ValueType VT = Node->getValueType(0);
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
      Tmp3 = Result.getValue(0);
      Tmp4 = Result.getValue(1);
    
      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
      default: assert(0 && "This action is not supported yet!");
      case TargetLowering::Legal:
        // If this is an unaligned load and the target doesn't support it,
        // expand it.
        if (!TLI.allowsUnalignedMemoryAccesses()) {
          unsigned ABIAlignment = TLI.getTargetData()->
            getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT()));
          if (LD->getAlignment() < ABIAlignment){
            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG,
                                         TLI);
            Tmp3 = Result.getOperand(0);
            Tmp4 = Result.getOperand(1);
            Tmp3 = LegalizeOp(Tmp3);
            Tmp4 = LegalizeOp(Tmp4);
          }
        }
        break;
      case TargetLowering::Custom:
        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
        if (Tmp1.Val) {
          Tmp3 = LegalizeOp(Tmp1);
          Tmp4 = LegalizeOp(Tmp1.getValue(1));
        }
        break;
      case TargetLowering::Promote: {
        // Only promote a load of vector type to another.
        assert(MVT::isVector(VT) && "Cannot promote this load!");
        // Change base type to a different vector type.
        MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);

        Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(),
                           LD->getSrcValueOffset(),
                           LD->isVolatile(), LD->getAlignment());
        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1));
        Tmp4 = LegalizeOp(Tmp1.getValue(1));
        break;
      }
      }
      // Since loads produce two values, make sure to remember that we 
      // legalized both of them.
      AddLegalizedOperand(SDOperand(Node, 0), Tmp3);
      AddLegalizedOperand(SDOperand(Node, 1), Tmp4);
      return Op.ResNo ? Tmp4 : Tmp3;
    } else {
      MVT::ValueType SrcVT = LD->getMemoryVT();
      unsigned SrcWidth = MVT::getSizeInBits(SrcVT);
      int SVOffset = LD->getSrcValueOffset();
      unsigned Alignment = LD->getAlignment();
      bool isVolatile = LD->isVolatile();

      if (SrcWidth != MVT::getStoreSizeInBits(SrcVT) &&
          // Some targets pretend to have an i1 loading operation, and actually
          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
          // bits are guaranteed to be zero; it helps the optimizers understand
          // that these bits are zero.  It is also useful for EXTLOAD, since it
          // tells the optimizers that those bits are undefined.  It would be
          // nice to have an effective generic way of getting these benefits...
          // Until such a way is found, don't insist on promoting i1 here.
          (SrcVT != MVT::i1 ||
           TLI.getLoadXAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
        // Promote to a byte-sized load if not loading an integral number of
        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
        unsigned NewWidth = MVT::getStoreSizeInBits(SrcVT);
        MVT::ValueType NVT = MVT::getIntegerType(NewWidth);
        SDOperand Ch;

        // The extra bits are guaranteed to be zero, since we stored them that
        // way.  A zext load from NVT thus automatically gives zext from SrcVT.

        ISD::LoadExtType NewExtType =
          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;

        Result = DAG.getExtLoad(NewExtType, Node->getValueType(0),
                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
                                NVT, isVolatile, Alignment);

        Ch = Result.getValue(1); // The chain.

        if (ExtType == ISD::SEXTLOAD)
          // Having the top bits zero doesn't help when sign extending.
          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
                               Result, DAG.getValueType(SrcVT));
        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
          // All the top bits are guaranteed to be zero - inform the optimizers.
          Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result,
                               DAG.getValueType(SrcVT));

        Tmp1 = LegalizeOp(Result);
        Tmp2 = LegalizeOp(Ch);
      } else if (SrcWidth & (SrcWidth - 1)) {
        // If not loading a power-of-2 number of bits, expand as two loads.
        assert(MVT::isExtendedVT(SrcVT) && !MVT::isVector(SrcVT) &&
               "Unsupported extload!");
        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
        assert(RoundWidth < SrcWidth);
        unsigned ExtraWidth = SrcWidth - RoundWidth;
        assert(ExtraWidth < RoundWidth);
        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
               "Load size not an integral number of bytes!");
        MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth);
        MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth);
        SDOperand Lo, Hi, Ch;
        unsigned IncrementSize;

        if (TLI.isLittleEndian()) {
          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
          // Load the bottom RoundWidth bits.
          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2,
                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
                              Alignment);

          // Load the remaining ExtraWidth bits.
          IncrementSize = RoundWidth / 8;
          Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
                             DAG.getIntPtrConstant(IncrementSize));
          Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2,
                              LD->getSrcValue(), SVOffset + IncrementSize,
                              ExtraVT, isVolatile,
                              MinAlign(Alignment, IncrementSize));

          // Build a factor node to remember that this load is independent of the
          // other one.
          Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
                           Hi.getValue(1));

          // Move the top bits to the right place.
          Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi,
                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));

          // Join the hi and lo parts.
          Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi);
        } else {
          // Big endian - avoid unaligned loads.
          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
          // Load the top RoundWidth bits.
          Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2,
                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
                              Alignment);

          // Load the remaining ExtraWidth bits.
          IncrementSize = RoundWidth / 8;
          Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
                             DAG.getIntPtrConstant(IncrementSize));
          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2,
                              LD->getSrcValue(), SVOffset + IncrementSize,
                              ExtraVT, isVolatile,
                              MinAlign(Alignment, IncrementSize));

          // Build a factor node to remember that this load is independent of the
          // other one.
          Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
                           Hi.getValue(1));

          // Move the top bits to the right place.
          Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi,
                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));

          // Join the hi and lo parts.
          Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi);
        }

        Tmp1 = LegalizeOp(Result);
        Tmp2 = LegalizeOp(Ch);
      } else {
        switch (TLI.getLoadXAction(ExtType, SrcVT)) {
        default: assert(0 && "This action is not supported yet!");
        case TargetLowering::Custom:
          isCustom = true;
          // FALLTHROUGH
        case TargetLowering::Legal:
          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
          Tmp1 = Result.getValue(0);
          Tmp2 = Result.getValue(1);

          if (isCustom) {
            Tmp3 = TLI.LowerOperation(Result, DAG);
            if (Tmp3.Val) {
              Tmp1 = LegalizeOp(Tmp3);
              Tmp2 = LegalizeOp(Tmp3.getValue(1));
            }
          } else {
            // If this is an unaligned load and the target doesn't support it,
            // expand it.
            if (!TLI.allowsUnalignedMemoryAccesses()) {
              unsigned ABIAlignment = TLI.getTargetData()->
                getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT()));
              if (LD->getAlignment() < ABIAlignment){
                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG,
                                             TLI);
                Tmp1 = Result.getOperand(0);
                Tmp2 = Result.getOperand(1);
                Tmp1 = LegalizeOp(Tmp1);
                Tmp2 = LegalizeOp(Tmp2);
              }
            }
          }
          break;
        case TargetLowering::Expand:
          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
            SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(),
                                         LD->getSrcValueOffset(),
                                         LD->isVolatile(), LD->getAlignment());
            Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load);
            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
            Tmp2 = LegalizeOp(Load.getValue(1));
            break;
          }
          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
          // Turn the unsupported load into an EXTLOAD followed by an explicit
          // zero/sign extend inreg.
          Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0),
                                  Tmp1, Tmp2, LD->getSrcValue(),
                                  LD->getSrcValueOffset(), SrcVT,
                                  LD->isVolatile(), LD->getAlignment());
          SDOperand ValRes;
          if (ExtType == ISD::SEXTLOAD)
            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
                                 Result, DAG.getValueType(SrcVT));
          else
            ValRes = DAG.getZeroExtendInReg(Result, SrcVT);
          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
          break;
        }
      }

      // Since loads produce two values, make sure to remember that we legalized
      // both of them.
      AddLegalizedOperand(SDOperand(Node, 0), Tmp1);
      AddLegalizedOperand(SDOperand(Node, 1), Tmp2);
      return Op.ResNo ? Tmp2 : Tmp1;
    }
  }
  case ISD::EXTRACT_ELEMENT: {
    MVT::ValueType OpTy = Node->getOperand(0).getValueType();
    switch (getTypeAction(OpTy)) {
    default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!");
    case Legal:
      if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) {
        // 1 -> Hi
        Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0),
                             DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 
                                             TLI.getShiftAmountTy()));
        Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result);
      } else {
        // 0 -> Lo
        Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 
                             Node->getOperand(0));
      }
      break;
    case Expand:
      // Get both the low and high parts.
      ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
      if (cast<ConstantSDNode>(Node->getOperand(1))->getValue())
        Result = Tmp2;  // 1 -> Hi
      else
        Result = Tmp1;  // 0 -> Lo
      break;
    }
    break;
  }

  case ISD::CopyToReg:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.

    assert(isTypeLegal(Node->getOperand(2).getValueType()) &&
           "Register type must be legal!");
    // Legalize the incoming value (must be a legal type).
    Tmp2 = LegalizeOp(Node->getOperand(2));
    if (Node->getNumValues() == 1) {
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2);
    } else {
      assert(Node->getNumValues() == 2 && "Unknown CopyToReg");
      if (Node->getNumOperands() == 4) {
        Tmp3 = LegalizeOp(Node->getOperand(3));
        Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2,
                                        Tmp3);
      } else {
        Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2);
      }
      
      // Since this produces two values, make sure to remember that we legalized
      // both of them.
      AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
      AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
      return Result;
    }
    break;

  case ISD::RET:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.

    // Ensure that libcalls are emitted before a return.
    Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
    Tmp1 = LegalizeOp(Tmp1);
    LastCALLSEQ_END = DAG.getEntryNode();
      
    switch (Node->getNumOperands()) {
    case 3:  // ret val
      Tmp2 = Node->getOperand(1);
      Tmp3 = Node->getOperand(2);  // Signness
      switch (getTypeAction(Tmp2.getValueType())) {
      case Legal:
        Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3);
        break;
      case Expand:
        if (!MVT::isVector(Tmp2.getValueType())) {
          SDOperand Lo, Hi;
          ExpandOp(Tmp2, Lo, Hi);

          // Big endian systems want the hi reg first.
          if (TLI.isBigEndian())
            std::swap(Lo, Hi);
          
          if (Hi.Val)
            Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3);
          else
            Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3);
          Result = LegalizeOp(Result);
        } else {
          SDNode *InVal = Tmp2.Val;
          int InIx = Tmp2.ResNo;
          unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx));
          MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx));
          
          // Figure out if there is a simple type corresponding to this Vector
          // type.  If so, convert to the vector type.
          MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
          if (TLI.isTypeLegal(TVT)) {
            // Turn this into a return of the vector type.
            Tmp2 = LegalizeOp(Tmp2);
            Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
          } else if (NumElems == 1) {
            // Turn this into a return of the scalar type.
            Tmp2 = ScalarizeVectorOp(Tmp2);
            Tmp2 = LegalizeOp(Tmp2);
            Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
            
            // FIXME: Returns of gcc generic vectors smaller than a legal type
            // should be returned in integer registers!
            
            // The scalarized value type may not be legal, e.g. it might require
            // promotion or expansion.  Relegalize the return.
            Result = LegalizeOp(Result);
          } else {
            // FIXME: Returns of gcc generic vectors larger than a legal vector
            // type should be returned by reference!
            SDOperand Lo, Hi;
            SplitVectorOp(Tmp2, Lo, Hi);
            Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3);
            Result = LegalizeOp(Result);
          }
        }
        break;
      case Promote:
        Tmp2 = PromoteOp(Node->getOperand(1));
        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
        Result = LegalizeOp(Result);
        break;
      }
      break;
    case 1:  // ret void
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      break;
    default: { // ret <values>
      SmallVector<SDOperand, 8> NewValues;
      NewValues.push_back(Tmp1);
      for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2)
        switch (getTypeAction(Node->getOperand(i).getValueType())) {
        case Legal:
          NewValues.push_back(LegalizeOp(Node->getOperand(i)));
          NewValues.push_back(Node->getOperand(i+1));
          break;
        case Expand: {
          SDOperand Lo, Hi;
          assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) &&
                 "FIXME: TODO: implement returning non-legal vector types!");
          ExpandOp(Node->getOperand(i), Lo, Hi);
          NewValues.push_back(Lo);
          NewValues.push_back(Node->getOperand(i+1));
          if (Hi.Val) {
            NewValues.push_back(Hi);
            NewValues.push_back(Node->getOperand(i+1));
          }
          break;
        }
        case Promote:
          assert(0 && "Can't promote multiple return value yet!");
        }
          
      if (NewValues.size() == Node->getNumOperands())
        Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size());
      else
        Result = DAG.getNode(ISD::RET, MVT::Other,
                             &NewValues[0], NewValues.size());
      break;
    }
    }

    if (Result.getOpcode() == ISD::RET) {
      switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) {
      default: assert(0 && "This action is not supported yet!");
      case TargetLowering::Legal: break;
      case TargetLowering::Custom:
        Tmp1 = TLI.LowerOperation(Result, DAG);
        if (Tmp1.Val) Result = Tmp1;
        break;
      }
    }
    break;
  case ISD::STORE: {
    StoreSDNode *ST = cast<StoreSDNode>(Node);
    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
    int SVOffset = ST->getSrcValueOffset();
    unsigned Alignment = ST->getAlignment();
    bool isVolatile = ST->isVolatile();

    if (!ST->isTruncatingStore()) {
      // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
      // FIXME: We shouldn't do this for TargetConstantFP's.
      // FIXME: move this to the DAG Combiner!  Note that we can't regress due
      // to phase ordering between legalized code and the dag combiner.  This
      // probably means that we need to integrate dag combiner and legalizer
      // together.
      // We generally can't do this one for long doubles.
      if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
        if (CFP->getValueType(0) == MVT::f32 && 
            getTypeAction(MVT::i32) == Legal) {
          Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF().
                                          convertToAPInt().getZExtValue(),
                                  MVT::i32);
          Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                SVOffset, isVolatile, Alignment);
          break;
        } else if (CFP->getValueType(0) == MVT::f64) {
          // If this target supports 64-bit registers, do a single 64-bit store.
          if (getTypeAction(MVT::i64) == Legal) {
            Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
                                     getZExtValue(), MVT::i64);
            Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                  SVOffset, isVolatile, Alignment);
            break;
          } else if (getTypeAction(MVT::i32) == Legal) {
            // Otherwise, if the target supports 32-bit registers, use 2 32-bit
            // stores.  If the target supports neither 32- nor 64-bits, this
            // xform is certainly not worth it.
            uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue();
            SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32);
            SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32);
            if (TLI.isBigEndian()) std::swap(Lo, Hi);

            Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(),
                              SVOffset, isVolatile, Alignment);
            Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
                               DAG.getIntPtrConstant(4));
            Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
                              isVolatile, MinAlign(Alignment, 4U));

            Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
            break;
          }
        }
      }
      
      switch (getTypeAction(ST->getMemoryVT())) {
      case Legal: {
        Tmp3 = LegalizeOp(ST->getValue());
        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 
                                        ST->getOffset());

        MVT::ValueType VT = Tmp3.getValueType();
        switch (TLI.getOperationAction(ISD::STORE, VT)) {
        default: assert(0 && "This action is not supported yet!");
        case TargetLowering::Legal:
          // If this is an unaligned store and the target doesn't support it,
          // expand it.
          if (!TLI.allowsUnalignedMemoryAccesses()) {
            unsigned ABIAlignment = TLI.getTargetData()->
              getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT()));
            if (ST->getAlignment() < ABIAlignment)
              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG,
                                            TLI);
          }
          break;
        case TargetLowering::Custom:
          Tmp1 = TLI.LowerOperation(Result, DAG);
          if (Tmp1.Val) Result = Tmp1;
          break;
        case TargetLowering::Promote:
          assert(MVT::isVector(VT) && "Unknown legal promote case!");
          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 
                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
          Result = DAG.getStore(Tmp1, Tmp3, Tmp2,
                                ST->getSrcValue(), SVOffset, isVolatile,
                                Alignment);
          break;
        }
        break;
      }
      case Promote:
        // Truncate the value and store the result.
        Tmp3 = PromoteOp(ST->getValue());
        Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                   SVOffset, ST->getMemoryVT(),
                                   isVolatile, Alignment);
        break;

      case Expand:
        unsigned IncrementSize = 0;
        SDOperand Lo, Hi;
      
        // If this is a vector type, then we have to calculate the increment as
        // the product of the element size in bytes, and the number of elements
        // in the high half of the vector.
        if (MVT::isVector(ST->getValue().getValueType())) {
          SDNode *InVal = ST->getValue().Val;
          int InIx = ST->getValue().ResNo;
          MVT::ValueType InVT = InVal->getValueType(InIx);
          unsigned NumElems = MVT::getVectorNumElements(InVT);
          MVT::ValueType EVT = MVT::getVectorElementType(InVT);

          // Figure out if there is a simple type corresponding to this Vector
          // type.  If so, convert to the vector type.
          MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
          if (TLI.isTypeLegal(TVT)) {
            // Turn this into a normal store of the vector type.
            Tmp3 = LegalizeOp(Node->getOperand(1));
            Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                  SVOffset, isVolatile, Alignment);
            Result = LegalizeOp(Result);
            break;
          } else if (NumElems == 1) {
            // Turn this into a normal store of the scalar type.
            Tmp3 = ScalarizeVectorOp(Node->getOperand(1));
            Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                  SVOffset, isVolatile, Alignment);
            // The scalarized value type may not be legal, e.g. it might require
            // promotion or expansion.  Relegalize the scalar store.
            Result = LegalizeOp(Result);
            break;
          } else {
            SplitVectorOp(Node->getOperand(1), Lo, Hi);
            IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 
                            MVT::getSizeInBits(EVT)/8;
          }
        } else {
          ExpandOp(Node->getOperand(1), Lo, Hi);
          IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0;

          if (TLI.isBigEndian())
            std::swap(Lo, Hi);
        }

        Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(),
                          SVOffset, isVolatile, Alignment);

        if (Hi.Val == NULL) {
          // Must be int <-> float one-to-one expansion.
          Result = Lo;
          break;
        }

        Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
                           DAG.getIntPtrConstant(IncrementSize));
        assert(isTypeLegal(Tmp2.getValueType()) &&
               "Pointers must be legal!");
        SVOffset += IncrementSize;
        Alignment = MinAlign(Alignment, IncrementSize);
        Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(),
                          SVOffset, isVolatile, Alignment);
        Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
        break;
      }
    } else {
      switch (getTypeAction(ST->getValue().getValueType())) {
      case Legal:
        Tmp3 = LegalizeOp(ST->getValue());
        break;
      case Promote:
        // We can promote the value, the truncstore will still take care of it.
        Tmp3 = PromoteOp(ST->getValue());
        break;
      case Expand:
        // Just store the low part.  This may become a non-trunc store, so make
        // sure to use getTruncStore, not UpdateNodeOperands below.
        ExpandOp(ST->getValue(), Tmp3, Tmp4);
        return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                 SVOffset, MVT::i8, isVolatile, Alignment);
      }

      MVT::ValueType StVT = ST->getMemoryVT();
      unsigned StWidth = MVT::getSizeInBits(StVT);

      if (StWidth != MVT::getStoreSizeInBits(StVT)) {
        // Promote to a byte-sized store with upper bits zero if not
        // storing an integral number of bytes.  For example, promote
        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
        MVT::ValueType NVT = MVT::getIntegerType(MVT::getStoreSizeInBits(StVT));
        Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT);
        Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                   SVOffset, NVT, isVolatile, Alignment);
      } else if (StWidth & (StWidth - 1)) {
        // If not storing a power-of-2 number of bits, expand as two stores.
        assert(MVT::isExtendedVT(StVT) && !MVT::isVector(StVT) &&
               "Unsupported truncstore!");
        unsigned RoundWidth = 1 << Log2_32(StWidth);
        assert(RoundWidth < StWidth);
        unsigned ExtraWidth = StWidth - RoundWidth;
        assert(ExtraWidth < RoundWidth);
        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
               "Store size not an integral number of bytes!");
        MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth);
        MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth);
        SDOperand Lo, Hi;
        unsigned IncrementSize;

        if (TLI.isLittleEndian()) {
          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
          // Store the bottom RoundWidth bits.
          Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                 SVOffset, RoundVT,
                                 isVolatile, Alignment);

          // Store the remaining ExtraWidth bits.
          IncrementSize = RoundWidth / 8;
          Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
                             DAG.getIntPtrConstant(IncrementSize));
          Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3,
                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
          Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(),
                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
                                 MinAlign(Alignment, IncrementSize));
        } else {
          // Big endian - avoid unaligned stores.
          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
          // Store the top RoundWidth bits.
          Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3,
                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
          Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset,
                                 RoundVT, isVolatile, Alignment);

          // Store the remaining ExtraWidth bits.
          IncrementSize = RoundWidth / 8;
          Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
                             DAG.getIntPtrConstant(IncrementSize));
          Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
                                 MinAlign(Alignment, IncrementSize));
        }

        // The order of the stores doesn't matter.
        Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
      } else {
        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
            Tmp2 != ST->getBasePtr())
          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
                                          ST->getOffset());

        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
        default: assert(0 && "This action is not supported yet!");
        case TargetLowering::Legal:
          // If this is an unaligned store and the target doesn't support it,
          // expand it.
          if (!TLI.allowsUnalignedMemoryAccesses()) {
            unsigned ABIAlignment = TLI.getTargetData()->
              getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT()));
            if (ST->getAlignment() < ABIAlignment)
              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG,
                                            TLI);
          }
          break;
        case TargetLowering::Custom:
          Result = TLI.LowerOperation(Result, DAG);
          break;
        case Expand:
          // TRUNCSTORE:i16 i32 -> STORE i16
          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
          Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3);
          Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset,
                                isVolatile, Alignment);
          break;
        }
      }
    }
    break;
  }
  case ISD::PCMARKER:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
    break;
  case ISD::STACKSAVE:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    Result = DAG.UpdateNodeOperands(Result, Tmp1);
    Tmp1 = Result.getValue(0);
    Tmp2 = Result.getValue(1);
    
    switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp3 = TLI.LowerOperation(Result, DAG);
      if (Tmp3.Val) {
        Tmp1 = LegalizeOp(Tmp3);
        Tmp2 = LegalizeOp(Tmp3.getValue(1));
      }
      break;
    case TargetLowering::Expand:
      // Expand to CopyFromReg if the target set 
      // StackPointerRegisterToSaveRestore.
      if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
        Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP,
                                  Node->getValueType(0));
        Tmp2 = Tmp1.getValue(1);
      } else {
        Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0));
        Tmp2 = Node->getOperand(0);
      }
      break;
    }

    // Since stacksave produce two values, make sure to remember that we
    // legalized both of them.
    AddLegalizedOperand(SDOperand(Node, 0), Tmp1);
    AddLegalizedOperand(SDOperand(Node, 1), Tmp2);
    return Op.ResNo ? Tmp2 : Tmp1;

  case ISD::STACKRESTORE:
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer.
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
      
    switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    case TargetLowering::Expand:
      // Expand to CopyToReg if the target set 
      // StackPointerRegisterToSaveRestore.
      if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
        Result = DAG.getCopyToReg(Tmp1, SP, Tmp2);
      } else {
        Result = Tmp1;
      }
      break;
    }
    break;

  case ISD::READCYCLECOUNTER:
    Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain
    Result = DAG.UpdateNodeOperands(Result, Tmp1);
    switch (TLI.getOperationAction(ISD::READCYCLECOUNTER,
                                   Node->getValueType(0))) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal:
      Tmp1 = Result.getValue(0);
      Tmp2 = Result.getValue(1);
      break;
    case TargetLowering::Custom:
      Result = TLI.LowerOperation(Result, DAG);
      Tmp1 = LegalizeOp(Result.getValue(0));
      Tmp2 = LegalizeOp(Result.getValue(1));
      break;
    }

    // Since rdcc produce two values, make sure to remember that we legalized
    // both of them.
    AddLegalizedOperand(SDOperand(Node, 0), Tmp1);
    AddLegalizedOperand(SDOperand(Node, 1), Tmp2);
    return Result;

  case ISD::SELECT:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Expand: assert(0 && "It's impossible to expand bools");
    case Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition.
      break;
    case Promote:
      Tmp1 = PromoteOp(Node->getOperand(0));  // Promote the condition.
      // Make sure the condition is either zero or one.
      if (!DAG.MaskedValueIsZero(Tmp1,
                                 MVT::getIntVTBitMask(Tmp1.getValueType())^1))
        Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1);
      break;
    }
    Tmp2 = LegalizeOp(Node->getOperand(1));   // TrueVal
    Tmp3 = LegalizeOp(Node->getOperand(2));   // FalseVal

    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
      
    switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom: {
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    }
    case TargetLowering::Expand:
      if (Tmp1.getOpcode() == ISD::SETCC) {
        Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 
                              Tmp2, Tmp3,
                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
      } else {
        Result = DAG.getSelectCC(Tmp1, 
                                 DAG.getConstant(0, Tmp1.getValueType()),
                                 Tmp2, Tmp3, ISD::SETNE);
      }
      break;
    case TargetLowering::Promote: {
      MVT::ValueType NVT =
        TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType());
      unsigned ExtOp, TruncOp;
      if (MVT::isVector(Tmp2.getValueType())) {
        ExtOp   = ISD::BIT_CONVERT;
        TruncOp = ISD::BIT_CONVERT;
      } else if (MVT::isInteger(Tmp2.getValueType())) {
        ExtOp   = ISD::ANY_EXTEND;
        TruncOp = ISD::TRUNCATE;
      } else {
        ExtOp   = ISD::FP_EXTEND;
        TruncOp = ISD::FP_ROUND;
      }
      // Promote each of the values to the new type.
      Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2);
      Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3);
      // Perform the larger operation, then round down.
      Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3);
      if (TruncOp != ISD::FP_ROUND)
        Result = DAG.getNode(TruncOp, Node->getValueType(0), Result);
      else
        Result = DAG.getNode(TruncOp, Node->getValueType(0), Result,
                             DAG.getIntPtrConstant(0));
      break;
    }
    }
    break;
  case ISD::SELECT_CC: {
    Tmp1 = Node->getOperand(0);               // LHS
    Tmp2 = Node->getOperand(1);               // RHS
    Tmp3 = LegalizeOp(Node->getOperand(2));   // True
    Tmp4 = LegalizeOp(Node->getOperand(3));   // False
    SDOperand CC = Node->getOperand(4);
    
    LegalizeSetCCOperands(Tmp1, Tmp2, CC);
    
    // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands,
    // the LHS is a legal SETCC itself.  In this case, we need to compare
    // the result against zero to select between true and false values.
    if (Tmp2.Val == 0) {
      Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
      CC = DAG.getCondCode(ISD::SETNE);
    }
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC);

    // Everything is legal, see if we should expand this op or something.
    switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    }
    break;
  }
  case ISD::SETCC:
    Tmp1 = Node->getOperand(0);
    Tmp2 = Node->getOperand(1);
    Tmp3 = Node->getOperand(2);
    LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3);
    
    // If we had to Expand the SetCC operands into a SELECT node, then it may 
    // not always be possible to return a true LHS & RHS.  In this case, just 
    // return the value we legalized, returned in the LHS
    if (Tmp2.Val == 0) {
      Result = Tmp1;
      break;
    }

    switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) {
    default: assert(0 && "Cannot handle this action for SETCC yet!");
    case TargetLowering::Custom:
      isCustom = true;
      // FALLTHROUGH.
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
      if (isCustom) {
        Tmp4 = TLI.LowerOperation(Result, DAG);
        if (Tmp4.Val) Result = Tmp4;
      }
      break;
    case TargetLowering::Promote: {
      // First step, figure out the appropriate operation to use.
      // Allow SETCC to not be supported for all legal data types
      // Mostly this targets FP
      MVT::ValueType NewInTy = Node->getOperand(0).getValueType();
      MVT::ValueType OldVT = NewInTy; OldVT = OldVT;

      // Scan for the appropriate larger type to use.
      while (1) {
        NewInTy = (MVT::ValueType)(NewInTy+1);

        assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) &&
               "Fell off of the edge of the integer world");
        assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) &&
               "Fell off of the edge of the floating point world");
          
        // If the target supports SETCC of this type, use it.
        if (TLI.isOperationLegal(ISD::SETCC, NewInTy))
          break;
      }
      if (MVT::isInteger(NewInTy))
        assert(0 && "Cannot promote Legal Integer SETCC yet");
      else {
        Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1);
        Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2);
      }
      Tmp1 = LegalizeOp(Tmp1);
      Tmp2 = LegalizeOp(Tmp2);
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
      Result = LegalizeOp(Result);
      break;
    }
    case TargetLowering::Expand:
      // Expand a setcc node into a select_cc of the same condition, lhs, and
      // rhs that selects between const 1 (true) and const 0 (false).
      MVT::ValueType VT = Node->getValueType(0);
      Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 
                           DAG.getConstant(1, VT), DAG.getConstant(0, VT),
                           Tmp3);
      break;
    }
    break;
  case ISD::MEMSET:
  case ISD::MEMCPY:
  case ISD::MEMMOVE: {
    Tmp1 = LegalizeOp(Node->getOperand(0));      // Chain
    Tmp2 = LegalizeOp(Node->getOperand(1));      // Pointer

    if (Node->getOpcode() == ISD::MEMSET) {      // memset = ubyte
      switch (getTypeAction(Node->getOperand(2).getValueType())) {
      case Expand: assert(0 && "Cannot expand a byte!");
      case Legal:
        Tmp3 = LegalizeOp(Node->getOperand(2));
        break;
      case Promote:
        Tmp3 = PromoteOp(Node->getOperand(2));
        break;
      }
    } else {
      Tmp3 = LegalizeOp(Node->getOperand(2));    // memcpy/move = pointer,
    }

    SDOperand Tmp4;
    switch (getTypeAction(Node->getOperand(3).getValueType())) {
    case Expand: {
      // Length is too big, just take the lo-part of the length.
      SDOperand HiPart;
      ExpandOp(Node->getOperand(3), Tmp4, HiPart);
      break;
    }
    case Legal:
      Tmp4 = LegalizeOp(Node->getOperand(3));
      break;
    case Promote:
      Tmp4 = PromoteOp(Node->getOperand(3));
      break;
    }

    SDOperand Tmp5;
    switch (getTypeAction(Node->getOperand(4).getValueType())) {  // uint
    case Expand: assert(0 && "Cannot expand this yet!");
    case Legal:
      Tmp5 = LegalizeOp(Node->getOperand(4));
      break;
    case Promote:
      Tmp5 = PromoteOp(Node->getOperand(4));
      break;
    }

    SDOperand Tmp6;
    switch (getTypeAction(Node->getOperand(5).getValueType())) {  // bool
    case Expand: assert(0 && "Cannot expand this yet!");
    case Legal:
      Tmp6 = LegalizeOp(Node->getOperand(5));
      break;
    case Promote:
      Tmp6 = PromoteOp(Node->getOperand(5));
      break;
    }

    switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
    default: assert(0 && "This action not implemented for this operation!");
    case TargetLowering::Custom:
      isCustom = true;
      // FALLTHROUGH
    case TargetLowering::Legal: {
      SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 };
      Result = DAG.UpdateNodeOperands(Result, Ops, 6);
      if (isCustom) {
        Tmp1 = TLI.LowerOperation(Result, DAG);
        if (Tmp1.Val) Result = Tmp1;
      }
      break;
    }
    case TargetLowering::Expand: {
      // Otherwise, the target does not support this operation.  Lower the
      // operation to an explicit libcall as appropriate.
      MVT::ValueType IntPtr = TLI.getPointerTy();
      const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
      TargetLowering::ArgListTy Args;
      TargetLowering::ArgListEntry Entry;

      const char *FnName = 0;
      if (Node->getOpcode() == ISD::MEMSET) {
        Entry.Node = Tmp2; Entry.Ty = IntPtrTy;
        Args.push_back(Entry);
        // Extend the (previously legalized) ubyte argument to be an int value
        // for the call.
        if (Tmp3.getValueType() > MVT::i32)
          Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3);
        else
          Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3);
        Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
        Args.push_back(Entry);
        Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false;
        Args.push_back(Entry);

        FnName = "memset";
      } else if (Node->getOpcode() == ISD::MEMCPY ||
                 Node->getOpcode() == ISD::MEMMOVE) {
        Entry.Ty = IntPtrTy;
        Entry.Node = Tmp2; Args.push_back(Entry);
        Entry.Node = Tmp3; Args.push_back(Entry);
        Entry.Node = Tmp4; Args.push_back(Entry);
        FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy";
      } else {
        assert(0 && "Unknown op!");
      }

      std::pair<SDOperand,SDOperand> CallResult =
        TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false,
                        DAG.getExternalSymbol(FnName, IntPtr), Args, DAG);
      Result = CallResult.second;
      break;
    }
    }
    break;
  }

  case ISD::SHL_PARTS:
  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS: {
    SmallVector<SDOperand, 8> Ops;
    bool Changed = false;
    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
      Ops.push_back(LegalizeOp(Node->getOperand(i)));
      Changed |= Ops.back() != Node->getOperand(i);
    }
    if (Changed)
      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());

    switch (TLI.getOperationAction(Node->getOpcode(),
                                   Node->getValueType(0))) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) {
        SDOperand Tmp2, RetVal(0, 0);
        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
          Tmp2 = LegalizeOp(Tmp1.getValue(i));
          AddLegalizedOperand(SDOperand(Node, i), Tmp2);
          if (i == Op.ResNo)
            RetVal = Tmp2;
        }
        assert(RetVal.Val && "Illegal result number");
        return RetVal;
      }
      break;
    }

    // Since these produce multiple values, make sure to remember that we
    // legalized all of them.
    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
      AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i));
    return Result.getValue(Op.ResNo);
  }

    // Binary operators
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::MULHS:
  case ISD::MULHU:
  case ISD::UDIV:
  case ISD::SDIV:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::SHL:
  case ISD::SRL:
  case ISD::SRA:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FDIV:
  case ISD::FPOW:
    Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS
    switch (getTypeAction(Node->getOperand(1).getValueType())) {
    case Expand: assert(0 && "Not possible");
    case Legal:
      Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS.
      break;
    case Promote:
      Tmp2 = PromoteOp(Node->getOperand(1));  // Promote the RHS.
      break;
    }
    
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
      
    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
    default: assert(0 && "BinOp legalize operation not supported");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    case TargetLowering::Expand: {
      MVT::ValueType VT = Op.getValueType();
 
      // See if multiply or divide can be lowered using two-result operations.
      SDVTList VTs = DAG.getVTList(VT, VT);
      if (Node->getOpcode() == ISD::MUL) {
        // We just need the low half of the multiply; try both the signed
        // and unsigned forms. If the target supports both SMUL_LOHI and
        // UMUL_LOHI, form a preference by checking which forms of plain
        // MULH it supports.
        bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT);
        bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT);
        bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT);
        bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT);
        unsigned OpToUse = 0;
        if (HasSMUL_LOHI && !HasMULHS) {
          OpToUse = ISD::SMUL_LOHI;
        } else if (HasUMUL_LOHI && !HasMULHU) {
          OpToUse = ISD::UMUL_LOHI;
        } else if (HasSMUL_LOHI) {
          OpToUse = ISD::SMUL_LOHI;
        } else if (HasUMUL_LOHI) {
          OpToUse = ISD::UMUL_LOHI;
        }
        if (OpToUse) {
          Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0);
          break;
        }
      }
      if (Node->getOpcode() == ISD::MULHS &&
          TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) {
        Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1);
        break;
      }
      if (Node->getOpcode() == ISD::MULHU && 
          TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) {
        Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1);
        break;
      }
      if (Node->getOpcode() == ISD::SDIV &&
          TLI.isOperationLegal(ISD::SDIVREM, VT)) {
        Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0);
        break;
      }
      if (Node->getOpcode() == ISD::UDIV &&
          TLI.isOperationLegal(ISD::UDIVREM, VT)) {
        Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0);
        break;
      }

      // Check to see if we have a libcall for this operator.
      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
      bool isSigned = false;
      switch (Node->getOpcode()) {
      case ISD::UDIV:
      case ISD::SDIV:
        if (VT == MVT::i32) {
          LC = Node->getOpcode() == ISD::UDIV
            ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32;
          isSigned = Node->getOpcode() == ISD::SDIV;
        }
        break;
      case ISD::FPOW:
        LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
                          RTLIB::POW_PPCF128);
        break;
      default: break;
      }
      if (LC != RTLIB::UNKNOWN_LIBCALL) {
        SDOperand Dummy;
        Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy);
        break;
      }

      assert(MVT::isVector(Node->getValueType(0)) &&
             "Cannot expand this binary operator!");
      // Expand the operation into a bunch of nasty scalar code.
      Result = LegalizeOp(UnrollVectorOp(Op));
      break;
    }
    case TargetLowering::Promote: {
      switch (Node->getOpcode()) {
      default:  assert(0 && "Do not know how to promote this BinOp!");
      case ISD::AND:
      case ISD::OR:
      case ISD::XOR: {
        MVT::ValueType OVT = Node->getValueType(0);
        MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
        assert(MVT::isVector(OVT) && "Cannot promote this BinOp!");
        // Bit convert each of the values to the new type.
        Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1);
        Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2);
        Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
        // Bit convert the result back the original type.
        Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result);
        break;
      }
      }
    }
    }
    break;
    
  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI:
  case ISD::SDIVREM:
  case ISD::UDIVREM:
    // These nodes will only be produced by target-specific lowering, so
    // they shouldn't be here if they aren't legal.
    assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) &&
           "This must be legal!");

    Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS
    Tmp2 = LegalizeOp(Node->getOperand(1));   // RHS
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    break;

  case ISD::FCOPYSIGN:  // FCOPYSIGN does not require LHS/RHS to match type!
    Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS
    switch (getTypeAction(Node->getOperand(1).getValueType())) {
      case Expand: assert(0 && "Not possible");
      case Legal:
        Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS.
        break;
      case Promote:
        Tmp2 = PromoteOp(Node->getOperand(1));  // Promote the RHS.
        break;
    }
      
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    
    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
    default: assert(0 && "Operation not supported");
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    case TargetLowering::Legal: break;
    case TargetLowering::Expand: {
      // If this target supports fabs/fneg natively and select is cheap,
      // do this efficiently.
      if (!TLI.isSelectExpensive() &&
          TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) ==
          TargetLowering::Legal &&
          TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) ==
          TargetLowering::Legal) {
        // Get the sign bit of the RHS.
        MVT::ValueType IVT = 
          Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64;
        SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2);
        SignBit = DAG.getSetCC(TLI.getSetCCResultTy(),
                               SignBit, DAG.getConstant(0, IVT), ISD::SETLT);
        // Get the absolute value of the result.
        SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1);
        // Select between the nabs and abs value based on the sign bit of
        // the input.
        Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit,
                             DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 
                                         AbsVal),
                             AbsVal);
        Result = LegalizeOp(Result);
        break;
      }
      
      // Otherwise, do bitwise ops!
      MVT::ValueType NVT = 
        Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64;
      Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI);
      Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result);
      Result = LegalizeOp(Result);
      break;
    }
    }
    break;
    
  case ISD::ADDC:
  case ISD::SUBC:
    Tmp1 = LegalizeOp(Node->getOperand(0));
    Tmp2 = LegalizeOp(Node->getOperand(1));
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    // Since this produces two values, make sure to remember that we legalized
    // both of them.
    AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
    AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
    return Result;

  case ISD::ADDE:
  case ISD::SUBE:
    Tmp1 = LegalizeOp(Node->getOperand(0));
    Tmp2 = LegalizeOp(Node->getOperand(1));
    Tmp3 = LegalizeOp(Node->getOperand(2));
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
    // Since this produces two values, make sure to remember that we legalized
    // both of them.
    AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0));
    AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1));
    return Result;
    
  case ISD::BUILD_PAIR: {
    MVT::ValueType PairTy = Node->getValueType(0);
    // TODO: handle the case where the Lo and Hi operands are not of legal type
    Tmp1 = LegalizeOp(Node->getOperand(0));   // Lo
    Tmp2 = LegalizeOp(Node->getOperand(1));   // Hi
    switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) {
    case TargetLowering::Promote:
    case TargetLowering::Custom:
      assert(0 && "Cannot promote/custom this yet!");
    case TargetLowering::Legal:
      if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
        Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2);
      break;
    case TargetLowering::Expand:
      Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1);
      Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2);
      Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2,
                         DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 
                                         TLI.getShiftAmountTy()));
      Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2);
      break;
    }
    break;
  }

  case ISD::UREM:
  case ISD::SREM:
  case ISD::FREM:
    Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS
    Tmp2 = LegalizeOp(Node->getOperand(1));   // RHS

    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
    case TargetLowering::Promote: assert(0 && "Cannot promote this yet!");
    case TargetLowering::Custom:
      isCustom = true;
      // FALLTHROUGH
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
      if (isCustom) {
        Tmp1 = TLI.LowerOperation(Result, DAG);
        if (Tmp1.Val) Result = Tmp1;
      }
      break;
    case TargetLowering::Expand: {
      unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV;
      bool isSigned = DivOpc == ISD::SDIV;
      MVT::ValueType VT = Node->getValueType(0);
 
      // See if remainder can be lowered using two-result operations.
      SDVTList VTs = DAG.getVTList(VT, VT);
      if (Node->getOpcode() == ISD::SREM &&
          TLI.isOperationLegal(ISD::SDIVREM, VT)) {
        Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1);
        break;
      }
      if (Node->getOpcode() == ISD::UREM &&
          TLI.isOperationLegal(ISD::UDIVREM, VT)) {
        Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1);
        break;
      }

      if (MVT::isInteger(VT)) {
        if (TLI.getOperationAction(DivOpc, VT) ==
            TargetLowering::Legal) {
          // X % Y -> X-X/Y*Y
          Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2);
          Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2);
          Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result);
        } else if (MVT::isVector(VT)) {
          Result = LegalizeOp(UnrollVectorOp(Op));
        } else {
          assert(VT == MVT::i32 &&
                 "Cannot expand this binary operator!");
          RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM
            ? RTLIB::UREM_I32 : RTLIB::SREM_I32;
          SDOperand Dummy;
          Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy);
        }
      } else {
        assert(MVT::isFloatingPoint(VT) &&
               "remainder op must have integer or floating-point type");
        if (MVT::isVector(VT)) {
          Result = LegalizeOp(UnrollVectorOp(Op));
        } else {
          // Floating point mod -> fmod libcall.
          RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64,
                                           RTLIB::REM_F80, RTLIB::REM_PPCF128);
          SDOperand Dummy;
          Result = ExpandLibCall(TLI.getLibcallName(LC), Node,
                                 false/*sign irrelevant*/, Dummy);
        }
      }
      break;
    }
    }
    break;
  case ISD::VAARG: {
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer.

    MVT::ValueType VT = Node->getValueType(0);
    switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Custom:
      isCustom = true;
      // FALLTHROUGH
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
      Result = Result.getValue(0);
      Tmp1 = Result.getValue(1);

      if (isCustom) {
        Tmp2 = TLI.LowerOperation(Result, DAG);
        if (Tmp2.Val) {
          Result = LegalizeOp(Tmp2);
          Tmp1 = LegalizeOp(Tmp2.getValue(1));
        }
      }
      break;
    case TargetLowering::Expand: {
      const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
      SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0);
      // Increment the pointer, VAList, to the next vaarg
      Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 
                         DAG.getConstant(MVT::getSizeInBits(VT)/8, 
                                         TLI.getPointerTy()));
      // Store the incremented VAList to the legalized pointer
      Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0);
      // Load the actual argument out of the pointer VAList
      Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0);
      Tmp1 = LegalizeOp(Result.getValue(1));
      Result = LegalizeOp(Result);
      break;
    }
    }
    // Since VAARG produces two values, make sure to remember that we 
    // legalized both of them.
    AddLegalizedOperand(SDOperand(Node, 0), Result);
    AddLegalizedOperand(SDOperand(Node, 1), Tmp1);
    return Op.ResNo ? Tmp1 : Result;
  }
    
  case ISD::VACOPY: 
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the dest pointer.
    Tmp3 = LegalizeOp(Node->getOperand(2));  // Legalize the source pointer.

    switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Custom:
      isCustom = true;
      // FALLTHROUGH
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3,
                                      Node->getOperand(3), Node->getOperand(4));
      if (isCustom) {
        Tmp1 = TLI.LowerOperation(Result, DAG);
        if (Tmp1.Val) Result = Tmp1;
      }
      break;
    case TargetLowering::Expand:
      // This defaults to loading a pointer from the input and storing it to the
      // output, returning the chain.
      const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
      const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
      Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VD, 0);
      Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VS, 0);
      break;
    }
    break;

  case ISD::VAEND: 
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer.

    switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Custom:
      isCustom = true;
      // FALLTHROUGH
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
      if (isCustom) {
        Tmp1 = TLI.LowerOperation(Tmp1, DAG);
        if (Tmp1.Val) Result = Tmp1;
      }
      break;
    case TargetLowering::Expand:
      Result = Tmp1; // Default to a no-op, return the chain
      break;
    }
    break;
    
  case ISD::VASTART: 
    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
    Tmp2 = LegalizeOp(Node->getOperand(1));  // Legalize the pointer.

    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
    
    switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) {
    default: assert(0 && "This action is not supported yet!");
    case TargetLowering::Legal: break;
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    }
    break;
    
  case ISD::ROTL:
  case ISD::ROTR:
    Tmp1 = LegalizeOp(Node->getOperand(0));   // LHS
    Tmp2 = LegalizeOp(Node->getOperand(1));   // RHS
    Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
    default:
      assert(0 && "ROTL/ROTR legalize operation not supported");
      break;
    case TargetLowering::Legal:
      break;
    case TargetLowering::Custom:
      Tmp1 = TLI.LowerOperation(Result, DAG);
      if (Tmp1.Val) Result = Tmp1;
      break;
    case TargetLowering::Promote:
      assert(0 && "Do not know how to promote ROTL/ROTR");
      break;
    case TargetLowering::Expand:
      assert(0 && "Do not know how to expand ROTL/ROTR");
      break;
    }
    break;
    
  case ISD::BSWAP:
    Tmp1 = LegalizeOp(Node->getOperand(0));   // Op
    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
    case TargetLowering::Custom:
      assert(0 && "Cannot custom legalize this yet!");
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      break;
    case TargetLowering::Promote: {
      MVT::ValueType OVT = Tmp1.getValueType();
      MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
      unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT);

      Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
      Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1);
      Result = DAG.getNode(ISD::SRL, NVT, Tmp1,
                           DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
      break;
    }
    case TargetLowering::Expand:
      Result = ExpandBSWAP(Tmp1);
      break;
    }
    break;
    
  case ISD::CTPOP:
  case ISD::CTTZ:
  case ISD::CTLZ:
    Tmp1 = LegalizeOp(Node->getOperand(0));   // Op
    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
    case TargetLowering::Custom:
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) ==
          TargetLowering::Custom) {
        Tmp1 = TLI.LowerOperation(Result, DAG);
        if (Tmp1.Val) {
          Result = Tmp1;
        }
      }
      break;
    case TargetLowering::Promote: {
      MVT::ValueType OVT = Tmp1.getValueType();
      MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);

      // Zero extend the argument.
      Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
      // Perform the larger operation, then subtract if needed.
      Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1);
      switch (Node->getOpcode()) {
      case ISD::CTPOP:
        Result = Tmp1;
        break;
      case ISD::CTTZ:
        //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
        Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1,
                            DAG.getConstant(MVT::getSizeInBits(NVT), NVT),
                            ISD::SETEQ);
        Result = DAG.getNode(ISD::SELECT, NVT, Tmp2,
                             DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1);
        break;
      case ISD::CTLZ:
        // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
        Result = DAG.getNode(ISD::SUB, NVT, Tmp1,
                             DAG.getConstant(MVT::getSizeInBits(NVT) -
                                             MVT::getSizeInBits(OVT), NVT));
        break;
      }
      break;
    }
    case TargetLowering::Expand:
      Result = ExpandBitCount(Node->getOpcode(), Tmp1);
      break;
    }
    break;

    // Unary operators
  case ISD::FABS:
  case ISD::FNEG:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
    Tmp1 = LegalizeOp(Node->getOperand(0));
    switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
    case TargetLowering::Promote:
    case TargetLowering::Custom:
     isCustom = true;
     // FALLTHROUGH
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      if (isCustom) {
        Tmp1 = TLI.LowerOperation(Result, DAG);
        if (Tmp1.Val) Result = Tmp1;
      }
      break;
    case TargetLowering::Expand:
      switch (Node->getOpcode()) {
      default: assert(0 && "Unreachable!");
      case ISD::FNEG:
        // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
        Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0));
        Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1);
        break;
      case ISD::FABS: {
        // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
        MVT::ValueType VT = Node->getValueType(0);
        Tmp2 = DAG.getConstantFP(0.0, VT);
        Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT);
        Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1);
        Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3);
        break;
      }
      case ISD::FSQRT:
      case ISD::FSIN:
      case ISD::FCOS: {
        MVT::ValueType VT = Node->getValueType(0);

        // Expand unsupported unary vector operators by unrolling them.
        if (MVT::isVector(VT)) {
          Result = LegalizeOp(UnrollVectorOp(Op));
          break;
        }

        RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
        switch(Node->getOpcode()) {
        case ISD::FSQRT:
          LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
                            RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128);
          break;
        case ISD::FSIN:
          LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64,
                            RTLIB::SIN_F80, RTLIB::SIN_PPCF128);
          break;
        case ISD::FCOS:
          LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64,
                            RTLIB::COS_F80, RTLIB::COS_PPCF128);
          break;
        default: assert(0 && "Unreachable!");
        }
        SDOperand Dummy;
        Result = ExpandLibCall(TLI.getLibcallName(LC), Node,
                               false/*sign irrelevant*/, Dummy);
        break;
      }
      }
      break;
    }
    break;
  case ISD::FPOWI: {
    MVT::ValueType VT = Node->getValueType(0);

    // Expand unsupported unary vector operators by unrolling them.
    if (MVT::isVector(VT)) {
      Result = LegalizeOp(UnrollVectorOp(Op));
      break;
    }

    // We always lower FPOWI into a libcall.  No target support for it yet.
    RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64,
                                     RTLIB::POWI_F80, RTLIB::POWI_PPCF128);
    SDOperand Dummy;
    Result = ExpandLibCall(TLI.getLibcallName(LC), Node,
                           false/*sign irrelevant*/, Dummy);
    break;
  }
  case ISD::BIT_CONVERT:
    if (!isTypeLegal(Node->getOperand(0).getValueType())) {
      Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
                                Node->getValueType(0));
    } else if (MVT::isVector(Op.getOperand(0).getValueType())) {
      // The input has to be a vector type, we have to either scalarize it, pack
      // it, or convert it based on whether the input vector type is legal.
      SDNode *InVal = Node->getOperand(0).Val;
      int InIx = Node->getOperand(0).ResNo;
      unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx));
      MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx));
    
      // Figure out if there is a simple type corresponding to this Vector
      // type.  If so, convert to the vector type.
      MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
      if (TLI.isTypeLegal(TVT)) {
        // Turn this into a bit convert of the vector input.
        Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 
                             LegalizeOp(Node->getOperand(0)));
        break;
      } else if (NumElems == 1) {
        // Turn this into a bit convert of the scalar input.
        Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 
                             ScalarizeVectorOp(Node->getOperand(0)));
        break;
      } else {
        // FIXME: UNIMP!  Store then reload
        assert(0 && "Cast from unsupported vector type not implemented yet!");
      }
    } else {
      switch (TLI.getOperationAction(ISD::BIT_CONVERT,
                                     Node->getOperand(0).getValueType())) {
      default: assert(0 && "Unknown operation action!");
      case TargetLowering::Expand:
        Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
                                  Node->getValueType(0));
        break;
      case TargetLowering::Legal:
        Tmp1 = LegalizeOp(Node->getOperand(0));
        Result = DAG.UpdateNodeOperands(Result, Tmp1);
        break;
      }
    }
    break;
      
    // Conversion operators.  The source and destination have different types.
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP: {
    bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP;
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Legal:
      switch (TLI.getOperationAction(Node->getOpcode(),
                                     Node->getOperand(0).getValueType())) {
      default: assert(0 && "Unknown operation action!");
      case TargetLowering::Custom:
        isCustom = true;
        // FALLTHROUGH
      case TargetLowering::Legal:
        Tmp1 = LegalizeOp(Node->getOperand(0));
        Result = DAG.UpdateNodeOperands(Result, Tmp1);
        if (isCustom) {
          Tmp1 = TLI.LowerOperation(Result, DAG);
          if (Tmp1.Val) Result = Tmp1;
        }
        break;
      case TargetLowering::Expand:
        Result = ExpandLegalINT_TO_FP(isSigned,
                                      LegalizeOp(Node->getOperand(0)),
                                      Node->getValueType(0));
        break;
      case TargetLowering::Promote:
        Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)),
                                       Node->getValueType(0),
                                       isSigned);
        break;
      }
      break;
    case Expand:
      Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP,
                             Node->getValueType(0), Node->getOperand(0));
      break;
    case Promote:
      Tmp1 = PromoteOp(Node->getOperand(0));
      if (isSigned) {
        Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(),
                 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType()));
      } else {
        Tmp1 = DAG.getZeroExtendInReg(Tmp1,
                                      Node->getOperand(0).getValueType());
      }
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      Result = LegalizeOp(Result);  // The 'op' is not necessarily legal!
      break;
    }
    break;
  }
  case ISD::TRUNCATE:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      break;
    case Expand:
      ExpandOp(Node->getOperand(0), Tmp1, Tmp2);

      // Since the result is legal, we should just be able to truncate the low
      // part of the source.
      Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1);
      break;
    case Promote:
      Result = PromoteOp(Node->getOperand(0));
      Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result);
      break;
    }
    break;

  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));

      switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){
      default: assert(0 && "Unknown operation action!");
      case TargetLowering::Custom:
        isCustom = true;
        // FALLTHROUGH
      case TargetLowering::Legal:
        Result = DAG.UpdateNodeOperands(Result, Tmp1);
        if (isCustom) {
          Tmp1 = TLI.LowerOperation(Result, DAG);
          if (Tmp1.Val) Result = Tmp1;
        }
        break;
      case TargetLowering::Promote:
        Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0),
                                       Node->getOpcode() == ISD::FP_TO_SINT);
        break;
      case TargetLowering::Expand:
        if (Node->getOpcode() == ISD::FP_TO_UINT) {
          SDOperand True, False;
          MVT::ValueType VT =  Node->getOperand(0).getValueType();
          MVT::ValueType NVT = Node->getValueType(0);
          unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1;
          const uint64_t zero[] = {0, 0};
          APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
          uint64_t x = 1ULL << ShiftAmt;
          (void)apf.convertFromZeroExtendedInteger
            (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven);
          Tmp2 = DAG.getConstantFP(apf, VT);
          Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(),
                            Node->getOperand(0), Tmp2, ISD::SETLT);
          True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0));
          False = DAG.getNode(ISD::FP_TO_SINT, NVT,
                              DAG.getNode(ISD::FSUB, VT, Node->getOperand(0),
                                          Tmp2));
          False = DAG.getNode(ISD::XOR, NVT, False, 
                              DAG.getConstant(1ULL << ShiftAmt, NVT));
          Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False);
          break;
        } else {
          assert(0 && "Do not know how to expand FP_TO_SINT yet!");
        }
        break;
      }
      break;
    case Expand: {
      MVT::ValueType VT = Op.getValueType();
      MVT::ValueType OVT = Node->getOperand(0).getValueType();
      // Convert ppcf128 to i32
      if (OVT == MVT::ppcf128 && VT == MVT::i32) {
        if (Node->getOpcode() == ISD::FP_TO_SINT) {
          Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 
                               Node->getOperand(0), DAG.getValueType(MVT::f64));
          Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 
                               DAG.getIntPtrConstant(1));
          Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result);
        } else {
          const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
          APFloat apf = APFloat(APInt(128, 2, TwoE31));
          Tmp2 = DAG.getConstantFP(apf, OVT);
          //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
          // FIXME: generated code sucks.
          Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2,
                               DAG.getNode(ISD::ADD, MVT::i32,
                                 DAG.getNode(ISD::FP_TO_SINT, VT,
                                   DAG.getNode(ISD::FSUB, OVT,
                                                 Node->getOperand(0), Tmp2)),
                                 DAG.getConstant(0x80000000, MVT::i32)),
                               DAG.getNode(ISD::FP_TO_SINT, VT, 
                                           Node->getOperand(0)),
                               DAG.getCondCode(ISD::SETGE));
        }
        break;
      }
      // Convert f32 / f64 to i32 / i64.
      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
      switch (Node->getOpcode()) {
      case ISD::FP_TO_SINT: {
        if (OVT == MVT::f32)
          LC = (VT == MVT::i32)
            ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64;
        else if (OVT == MVT::f64)
          LC = (VT == MVT::i32)
            ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64;
        else if (OVT == MVT::f80) {
          assert(VT == MVT::i64);
          LC = RTLIB::FPTOSINT_F80_I64;
        }
        else if (OVT == MVT::ppcf128) {
          assert(VT == MVT::i64);
          LC = RTLIB::FPTOSINT_PPCF128_I64;
        }
        break;
      }
      case ISD::FP_TO_UINT: {
        if (OVT == MVT::f32)
          LC = (VT == MVT::i32)
            ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64;
        else if (OVT == MVT::f64)
          LC = (VT == MVT::i32)
            ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64;
        else if (OVT == MVT::f80) {
          LC = (VT == MVT::i32)
            ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64;
        }
        else if (OVT ==  MVT::ppcf128) {
          assert(VT == MVT::i64);
          LC = RTLIB::FPTOUINT_PPCF128_I64;
        }
        break;
      }
      default: assert(0 && "Unreachable!");
      }
      SDOperand Dummy;
      Result = ExpandLibCall(TLI.getLibcallName(LC), Node,
                             false/*sign irrelevant*/, Dummy);
      break;
    }
    case Promote:
      Tmp1 = PromoteOp(Node->getOperand(0));
      Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1));
      Result = LegalizeOp(Result);
      break;
    }
    break;

  case ISD::FP_EXTEND: {
    MVT::ValueType DstVT = Op.getValueType();
    MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
    if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) {
      // The only other way we can lower this is to turn it into a STORE,
      // LOAD pair, targetting a temporary location (a stack slot).
      Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT);
      break;
    }
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Expand: assert(0 && "Shouldn't need to expand other operators here!");
    case Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      break;
    case Promote:
      Tmp1 = PromoteOp(Node->getOperand(0));
      Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1);
      break;
    }
    break;
  }
  case ISD::FP_ROUND: {
    MVT::ValueType DstVT = Op.getValueType();
    MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
    if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) {
      if (SrcVT == MVT::ppcf128) {
        SDOperand Lo;
        ExpandOp(Node->getOperand(0), Lo, Result);
        // Round it the rest of the way (e.g. to f32) if needed.
        if (DstVT!=MVT::f64)
          Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1));
        break;
      }
      // The only other way we can lower this is to turn it into a STORE,
      // LOAD pair, targetting a temporary location (a stack slot).
      Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT);
      break;
    }
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Expand: assert(0 && "Shouldn't need to expand other operators here!");
    case Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
      break;
    case Promote:
      Tmp1 = PromoteOp(Node->getOperand(0));
      Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1,
                           Node->getOperand(1));
      break;
    }
    break;
  }
  case ISD::ANY_EXTEND:
  case ISD::ZERO_EXTEND:
  case ISD::SIGN_EXTEND:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Expand: assert(0 && "Shouldn't need to expand other operators here!");
    case Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      break;
    case Promote:
      switch (Node->getOpcode()) {
      case ISD::ANY_EXTEND:
        Tmp1 = PromoteOp(Node->getOperand(0));
        Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1);
        break;
      case ISD::ZERO_EXTEND:
        Result = PromoteOp(Node->getOperand(0));
        Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result);
        Result = DAG.getZeroExtendInReg(Result,
                                        Node->getOperand(0).getValueType());
        break;
      case ISD::SIGN_EXTEND:
        Result = PromoteOp(Node->getOperand(0));
        Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result);
        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
                             Result,
                          DAG.getValueType(Node->getOperand(0).getValueType()));
        break;
      }
    }
    break;
  case ISD::FP_ROUND_INREG:
  case ISD::SIGN_EXTEND_INREG: {
    Tmp1 = LegalizeOp(Node->getOperand(0));
    MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();

    // If this operation is not supported, convert it to a shl/shr or load/store
    // pair.
    switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) {
    default: assert(0 && "This action not supported for this op yet!");
    case TargetLowering::Legal:
      Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
      break;
    case TargetLowering::Expand:
      // If this is an integer extend and shifts are supported, do that.
      if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) {
        // NOTE: we could fall back on load/store here too for targets without
        // SAR.  However, it is doubtful that any exist.
        unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) -
                            MVT::getSizeInBits(ExtraVT);
        SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
        Result = DAG.getNode(ISD::SHL, Node->getValueType(0),
                             Node->getOperand(0), ShiftCst);
        Result = DAG.getNode(ISD::SRA, Node->getValueType(0),
                             Result, ShiftCst);
      } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) {
        // The only way we can lower this is to turn it into a TRUNCSTORE,
        // EXTLOAD pair, targetting a temporary location (a stack slot).

        // NOTE: there is a choice here between constantly creating new stack
        // slots and always reusing the same one.  We currently always create
        // new ones, as reuse may inhibit scheduling.
        Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 
                                  Node->getValueType(0));
      } else {
        assert(0 && "Unknown op");
      }
      break;
    }
    break;
  }
  case ISD::TRAMPOLINE: {
    SDOperand Ops[6];
    for (unsigned i = 0; i != 6; ++i)
      Ops[i] = LegalizeOp(Node->getOperand(i));
    Result = DAG.UpdateNodeOperands(Result, Ops, 6);
    // The only option for this node is to custom lower it.
    Result = TLI.LowerOperation(Result, DAG);
    assert(Result.Val && "Should always custom lower!");

    // Since trampoline produces two values, make sure to remember that we
    // legalized both of them.
    Tmp1 = LegalizeOp(Result.getValue(1));
    Result = LegalizeOp(Result);
    AddLegalizedOperand(SDOperand(Node, 0), Result);
    AddLegalizedOperand(SDOperand(Node, 1), Tmp1);
    return Op.ResNo ? Tmp1 : Result;
  }
   case ISD::FLT_ROUNDS_: {
    MVT::ValueType VT = Node->getValueType(0);
    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    default: assert(0 && "This action not supported for this op yet!");
    case TargetLowering::Custom:
      Result = TLI.LowerOperation(Op, DAG);
      if (Result.Val) break;
      // Fall Thru
    case TargetLowering::Legal:
      // If this operation is not supported, lower it to constant 1
      Result = DAG.getConstant(1, VT);
      break;
    }
  }
  case ISD::TRAP: {
    MVT::ValueType VT = Node->getValueType(0);
    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
    default: assert(0 && "This action not supported for this op yet!");
    case TargetLowering::Legal:
      Tmp1 = LegalizeOp(Node->getOperand(0));
      Result = DAG.UpdateNodeOperands(Result, Tmp1);
      break;
    case TargetLowering::Custom:
      Result = TLI.LowerOperation(Op, DAG);
      if (Result.Val) break;
      // Fall Thru
    case TargetLowering::Expand:
      // If this operation is not supported, lower it to 'abort()' call
      Tmp1 = LegalizeOp(Node->getOperand(0));
      TargetLowering::ArgListTy Args;
      std::pair<SDOperand,SDOperand> CallResult =
        TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false,
                        DAG.getExternalSymbol("abort", TLI.getPointerTy()),
                        Args, DAG);
      Result = CallResult.second;
      break;
    }
    break;
  }
  }
  
  assert(Result.getValueType() == Op.getValueType() &&
         "Bad legalization!");
  
  // Make sure that the generated code is itself legal.
  if (Result != Op)
    Result = LegalizeOp(Result);

  // Note that LegalizeOp may be reentered even from single-use nodes, which
  // means that we always must cache transformed nodes.
  AddLegalizedOperand(Op, Result);
  return Result;
}

/// PromoteOp - Given an operation that produces a value in an invalid type,
/// promote it to compute the value into a larger type.  The produced value will
/// have the correct bits for the low portion of the register, but no guarantee
/// is made about the top bits: it may be zero, sign-extended, or garbage.
SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) {
  MVT::ValueType VT = Op.getValueType();
  MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
  assert(getTypeAction(VT) == Promote &&
         "Caller should expand or legalize operands that are not promotable!");
  assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) &&
         "Cannot promote to smaller type!");

  SDOperand Tmp1, Tmp2, Tmp3;
  SDOperand Result;
  SDNode *Node = Op.Val;

  DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op);
  if (I != PromotedNodes.end()) return I->second;

  switch (Node->getOpcode()) {
  case ISD::CopyFromReg:
    assert(0 && "CopyFromReg must be legal!");
  default:
#ifndef NDEBUG
    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to promote this operator!");
    abort();
  case ISD::UNDEF:
    Result = DAG.getNode(ISD::UNDEF, NVT);
    break;
  case ISD::Constant:
    if (VT != MVT::i1)
      Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op);
    else
      Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op);
    assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?");
    break;
  case ISD::ConstantFP:
    Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op);
    assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?");
    break;

  case ISD::SETCC:
    assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??");
    Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0),
                         Node->getOperand(1), Node->getOperand(2));
    break;
    
  case ISD::TRUNCATE:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Legal:
      Result = LegalizeOp(Node->getOperand(0));
      assert(Result.getValueType() >= NVT &&
             "This truncation doesn't make sense!");
      if (Result.getValueType() > NVT)    // Truncate to NVT instead of VT
        Result = DAG.getNode(ISD::TRUNCATE, NVT, Result);
      break;
    case Promote:
      // The truncation is not required, because we don't guarantee anything
      // about high bits anyway.
      Result = PromoteOp(Node->getOperand(0));
      break;
    case Expand:
      ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
      // Truncate the low part of the expanded value to the result type
      Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1);
    }
    break;
  case ISD::SIGN_EXTEND:
  case ISD::ZERO_EXTEND:
  case ISD::ANY_EXTEND:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Expand: assert(0 && "BUG: Smaller reg should have been promoted!");
    case Legal:
      // Input is legal?  Just do extend all the way to the larger type.
      Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0));
      break;
    case Promote:
      // Promote the reg if it's smaller.
      Result = PromoteOp(Node->getOperand(0));
      // The high bits are not guaranteed to be anything.  Insert an extend.
      if (Node->getOpcode() == ISD::SIGN_EXTEND)
        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result,
                         DAG.getValueType(Node->getOperand(0).getValueType()));
      else if (Node->getOpcode() == ISD::ZERO_EXTEND)
        Result = DAG.getZeroExtendInReg(Result,
                                        Node->getOperand(0).getValueType());
      break;
    }
    break;
  case ISD::BIT_CONVERT:
    Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
                              Node->getValueType(0));
    Result = PromoteOp(Result);
    break;
    
  case ISD::FP_EXTEND:
    assert(0 && "Case not implemented.  Dynamically dead with 2 FP types!");
  case ISD::FP_ROUND:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Expand: assert(0 && "BUG: Cannot expand FP regs!");
    case Promote:  assert(0 && "Unreachable with 2 FP types!");
    case Legal:
      if (Node->getConstantOperandVal(1) == 0) {
        // Input is legal?  Do an FP_ROUND_INREG.
        Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0),
                             DAG.getValueType(VT));
      } else {
        // Just remove the truncate, it isn't affecting the value.
        Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 
                             Node->getOperand(1));
      }
      break;
    }
    break;
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Legal:
      // No extra round required here.
      Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0));
      break;

    case Promote:
      Result = PromoteOp(Node->getOperand(0));
      if (Node->getOpcode() == ISD::SINT_TO_FP)
        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
                             Result,
                         DAG.getValueType(Node->getOperand(0).getValueType()));
      else
        Result = DAG.getZeroExtendInReg(Result,
                                        Node->getOperand(0).getValueType());
      // No extra round required here.
      Result = DAG.getNode(Node->getOpcode(), NVT, Result);
      break;
    case Expand:
      Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT,
                             Node->getOperand(0));
      // Round if we cannot tolerate excess precision.
      if (NoExcessFPPrecision)
        Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
                             DAG.getValueType(VT));
      break;
    }
    break;

  case ISD::SIGN_EXTEND_INREG:
    Result = PromoteOp(Node->getOperand(0));
    Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 
                         Node->getOperand(1));
    break;
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Legal:
    case Expand:
      Tmp1 = Node->getOperand(0);
      break;
    case Promote:
      // The input result is prerounded, so we don't have to do anything
      // special.
      Tmp1 = PromoteOp(Node->getOperand(0));
      break;
    }
    // If we're promoting a UINT to a larger size, check to see if the new node
    // will be legal.  If it isn't, check to see if FP_TO_SINT is legal, since
    // we can use that instead.  This allows us to generate better code for
    // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
    // legal, such as PowerPC.
    if (Node->getOpcode() == ISD::FP_TO_UINT && 
        !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
        (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) ||
         TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){
      Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1);
    } else {
      Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
    }
    break;

  case ISD::FABS:
  case ISD::FNEG:
    Tmp1 = PromoteOp(Node->getOperand(0));
    assert(Tmp1.getValueType() == NVT);
    Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
    // NOTE: we do not have to do any extra rounding here for
    // NoExcessFPPrecision, because we know the input will have the appropriate
    // precision, and these operations don't modify precision at all.
    break;

  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
    Tmp1 = PromoteOp(Node->getOperand(0));
    assert(Tmp1.getValueType() == NVT);
    Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
    if (NoExcessFPPrecision)
      Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
                           DAG.getValueType(VT));
    break;

  case ISD::FPOWI: {
    // Promote f32 powi to f64 powi.  Note that this could insert a libcall
    // directly as well, which may be better.
    Tmp1 = PromoteOp(Node->getOperand(0));
    assert(Tmp1.getValueType() == NVT);
    Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1));
    if (NoExcessFPPrecision)
      Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
                           DAG.getValueType(VT));
    break;
  }
    
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
    // The input may have strange things in the top bits of the registers, but
    // these operations don't care.  They may have weird bits going out, but
    // that too is okay if they are integer operations.
    Tmp1 = PromoteOp(Node->getOperand(0));
    Tmp2 = PromoteOp(Node->getOperand(1));
    assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT);
    Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
    break;
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
    Tmp1 = PromoteOp(Node->getOperand(0));
    Tmp2 = PromoteOp(Node->getOperand(1));
    assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT);
    Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
    
    // Floating point operations will give excess precision that we may not be
    // able to tolerate.  If we DO allow excess precision, just leave it,
    // otherwise excise it.
    // FIXME: Why would we need to round FP ops more than integer ones?
    //     Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C))
    if (NoExcessFPPrecision)
      Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
                           DAG.getValueType(VT));
    break;

  case ISD::SDIV:
  case ISD::SREM:
    // These operators require that their input be sign extended.
    Tmp1 = PromoteOp(Node->getOperand(0));
    Tmp2 = PromoteOp(Node->getOperand(1));
    if (MVT::isInteger(NVT)) {
      Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
                         DAG.getValueType(VT));
      Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2,
                         DAG.getValueType(VT));
    }
    Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);

    // Perform FP_ROUND: this is probably overly pessimistic.
    if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision)
      Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
                           DAG.getValueType(VT));
    break;
  case ISD::FDIV:
  case ISD::FREM:
  case ISD::FCOPYSIGN:
    // These operators require that their input be fp extended.
    switch (getTypeAction(Node->getOperand(0).getValueType())) {
    case Expand: assert(0 && "not implemented");
    case Legal:   Tmp1 = LegalizeOp(Node->getOperand(0)); break;
    case Promote: Tmp1 = PromoteOp(Node->getOperand(0));  break;
    }
    switch (getTypeAction(Node->getOperand(1).getValueType())) {
    case Expand: assert(0 && "not implemented");
    case Legal:   Tmp2 = LegalizeOp(Node->getOperand(1)); break;
    case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break;
    }
    Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
    
    // Perform FP_ROUND: this is probably overly pessimistic.
    if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN)
      Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
                           DAG.getValueType(VT));
    break;

  case ISD::UDIV:
  case ISD::UREM:
    // These operators require that their input be zero extended.
    Tmp1 = PromoteOp(Node->getOperand(0));
    Tmp2 = PromoteOp(Node->getOperand(1));
    assert(MVT::isInteger(NVT) && "Operators don't apply to FP!");
    Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
    Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT);
    Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
    break;

  case ISD::SHL:
    Tmp1 = PromoteOp(Node->getOperand(0));
    Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1));
    break;
  case ISD::SRA:
    // The input value must be properly sign extended.
    Tmp1 = PromoteOp(Node->getOperand(0));
    Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
                       DAG.getValueType(VT));
    Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1));
    break;
  case ISD::SRL:
    // The input value must be properly zero extended.
    Tmp1 = PromoteOp(Node->getOperand(0));
    Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
    Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1));
    break;

  case ISD::VAARG:
    Tmp1 = Node->getOperand(0);   // Get the chain.
    Tmp2 = Node->getOperand(1);   // Get the pointer.
    if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) {
      Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2));
      Result = TLI.CustomPromoteOperation(Tmp3, DAG);
    } else {
      const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
      SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0);
      // Increment the pointer, VAList, to the next vaarg
      Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 
                         DAG.getConstant(MVT::getSizeInBits(VT)/8, 
                                         TLI.getPointerTy()));
      // Store the incremented VAList to the legalized pointer
      Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0);
      // Load the actual argument out of the pointer VAList
      Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT);
    }
    // Remember that we legalized the chain.
    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
    break;

  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(Node);
    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node)
      ? ISD::EXTLOAD : LD->getExtensionType();
    Result = DAG.getExtLoad(ExtType, NVT,
                            LD->getChain(), LD->getBasePtr(),
                            LD->getSrcValue(), LD->getSrcValueOffset(),
                            LD->getMemoryVT(),
                            LD->isVolatile(),
                            LD->getAlignment());
    // Remember that we legalized the chain.
    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
    break;
  }
  case ISD::SELECT:
    Tmp2 = PromoteOp(Node->getOperand(1));   // Legalize the op0
    Tmp3 = PromoteOp(Node->getOperand(2));   // Legalize the op1
    Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3);
    break;
  case ISD::SELECT_CC:
    Tmp2 = PromoteOp(Node->getOperand(2));   // True
    Tmp3 = PromoteOp(Node->getOperand(3));   // False
    Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
                         Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4));
    break;
  case ISD::BSWAP:
    Tmp1 = Node->getOperand(0);
    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
    Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1);
    Result = DAG.getNode(ISD::SRL, NVT, Tmp1,
                         DAG.getConstant(MVT::getSizeInBits(NVT) -
                                         MVT::getSizeInBits(VT),
                                         TLI.getShiftAmountTy()));
    break;
  case ISD::CTPOP:
  case ISD::CTTZ:
  case ISD::CTLZ:
    // Zero extend the argument
    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0));
    // Perform the larger operation, then subtract if needed.
    Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
    switch(Node->getOpcode()) {
    case ISD::CTPOP:
      Result = Tmp1;
      break;
    case ISD::CTTZ:
      // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
      Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1,
                          DAG.getConstant(MVT::getSizeInBits(NVT), NVT),
                          ISD::SETEQ);
      Result = DAG.getNode(ISD::SELECT, NVT, Tmp2,
                           DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1);
      break;
    case ISD::CTLZ:
      //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
      Result = DAG.getNode(ISD::SUB, NVT, Tmp1,
                           DAG.getConstant(MVT::getSizeInBits(NVT) -
                                           MVT::getSizeInBits(VT), NVT));
      break;
    }
    break;
  case ISD::EXTRACT_SUBVECTOR:
    Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op));
    break;
  case ISD::EXTRACT_VECTOR_ELT:
    Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op));
    break;
  }

  assert(Result.Val && "Didn't set a result!");

  // Make sure the result is itself legal.
  Result = LegalizeOp(Result);
  
  // Remember that we promoted this!
  AddPromotedOperand(Op, Result);
  return Result;
}

/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into
/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic,
/// based on the vector type. The return type of this matches the element type
/// of the vector, which may not be legal for the target.
SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) {
  // We know that operand #0 is the Vec vector.  If the index is a constant
  // or if the invec is a supported hardware type, we can use it.  Otherwise,
  // lower to a store then an indexed load.
  SDOperand Vec = Op.getOperand(0);
  SDOperand Idx = Op.getOperand(1);
  
  MVT::ValueType TVT = Vec.getValueType();
  unsigned NumElems = MVT::getVectorNumElements(TVT);
  
  switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) {
  default: assert(0 && "This action is not supported yet!");
  case TargetLowering::Custom: {
    Vec = LegalizeOp(Vec);
    Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
    SDOperand Tmp3 = TLI.LowerOperation(Op, DAG);
    if (Tmp3.Val)
      return Tmp3;
    break;
  }
  case TargetLowering::Legal:
    if (isTypeLegal(TVT)) {
      Vec = LegalizeOp(Vec);
      Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
      return Op;
    }
    break;
  case TargetLowering::Expand:
    break;
  }

  if (NumElems == 1) {
    // This must be an access of the only element.  Return it.
    Op = ScalarizeVectorOp(Vec);
  } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) {
    unsigned NumLoElts =  1 << Log2_32(NumElems-1);
    ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx);
    SDOperand Lo, Hi;
    SplitVectorOp(Vec, Lo, Hi);
    if (CIdx->getValue() < NumLoElts) {
      Vec = Lo;
    } else {
      Vec = Hi;
      Idx = DAG.getConstant(CIdx->getValue() - NumLoElts,
                            Idx.getValueType());
    }
  
    // It's now an extract from the appropriate high or low part.  Recurse.
    Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
    Op = ExpandEXTRACT_VECTOR_ELT(Op);
  } else {
    // Store the value to a temporary stack slot, then LOAD the scalar
    // element back out.
    SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
    SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0);

    // Add the offset to the index.
    unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8;
    Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx,
                      DAG.getConstant(EltSize, Idx.getValueType()));

    if (MVT::getSizeInBits(Idx.getValueType()) >
        MVT::getSizeInBits(TLI.getPointerTy()))
      Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx);
    else
      Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx);

    StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr);

    Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0);
  }
  return Op;
}

/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation.  For now
/// we assume the operation can be split if it is not already legal.
SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) {
  // We know that operand #0 is the Vec vector.  For now we assume the index
  // is a constant and that the extracted result is a supported hardware type.
  SDOperand Vec = Op.getOperand(0);
  SDOperand Idx = LegalizeOp(Op.getOperand(1));
  
  unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType());
  
  if (NumElems == MVT::getVectorNumElements(Op.getValueType())) {
    // This must be an access of the desired vector length.  Return it.
    return Vec;
  }

  ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx);
  SDOperand Lo, Hi;
  SplitVectorOp(Vec, Lo, Hi);
  if (CIdx->getValue() < NumElems/2) {
    Vec = Lo;
  } else {
    Vec = Hi;
    Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType());
  }
  
  // It's now an extract from the appropriate high or low part.  Recurse.
  Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
  return ExpandEXTRACT_SUBVECTOR(Op);
}

/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC
/// with condition CC on the current target.  This usually involves legalizing
/// or promoting the arguments.  In the case where LHS and RHS must be expanded,
/// there may be no choice but to create a new SetCC node to represent the
/// legalized value of setcc lhs, rhs.  In this case, the value is returned in
/// LHS, and the SDOperand returned in RHS has a nil SDNode value.
void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS,
                                                 SDOperand &RHS,
                                                 SDOperand &CC) {
  SDOperand Tmp1, Tmp2, Tmp3, Result;    
  
  switch (getTypeAction(LHS.getValueType())) {
  case Legal:
    Tmp1 = LegalizeOp(LHS);   // LHS
    Tmp2 = LegalizeOp(RHS);   // RHS
    break;
  case Promote:
    Tmp1 = PromoteOp(LHS);   // LHS
    Tmp2 = PromoteOp(RHS);   // RHS

    // If this is an FP compare, the operands have already been extended.
    if (MVT::isInteger(LHS.getValueType())) {
      MVT::ValueType VT = LHS.getValueType();
      MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);

      // Otherwise, we have to insert explicit sign or zero extends.  Note
      // that we could insert sign extends for ALL conditions, but zero extend
      // is cheaper on many machines (an AND instead of two shifts), so prefer
      // it.
      switch (cast<CondCodeSDNode>(CC)->get()) {
      default: assert(0 && "Unknown integer comparison!");
      case ISD::SETEQ:
      case ISD::SETNE:
      case ISD::SETUGE:
      case ISD::SETUGT:
      case ISD::SETULE:
      case ISD::SETULT:
        // ALL of these operations will work if we either sign or zero extend
        // the operands (including the unsigned comparisons!).  Zero extend is
        // usually a simpler/cheaper operation, so prefer it.
        Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
        Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT);
        break;
      case ISD::SETGE:
      case ISD::SETGT:
      case ISD::SETLT:
      case ISD::SETLE:
        Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
                           DAG.getValueType(VT));
        Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2,
                           DAG.getValueType(VT));
        break;
      }
    }
    break;
  case Expand: {
    MVT::ValueType VT = LHS.getValueType();
    if (VT == MVT::f32 || VT == MVT::f64) {
      // Expand into one or more soft-fp libcall(s).
      RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL;
      switch (cast<CondCodeSDNode>(CC)->get()) {
      case ISD::SETEQ:
      case ISD::SETOEQ:
        LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
        break;
      case ISD::SETNE:
      case ISD::SETUNE:
        LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64;
        break;
      case ISD::SETGE:
      case ISD::SETOGE:
        LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
        break;
      case ISD::SETLT:
      case ISD::SETOLT:
        LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
        break;
      case ISD::SETLE:
      case ISD::SETOLE:
        LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
        break;
      case ISD::SETGT:
      case ISD::SETOGT:
        LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
        break;
      case ISD::SETUO:
        LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
        break;
      case ISD::SETO:
        LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64;
        break;
      default:
        LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
        switch (cast<CondCodeSDNode>(CC)->get()) {
        case ISD::SETONE:
          // SETONE = SETOLT | SETOGT
          LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
          // Fallthrough
        case ISD::SETUGT:
          LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
          break;
        case ISD::SETUGE:
          LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
          break;
        case ISD::SETULT:
          LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
          break;
        case ISD::SETULE:
          LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
          break;
        case ISD::SETUEQ:
          LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
          break;
        default: assert(0 && "Unsupported FP setcc!");
        }
      }
      
      SDOperand Dummy;
      Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1),
                           DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 
                           false /*sign irrelevant*/, Dummy);
      Tmp2 = DAG.getConstant(0, MVT::i32);
      CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1));
      if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
        Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC);
        LHS = ExpandLibCall(TLI.getLibcallName(LC2),
                            DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 
                            false /*sign irrelevant*/, Dummy);
        Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2,
                           DAG.getCondCode(TLI.getCmpLibcallCC(LC2)));
        Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2);
        Tmp2 = SDOperand();
      }
      LHS = Tmp1;
      RHS = Tmp2;
      return;
    }

    SDOperand LHSLo, LHSHi, RHSLo, RHSHi;
    ExpandOp(LHS, LHSLo, LHSHi);
    ExpandOp(RHS, RHSLo, RHSHi);
    ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();

    if (VT==MVT::ppcf128) {
      // FIXME:  This generated code sucks.  We want to generate
      //         FCMP crN, hi1, hi2
      //         BNE crN, L:
      //         FCMP crN, lo1, lo2
      // The following can be improved, but not that much.
      Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
      Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode);
      Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
      Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE);
      Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode);
      Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
      Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3);
      Tmp2 = SDOperand();
      break;
    }

    switch (CCCode) {
    case ISD::SETEQ:
    case ISD::SETNE:
      if (RHSLo == RHSHi)
        if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo))
          if (RHSCST->isAllOnesValue()) {
            // Comparison to -1.
            Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi);
            Tmp2 = RHSLo;
            break;
          }

      Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
      Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
      Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2);
      Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
      break;
    default:
      // If this is a comparison of the sign bit, just look at the top part.
      // X > -1,  x < 0
      if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS))
        if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 
             CST->getValue() == 0) ||             // X < 0
            (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT &&
             CST->isAllOnesValue())) {            // X > -1
          Tmp1 = LHSHi;
          Tmp2 = RHSHi;
          break;
        }

      // FIXME: This generated code sucks.
      ISD::CondCode LowCC;
      switch (CCCode) {
      default: assert(0 && "Unknown integer setcc!");
      case ISD::SETLT:
      case ISD::SETULT: LowCC = ISD::SETULT; break;
      case ISD::SETGT:
      case ISD::SETUGT: LowCC = ISD::SETUGT; break;
      case ISD::SETLE:
      case ISD::SETULE: LowCC = ISD::SETULE; break;
      case ISD::SETGE:
      case ISD::SETUGE: LowCC = ISD::SETUGE; break;
      }

      // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison
      // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands
      // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;

      // NOTE: on targets without efficient SELECT of bools, we can always use
      // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
      TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
      Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC,
                               false, DagCombineInfo);
      if (!Tmp1.Val)
        Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC);
      Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
                               CCCode, false, DagCombineInfo);
      if (!Tmp2.Val)
        Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC);
      
      ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val);
      ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val);
      if ((Tmp1C && Tmp1C->getValue() == 0) ||
          (Tmp2C && Tmp2C->getValue() == 0 &&
           (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
            CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
          (Tmp2C && Tmp2C->getValue() == 1 &&
           (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
            CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
        // low part is known false, returns high part.
        // For LE / GE, if high part is known false, ignore the low part.
        // For LT / GT, if high part is known true, ignore the low part.
        Tmp1 = Tmp2;
        Tmp2 = SDOperand();
      } else {
        Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
                                   ISD::SETEQ, false, DagCombineInfo);
        if (!Result.Val)
          Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
        Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(),
                                        Result, Tmp1, Tmp2));
        Tmp1 = Result;
        Tmp2 = SDOperand();
      }
    }
  }
  }
  LHS = Tmp1;
  RHS = Tmp2;
}

/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
/// a load from the stack slot to DestVT, extending it if needed.
/// The resultant code need not be legal.
SDOperand SelectionDAGLegalize::EmitStackConvert(SDOperand SrcOp,
                                                 MVT::ValueType SlotVT, 
                                                 MVT::ValueType DestVT) {
  // Create the stack frame object.
  SDOperand FIPtr = DAG.CreateStackTemporary(SlotVT);

  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
  int SPFI = StackPtrFI->getIndex();

  unsigned SrcSize = MVT::getSizeInBits(SrcOp.getValueType());
  unsigned SlotSize = MVT::getSizeInBits(SlotVT);
  unsigned DestSize = MVT::getSizeInBits(DestVT);
  
  // Emit a store to the stack slot.  Use a truncstore if the input value is
  // later than DestVT.
  SDOperand Store;
  if (SrcSize > SlotSize)
    Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr,
                              PseudoSourceValue::getFixedStack(),
                              SPFI, SlotVT);
  else {
    assert(SrcSize == SlotSize && "Invalid store");
    Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr,
                         PseudoSourceValue::getFixedStack(),
                         SPFI, SlotVT);
  }
  
  // Result is a load from the stack slot.
  if (SlotSize == DestSize)
    return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
  
  assert(SlotSize < DestSize && "Unknown extension!");
  return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT);
}

SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
  // Create a vector sized/aligned stack slot, store the value to element #0,
  // then load the whole vector back out.
  SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));

  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
  int SPFI = StackPtrFI->getIndex();

  SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr,
                              PseudoSourceValue::getFixedStack(), SPFI);
  return DAG.getLoad(Node->getValueType(0), Ch, StackPtr,
                     PseudoSourceValue::getFixedStack(), SPFI);
}


/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
/// support the operation, but do support the resultant vector type.
SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
  
  // If the only non-undef value is the low element, turn this into a 
  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
  unsigned NumElems = Node->getNumOperands();
  bool isOnlyLowElement = true;
  SDOperand SplatValue = Node->getOperand(0);
  std::map<SDOperand, std::vector<unsigned> > Values;
  Values[SplatValue].push_back(0);
  bool isConstant = true;
  if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
      SplatValue.getOpcode() != ISD::UNDEF)
    isConstant = false;
  
  for (unsigned i = 1; i < NumElems; ++i) {
    SDOperand V = Node->getOperand(i);
    Values[V].push_back(i);
    if (V.getOpcode() != ISD::UNDEF)
      isOnlyLowElement = false;
    if (SplatValue != V)
      SplatValue = SDOperand(0,0);

    // If this isn't a constant element or an undef, we can't use a constant
    // pool load.
    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
        V.getOpcode() != ISD::UNDEF)
      isConstant = false;
  }
  
  if (isOnlyLowElement) {
    // If the low element is an undef too, then this whole things is an undef.
    if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
      return DAG.getNode(ISD::UNDEF, Node->getValueType(0));
    // Otherwise, turn this into a scalar_to_vector node.
    return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0),
                       Node->getOperand(0));
  }
  
  // If all elements are constants, create a load from the constant pool.
  if (isConstant) {
    MVT::ValueType VT = Node->getValueType(0);
    const Type *OpNTy = 
      MVT::getTypeForValueType(Node->getOperand(0).getValueType());
    std::vector<Constant*> CV;
    for (unsigned i = 0, e = NumElems; i != e; ++i) {
      if (ConstantFPSDNode *V = 
          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
        CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF()));
      } else if (ConstantSDNode *V = 
                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
        CV.push_back(ConstantInt::get(OpNTy, V->getValue()));
      } else {
        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
        CV.push_back(UndefValue::get(OpNTy));
      }
    }
    Constant *CP = ConstantVector::get(CV);
    SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
    return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
                       PseudoSourceValue::getConstantPool(), 0);
  }
  
  if (SplatValue.Val) {   // Splat of one value?
    // Build the shuffle constant vector: <0, 0, 0, 0>
    MVT::ValueType MaskVT = 
      MVT::getIntVectorWithNumElements(NumElems);
    SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT));
    std::vector<SDOperand> ZeroVec(NumElems, Zero);
    SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                      &ZeroVec[0], ZeroVec.size());

    // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
    if (isShuffleLegal(Node->getValueType(0), SplatMask)) {
      // Get the splatted value into the low element of a vector register.
      SDOperand LowValVec = 
        DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue);
    
      // Return shuffle(LowValVec, undef, <0,0,0,0>)
      return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec,
                         DAG.getNode(ISD::UNDEF, Node->getValueType(0)),
                         SplatMask);
    }
  }
  
  // If there are only two unique elements, we may be able to turn this into a
  // vector shuffle.
  if (Values.size() == 2) {
    // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
    MVT::ValueType MaskVT = 
      MVT::getIntVectorWithNumElements(NumElems);
    std::vector<SDOperand> MaskVec(NumElems);
    unsigned i = 0;
    for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(),
           E = Values.end(); I != E; ++I) {
      for (std::vector<unsigned>::iterator II = I->second.begin(),
             EE = I->second.end(); II != EE; ++II)
        MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT));
      i += NumElems;
    }
    SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                        &MaskVec[0], MaskVec.size());

    // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
    if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) &&
        isShuffleLegal(Node->getValueType(0), ShuffleMask)) {
      SmallVector<SDOperand, 8> Ops;
      for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(),
            E = Values.end(); I != E; ++I) {
        SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0),
                                   I->first);
        Ops.push_back(Op);
      }
      Ops.push_back(ShuffleMask);

      // Return shuffle(LoValVec, HiValVec, <0,1,0,1>)
      return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 
                         &Ops[0], Ops.size());
    }
  }
  
  // Otherwise, we can't handle this case efficiently.  Allocate a sufficiently
  // aligned object on the stack, store each element into it, then load
  // the result as a vector.
  MVT::ValueType VT = Node->getValueType(0);
  // Create the stack frame object.
  SDOperand FIPtr = DAG.CreateStackTemporary(VT);
  
  // Emit a store of each element to the stack slot.
  SmallVector<SDOperand, 8> Stores;
  unsigned TypeByteSize = 
    MVT::getSizeInBits(Node->getOperand(0).getValueType())/8;
  // Store (in the right endianness) the elements to memory.
  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
    // Ignore undef elements.
    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    
    unsigned Offset = TypeByteSize*i;
    
    SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType());
    Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx);
    
    Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 
                                  NULL, 0));
  }
  
  SDOperand StoreChain;
  if (!Stores.empty())    // Not all undef elements?
    StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
                             &Stores[0], Stores.size());
  else
    StoreChain = DAG.getEntryNode();
  
  // Result is a load from the stack slot.
  return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0);
}

void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp,
                                            SDOperand Op, SDOperand Amt,
                                            SDOperand &Lo, SDOperand &Hi) {
  // Expand the subcomponents.
  SDOperand LHSL, LHSH;
  ExpandOp(Op, LHSL, LHSH);

  SDOperand Ops[] = { LHSL, LHSH, Amt };
  MVT::ValueType VT = LHSL.getValueType();
  Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3);
  Hi = Lo.getValue(1);
}


/// ExpandShift - Try to find a clever way to expand this shift operation out to
/// smaller elements.  If we can't find a way that is more efficient than a
/// libcall on this target, return false.  Otherwise, return true with the
/// low-parts expanded into Lo and Hi.
bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt,
                                       SDOperand &Lo, SDOperand &Hi) {
  assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) &&
         "This is not a shift!");

  MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType());
  SDOperand ShAmt = LegalizeOp(Amt);
  MVT::ValueType ShTy = ShAmt.getValueType();
  unsigned VTBits = MVT::getSizeInBits(Op.getValueType());
  unsigned NVTBits = MVT::getSizeInBits(NVT);

  // Handle the case when Amt is an immediate.
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) {
    unsigned Cst = CN->getValue();
    // Expand the incoming operand to be shifted, so that we have its parts
    SDOperand InL, InH;
    ExpandOp(Op, InL, InH);
    switch(Opc) {
    case ISD::SHL:
      if (Cst > VTBits) {
        Lo = DAG.getConstant(0, NVT);
        Hi = DAG.getConstant(0, NVT);
      } else if (Cst > NVTBits) {
        Lo = DAG.getConstant(0, NVT);
        Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy));
      } else if (Cst == NVTBits) {
        Lo = DAG.getConstant(0, NVT);
        Hi = InL;
      } else {
        Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy));
        Hi = DAG.getNode(ISD::OR, NVT,
           DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)),
           DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy)));
      }
      return true;
    case ISD::SRL:
      if (Cst > VTBits) {
        Lo = DAG.getConstant(0, NVT);
        Hi = DAG.getConstant(0, NVT);
      } else if (Cst > NVTBits) {
        Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy));
        Hi = DAG.getConstant(0, NVT);
      } else if (Cst == NVTBits) {
        Lo = InH;
        Hi = DAG.getConstant(0, NVT);
      } else {
        Lo = DAG.getNode(ISD::OR, NVT,
           DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)),
           DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy)));
        Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy));
      }
      return true;
    case ISD::SRA:
      if (Cst > VTBits) {
        Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH,
                              DAG.getConstant(NVTBits-1, ShTy));
      } else if (Cst > NVTBits) {
        Lo = DAG.getNode(ISD::SRA, NVT, InH,
                           DAG.getConstant(Cst-NVTBits, ShTy));
        Hi = DAG.getNode(ISD::SRA, NVT, InH,
                              DAG.getConstant(NVTBits-1, ShTy));
      } else if (Cst == NVTBits) {
        Lo = InH;
        Hi = DAG.getNode(ISD::SRA, NVT, InH,
                              DAG.getConstant(NVTBits-1, ShTy));
      } else {
        Lo = DAG.getNode(ISD::OR, NVT,
           DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)),
           DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy)));
        Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy));
      }
      return true;
    }
  }
  
  // Okay, the shift amount isn't constant.  However, if we can tell that it is
  // >= 32 or < 32, we can still simplify it, without knowing the actual value.
  uint64_t Mask = NVTBits, KnownZero, KnownOne;
  DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne);
  
  // If we know that the high bit of the shift amount is one, then we can do
  // this as a couple of simple shifts.
  if (KnownOne & Mask) {
    // Mask out the high bit, which we know is set.
    Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt,
                      DAG.getConstant(NVTBits-1, Amt.getValueType()));
    
    // Expand the incoming operand to be shifted, so that we have its parts
    SDOperand InL, InH;
    ExpandOp(Op, InL, InH);
    switch(Opc) {
    case ISD::SHL:
      Lo = DAG.getConstant(0, NVT);              // Low part is zero.
      Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part.
      return true;
    case ISD::SRL:
      Hi = DAG.getConstant(0, NVT);              // Hi part is zero.
      Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part.
      return true;
    case ISD::SRA:
      Hi = DAG.getNode(ISD::SRA, NVT, InH,       // Sign extend high part.
                       DAG.getConstant(NVTBits-1, Amt.getValueType()));
      Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part.
      return true;
    }
  }
  
  // If we know that the high bit of the shift amount is zero, then we can do
  // this as a couple of simple shifts.
  if (KnownZero & Mask) {
    // Compute 32-amt.
    SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(),
                                 DAG.getConstant(NVTBits, Amt.getValueType()),
                                 Amt);
    
    // Expand the incoming operand to be shifted, so that we have its parts
    SDOperand InL, InH;
    ExpandOp(Op, InL, InH);
    switch(Opc) {
    case ISD::SHL:
      Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt);
      Hi = DAG.getNode(ISD::OR, NVT,
                       DAG.getNode(ISD::SHL, NVT, InH, Amt),
                       DAG.getNode(ISD::SRL, NVT, InL, Amt2));
      return true;
    case ISD::SRL:
      Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt);
      Lo = DAG.getNode(ISD::OR, NVT,
                       DAG.getNode(ISD::SRL, NVT, InL, Amt),
                       DAG.getNode(ISD::SHL, NVT, InH, Amt2));
      return true;
    case ISD::SRA:
      Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt);
      Lo = DAG.getNode(ISD::OR, NVT,
                       DAG.getNode(ISD::SRL, NVT, InL, Amt),
                       DAG.getNode(ISD::SHL, NVT, InH, Amt2));
      return true;
    }
  }
  
  return false;
}


// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
// does not fit into a register, return the lo part and set the hi part to the
// by-reg argument.  If it does fit into a single register, return the result
// and leave the Hi part unset.
SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node,
                                              bool isSigned, SDOperand &Hi) {
  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
  // The input chain to this libcall is the entry node of the function. 
  // Legalizing the call will automatically add the previous call to the
  // dependence.
  SDOperand InChain = DAG.getEntryNode();
  
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
    MVT::ValueType ArgVT = Node->getOperand(i).getValueType();
    const Type *ArgTy = MVT::getTypeForValueType(ArgVT);
    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 
    Entry.isSExt = isSigned;
    Args.push_back(Entry);
  }
  SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy());

  // Splice the libcall in wherever FindInputOutputChains tells us to.
  const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0));
  std::pair<SDOperand,SDOperand> CallInfo =
    TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false,
                    Callee, Args, DAG);

  // Legalize the call sequence, starting with the chain.  This will advance
  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
  // was added by LowerCallTo (guaranteeing proper serialization of calls).
  LegalizeOp(CallInfo.second);
  SDOperand Result;
  switch (getTypeAction(CallInfo.first.getValueType())) {
  default: assert(0 && "Unknown thing");
  case Legal:
    Result = CallInfo.first;
    break;
  case Expand:
    ExpandOp(CallInfo.first, Result, Hi);
    break;
  }
  return Result;
}


/// ExpandIntToFP - Expand a [US]INT_TO_FP operation.
///
SDOperand SelectionDAGLegalize::
ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) {
  assert(getTypeAction(Source.getValueType()) == Expand &&
         "This is not an expansion!");
  assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");

  if (!isSigned) {
    assert(Source.getValueType() == MVT::i64 &&
           "This only works for 64-bit -> FP");
    // The 64-bit value loaded will be incorrectly if the 'sign bit' of the
    // incoming integer is set.  To handle this, we dynamically test to see if
    // it is set, and, if so, add a fudge factor.
    SDOperand Lo, Hi;
    ExpandOp(Source, Lo, Hi);

    // If this is unsigned, and not supported, first perform the conversion to
    // signed, then adjust the result if the sign bit is set.
    SDOperand SignedConv = ExpandIntToFP(true, DestTy,
                   DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi));

    SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi,
                                     DAG.getConstant(0, Hi.getValueType()),
                                     ISD::SETLT);
    SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
    SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
                                      SignSet, Four, Zero);
    uint64_t FF = 0x5f800000ULL;
    if (TLI.isLittleEndian()) FF <<= 32;
    static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);

    SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
    CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
    SDOperand FudgeInReg;
    if (DestTy == MVT::f32)
      FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
                               PseudoSourceValue::getConstantPool(), 0);
    else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32))
      // FIXME: Avoid the extend by construction the right constantpool?
      FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(),
                                  CPIdx,
                                  PseudoSourceValue::getConstantPool(), 0,
                                  MVT::f32);
    else 
      assert(0 && "Unexpected conversion");

    MVT::ValueType SCVT = SignedConv.getValueType();
    if (SCVT != DestTy) {
      // Destination type needs to be expanded as well. The FADD now we are
      // constructing will be expanded into a libcall.
      if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) {
        assert(SCVT == MVT::i32 && DestTy == MVT::f64);
        SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64,
                                 SignedConv, SignedConv.getValue(1));
      }
      SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv);
    }
    return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg);
  }

  // Check to see if the target has a custom way to lower this.  If so, use it.
  switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) {
  default: assert(0 && "This action not implemented for this operation!");
  case TargetLowering::Legal:
  case TargetLowering::Expand:
    break;   // This case is handled below.
  case TargetLowering::Custom: {
    SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy,
                                                  Source), DAG);
    if (NV.Val)
      return LegalizeOp(NV);
    break;   // The target decided this was legal after all
  }
  }

  // Expand the source, then glue it back together for the call.  We must expand
  // the source in case it is shared (this pass of legalize must traverse it).
  SDOperand SrcLo, SrcHi;
  ExpandOp(Source, SrcLo, SrcHi);
  Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi);

  RTLIB::Libcall LC;
  if (DestTy == MVT::f32)
    LC = RTLIB::SINTTOFP_I64_F32;
  else {
    assert(DestTy == MVT::f64 && "Unknown fp value type!");
    LC = RTLIB::SINTTOFP_I64_F64;
  }
  
  assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!");
  Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source);
  SDOperand UnusedHiPart;
  return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned,
                       UnusedHiPart);
}

/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
/// INT_TO_FP operation of the specified operand when the target requests that
/// we expand it.  At this point, we know that the result and operand types are
/// legal for the target.
SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
                                                     SDOperand Op0,
                                                     MVT::ValueType DestVT) {
  if (Op0.getValueType() == MVT::i32) {
    // simple 32-bit [signed|unsigned] integer to float/double expansion
    
    // Get the stack frame index of a 8 byte buffer.
    SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64);
    
    // word offset constant for Hi/Lo address computation
    SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
    // set up Hi and Lo (into buffer) address based on endian
    SDOperand Hi = StackSlot;
    SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff);
    if (TLI.isLittleEndian())
      std::swap(Hi, Lo);
    
    // if signed map to unsigned space
    SDOperand Op0Mapped;
    if (isSigned) {
      // constant used to invert sign bit (signed to unsigned mapping)
      SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32);
      Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit);
    } else {
      Op0Mapped = Op0;
    }
    // store the lo of the constructed double - based on integer input
    SDOperand Store1 = DAG.getStore(DAG.getEntryNode(),
                                    Op0Mapped, Lo, NULL, 0);
    // initial hi portion of constructed double
    SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
    // store the hi of the constructed double - biased exponent
    SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0);
    // load the constructed double
    SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0);
    // FP constant to bias correct the final result
    SDOperand Bias = DAG.getConstantFP(isSigned ?
                                            BitsToDouble(0x4330000080000000ULL)
                                          : BitsToDouble(0x4330000000000000ULL),
                                     MVT::f64);
    // subtract the bias
    SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias);
    // final result
    SDOperand Result;
    // handle final rounding
    if (DestVT == MVT::f64) {
      // do nothing
      Result = Sub;
    } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) {
      Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
                           DAG.getIntPtrConstant(0));
    } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) {
      Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
    }
    return Result;
  }
  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
  SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0);

  SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0,
                                   DAG.getConstant(0, Op0.getValueType()),
                                   ISD::SETLT);
  SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
  SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
                                    SignSet, Four, Zero);

  // If the sign bit of the integer is set, the large number will be treated
  // as a negative number.  To counteract this, the dynamic code adds an
  // offset depending on the data type.
  uint64_t FF;
  switch (Op0.getValueType()) {
  default: assert(0 && "Unsupported integer type!");
  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
  }
  if (TLI.isLittleEndian()) FF <<= 32;
  static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);

  SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
  CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
  SDOperand FudgeInReg;
  if (DestVT == MVT::f32)
    FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
                             PseudoSourceValue::getConstantPool(), 0);
  else {
    FudgeInReg =
      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT,
                                DAG.getEntryNode(), CPIdx,
                                PseudoSourceValue::getConstantPool(), 0,
                                MVT::f32));
  }

  return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg);
}

/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
/// *INT_TO_FP operation of the specified operand when the target requests that
/// we promote it.  At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
/// operation that takes a larger input.
SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp,
                                                      MVT::ValueType DestVT,
                                                      bool isSigned) {
  // First step, figure out the appropriate *INT_TO_FP operation to use.
  MVT::ValueType NewInTy = LegalOp.getValueType();

  unsigned OpToUse = 0;

  // Scan for the appropriate larger type to use.
  while (1) {
    NewInTy = (MVT::ValueType)(NewInTy+1);
    assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!");

    // If the target supports SINT_TO_FP of this type, use it.
    switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) {
      default: break;
      case TargetLowering::Legal:
        if (!TLI.isTypeLegal(NewInTy))
          break;  // Can't use this datatype.
        // FALL THROUGH.
      case TargetLowering::Custom:
        OpToUse = ISD::SINT_TO_FP;
        break;
    }
    if (OpToUse) break;
    if (isSigned) continue;

    // If the target supports UINT_TO_FP of this type, use it.
    switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) {
      default: break;
      case TargetLowering::Legal:
        if (!TLI.isTypeLegal(NewInTy))
          break;  // Can't use this datatype.
        // FALL THROUGH.
      case TargetLowering::Custom:
        OpToUse = ISD::UINT_TO_FP;
        break;
    }
    if (OpToUse) break;

    // Otherwise, try a larger type.
  }

  // Okay, we found the operation and type to use.  Zero extend our input to the
  // desired type then run the operation on it.
  return DAG.getNode(OpToUse, DestVT,
                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
                                 NewInTy, LegalOp));
}

/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
/// FP_TO_*INT operation of the specified operand when the target requests that
/// we promote it.  At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
/// operation that returns a larger result.
SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp,
                                                      MVT::ValueType DestVT,
                                                      bool isSigned) {
  // First step, figure out the appropriate FP_TO*INT operation to use.
  MVT::ValueType NewOutTy = DestVT;

  unsigned OpToUse = 0;

  // Scan for the appropriate larger type to use.
  while (1) {
    NewOutTy = (MVT::ValueType)(NewOutTy+1);
    assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!");

    // If the target supports FP_TO_SINT returning this type, use it.
    switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) {
    default: break;
    case TargetLowering::Legal:
      if (!TLI.isTypeLegal(NewOutTy))
        break;  // Can't use this datatype.
      // FALL THROUGH.
    case TargetLowering::Custom:
      OpToUse = ISD::FP_TO_SINT;
      break;
    }
    if (OpToUse) break;

    // If the target supports FP_TO_UINT of this type, use it.
    switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) {
    default: break;
    case TargetLowering::Legal:
      if (!TLI.isTypeLegal(NewOutTy))
        break;  // Can't use this datatype.
      // FALL THROUGH.
    case TargetLowering::Custom:
      OpToUse = ISD::FP_TO_UINT;
      break;
    }
    if (OpToUse) break;

    // Otherwise, try a larger type.
  }

  
  // Okay, we found the operation and type to use.
  SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp);
  
  // If the operation produces an invalid type, it must be custom lowered.  Use
  // the target lowering hooks to expand it.  Just keep the low part of the
  // expanded operation, we know that we're truncating anyway.
  if (getTypeAction(NewOutTy) == Expand) {
    Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0);
    assert(Operation.Val && "Didn't return anything");
  }
  
  // Truncate the result of the extended FP_TO_*INT operation to the desired
  // size.
  return DAG.getNode(ISD::TRUNCATE, DestVT, Operation);
}

/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
///
SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) {
  MVT::ValueType VT = Op.getValueType();
  MVT::ValueType SHVT = TLI.getShiftAmountTy();
  SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
  switch (VT) {
  default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
  case MVT::i16:
    Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
    Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
    return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2);
  case MVT::i32:
    Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT));
    Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
    Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
    Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT));
    Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
    Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT));
    Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3);
    Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1);
    return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2);
  case MVT::i64:
    Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT));
    Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT));
    Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT));
    Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
    Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
    Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT));
    Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT));
    Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT));
    Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
    Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
    Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
    Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
    Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
    Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
    Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7);
    Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5);
    Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3);
    Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1);
    Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6);
    Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2);
    return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4);
  }
}

/// ExpandBitCount - Expand the specified bitcount instruction into operations.
///
SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) {
  switch (Opc) {
  default: assert(0 && "Cannot expand this yet!");
  case ISD::CTPOP: {
    static const uint64_t mask[6] = {
      0x5555555555555555ULL, 0x3333333333333333ULL,
      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
    };
    MVT::ValueType VT = Op.getValueType();
    MVT::ValueType ShVT = TLI.getShiftAmountTy();
    unsigned len = MVT::getSizeInBits(VT);
    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
      SDOperand Tmp2 = DAG.getConstant(mask[i], VT);
      SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT);
      Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2),
                       DAG.getNode(ISD::AND, VT,
                                   DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2));
    }
    return Op;
  }
  case ISD::CTLZ: {
    // for now, we do this:
    // x = x | (x >> 1);
    // x = x | (x >> 2);
    // ...
    // x = x | (x >>16);
    // x = x | (x >>32); // for 64-bit input
    // return popcount(~x);
    //
    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
    MVT::ValueType VT = Op.getValueType();
    MVT::ValueType ShVT = TLI.getShiftAmountTy();
    unsigned len = MVT::getSizeInBits(VT);
    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
      SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT);
      Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3));
    }
    Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT));
    return DAG.getNode(ISD::CTPOP, VT, Op);
  }
  case ISD::CTTZ: {
    // for now, we use: { return popcount(~x & (x - 1)); }
    // unless the target has ctlz but not ctpop, in which case we use:
    // { return 32 - nlz(~x & (x-1)); }
    // see also http://www.hackersdelight.org/HDcode/ntz.cc
    MVT::ValueType VT = Op.getValueType();
    SDOperand Tmp2 = DAG.getConstant(~0ULL, VT);
    SDOperand Tmp3 = DAG.getNode(ISD::AND, VT,
                       DAG.getNode(ISD::XOR, VT, Op, Tmp2),
                       DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT)));
    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
    if (!TLI.isOperationLegal(ISD::CTPOP, VT) &&
        TLI.isOperationLegal(ISD::CTLZ, VT))
      return DAG.getNode(ISD::SUB, VT,
                         DAG.getConstant(MVT::getSizeInBits(VT), VT),
                         DAG.getNode(ISD::CTLZ, VT, Tmp3));
    return DAG.getNode(ISD::CTPOP, VT, Tmp3);
  }
  }
}

/// ExpandOp - Expand the specified SDOperand into its two component pieces
/// Lo&Hi.  Note that the Op MUST be an expanded type.  As a result of this, the
/// LegalizeNodes map is filled in for any results that are not expanded, the
/// ExpandedNodes map is filled in for any results that are expanded, and the
/// Lo/Hi values are returned.
void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){
  MVT::ValueType VT = Op.getValueType();
  MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
  SDNode *Node = Op.Val;
  assert(getTypeAction(VT) == Expand && "Not an expanded type!");
  assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) ||
         MVT::isVector(VT)) &&
         "Cannot expand to FP value or to larger int value!");

  // See if we already expanded it.
  DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I
    = ExpandedNodes.find(Op);
  if (I != ExpandedNodes.end()) {
    Lo = I->second.first;
    Hi = I->second.second;
    return;
  }

  switch (Node->getOpcode()) {
  case ISD::CopyFromReg:
    assert(0 && "CopyFromReg must be legal!");
  case ISD::FP_ROUND_INREG:
    if (VT == MVT::ppcf128 && 
        TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 
            TargetLowering::Custom) {
      SDOperand SrcLo, SrcHi, Src;
      ExpandOp(Op.getOperand(0), SrcLo, SrcHi);
      Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi);
      SDOperand Result = TLI.LowerOperation(
        DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG);
      assert(Result.Val->getOpcode() == ISD::BUILD_PAIR);
      Lo = Result.Val->getOperand(0);
      Hi = Result.Val->getOperand(1);
      break;
    }
    // fall through
  default:
#ifndef NDEBUG
    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Do not know how to expand this operator!");
    abort();
  case ISD::EXTRACT_VECTOR_ELT:
    assert(VT==MVT::i64 && "Do not know how to expand this operator!");
    // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types.
    Lo  = ExpandEXTRACT_VECTOR_ELT(Op);
    return ExpandOp(Lo, Lo, Hi);
  case ISD::UNDEF:
    NVT = TLI.getTypeToExpandTo(VT);
    Lo = DAG.getNode(ISD::UNDEF, NVT);
    Hi = DAG.getNode(ISD::UNDEF, NVT);
    break;
  case ISD::Constant: {
    uint64_t Cst = cast<ConstantSDNode>(Node)->getValue();
    Lo = DAG.getConstant(Cst, NVT);
    Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT);
    break;
  }
  case ISD::ConstantFP: {
    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
    if (CFP->getValueType(0) == MVT::ppcf128) {
      APInt api = CFP->getValueAPF().convertToAPInt();
      Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])),
                             MVT::f64);
      Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 
                             MVT::f64);
      break;
    }
    Lo = ExpandConstantFP(CFP, false, DAG, TLI);
    if (getTypeAction(Lo.getValueType()) == Expand)
      ExpandOp(Lo, Lo, Hi);
    break;
  }
  case ISD::BUILD_PAIR:
    // Return the operands.
    Lo = Node->getOperand(0);
    Hi = Node->getOperand(1);
    break;
      
  case ISD::MERGE_VALUES:
    if (Node->getNumValues() == 1) {
      ExpandOp(Op.getOperand(0), Lo, Hi);
      break;
    }
    // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y)
    assert(Op.ResNo == 0 && Node->getNumValues() == 2 &&
           Op.getValue(1).getValueType() == MVT::Other &&
           "unhandled MERGE_VALUES");
    ExpandOp(Op.getOperand(0), Lo, Hi);
    // Remember that we legalized the chain.
    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1)));
    break;
    
  case ISD::SIGN_EXTEND_INREG:
    ExpandOp(Node->getOperand(0), Lo, Hi);
    // sext_inreg the low part if needed.
    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1));
    
    // The high part gets the sign extension from the lo-part.  This handles
    // things like sextinreg V:i64 from i8.
    Hi = DAG.getNode(ISD::SRA, NVT, Lo,
                     DAG.getConstant(MVT::getSizeInBits(NVT)-1,
                                     TLI.getShiftAmountTy()));
    break;

  case ISD::BSWAP: {
    ExpandOp(Node->getOperand(0), Lo, Hi);
    SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi);
    Hi = DAG.getNode(ISD::BSWAP, NVT, Lo);
    Lo = TempLo;
    break;
  }
    
  case ISD::CTPOP:
    ExpandOp(Node->getOperand(0), Lo, Hi);
    Lo = DAG.getNode(ISD::ADD, NVT,          // ctpop(HL) -> ctpop(H)+ctpop(L)
                     DAG.getNode(ISD::CTPOP, NVT, Lo),
                     DAG.getNode(ISD::CTPOP, NVT, Hi));
    Hi = DAG.getConstant(0, NVT);
    break;

  case ISD::CTLZ: {
    // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32)
    ExpandOp(Node->getOperand(0), Lo, Hi);
    SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT);
    SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi);
    SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC,
                                        ISD::SETNE);
    SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo);
    LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC);

    Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart);
    Hi = DAG.getConstant(0, NVT);
    break;
  }

  case ISD::CTTZ: {
    // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32)
    ExpandOp(Node->getOperand(0), Lo, Hi);
    SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT);
    SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo);
    SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC,
                                        ISD::SETNE);
    SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi);
    HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC);

    Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart);
    Hi = DAG.getConstant(0, NVT);
    break;
  }

  case ISD::VAARG: {
    SDOperand Ch = Node->getOperand(0);   // Legalize the chain.
    SDOperand Ptr = Node->getOperand(1);  // Legalize the pointer.
    Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2));
    Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2));

    // Remember that we legalized the chain.
    Hi = LegalizeOp(Hi);
    AddLegalizedOperand(Op.getValue(1), Hi.getValue(1));
    if (TLI.isBigEndian())
      std::swap(Lo, Hi);
    break;
  }
    
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(Node);
    SDOperand Ch  = LD->getChain();    // Legalize the chain.
    SDOperand Ptr = LD->getBasePtr();  // Legalize the pointer.
    ISD::LoadExtType ExtType = LD->getExtensionType();
    int SVOffset = LD->getSrcValueOffset();
    unsigned Alignment = LD->getAlignment();
    bool isVolatile = LD->isVolatile();

    if (ExtType == ISD::NON_EXTLOAD) {
      Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset,
                       isVolatile, Alignment);
      if (VT == MVT::f32 || VT == MVT::f64) {
        // f32->i32 or f64->i64 one to one expansion.
        // Remember that we legalized the chain.
        AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1)));
        // Recursively expand the new load.
        if (getTypeAction(NVT) == Expand)
          ExpandOp(Lo, Lo, Hi);
        break;
      }

      // Increment the pointer to the other half.
      unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8;
      Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                        DAG.getIntPtrConstant(IncrementSize));
      SVOffset += IncrementSize;
      Alignment = MinAlign(Alignment, IncrementSize);
      Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset,
                       isVolatile, Alignment);

      // Build a factor node to remember that this load is independent of the
      // other one.
      SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
                                 Hi.getValue(1));

      // Remember that we legalized the chain.
      AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF));
      if (TLI.isBigEndian())
        std::swap(Lo, Hi);
    } else {
      MVT::ValueType EVT = LD->getMemoryVT();

      if ((VT == MVT::f64 && EVT == MVT::f32) ||
          (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) {
        // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
        SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(),
                                     SVOffset, isVolatile, Alignment);
        // Remember that we legalized the chain.
        AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1)));
        ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi);
        break;
      }
    
      if (EVT == NVT)
        Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(),
                         SVOffset, isVolatile, Alignment);
      else
        Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(),
                            SVOffset, EVT, isVolatile,
                            Alignment);
    
      // Remember that we legalized the chain.
      AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1)));

      if (ExtType == ISD::SEXTLOAD) {
        // The high part is obtained by SRA'ing all but one of the bits of the
        // lo part.
        unsigned LoSize = MVT::getSizeInBits(Lo.getValueType());
        Hi = DAG.getNode(ISD::SRA, NVT, Lo,
                         DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
      } else if (ExtType == ISD::ZEXTLOAD) {
        // The high part is just a zero.
        Hi = DAG.getConstant(0, NVT);
      } else /* if (ExtType == ISD::EXTLOAD) */ {
        // The high part is undefined.
        Hi = DAG.getNode(ISD::UNDEF, NVT);
      }
    }
    break;
  }
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR: {   // Simple logical operators -> two trivial pieces.
    SDOperand LL, LH, RL, RH;
    ExpandOp(Node->getOperand(0), LL, LH);
    ExpandOp(Node->getOperand(1), RL, RH);
    Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL);
    Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH);
    break;
  }
  case ISD::SELECT: {
    SDOperand LL, LH, RL, RH;
    ExpandOp(Node->getOperand(1), LL, LH);
    ExpandOp(Node->getOperand(2), RL, RH);
    if (getTypeAction(NVT) == Expand)
      NVT = TLI.getTypeToExpandTo(NVT);
    Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL);
    if (VT != MVT::f32)
      Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH);
    break;
  }
  case ISD::SELECT_CC: {
    SDOperand TL, TH, FL, FH;
    ExpandOp(Node->getOperand(2), TL, TH);
    ExpandOp(Node->getOperand(3), FL, FH);
    if (getTypeAction(NVT) == Expand)
      NVT = TLI.getTypeToExpandTo(NVT);
    Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
                     Node->getOperand(1), TL, FL, Node->getOperand(4));
    if (VT != MVT::f32)
      Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
                       Node->getOperand(1), TH, FH, Node->getOperand(4));
    break;
  }
  case ISD::ANY_EXTEND:
    // The low part is any extension of the input (which degenerates to a copy).
    Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0));
    // The high part is undefined.
    Hi = DAG.getNode(ISD::UNDEF, NVT);
    break;
  case ISD::SIGN_EXTEND: {
    // The low part is just a sign extension of the input (which degenerates to
    // a copy).
    Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0));

    // The high part is obtained by SRA'ing all but one of the bits of the lo
    // part.
    unsigned LoSize = MVT::getSizeInBits(Lo.getValueType());
    Hi = DAG.getNode(ISD::SRA, NVT, Lo,
                     DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
    break;
  }
  case ISD::ZERO_EXTEND:
    // The low part is just a zero extension of the input (which degenerates to
    // a copy).
    Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0));

    // The high part is just a zero.
    Hi = DAG.getConstant(0, NVT);
    break;
    
  case ISD::TRUNCATE: {
    // The input value must be larger than this value.  Expand *it*.
    SDOperand NewLo;
    ExpandOp(Node->getOperand(0), NewLo, Hi);
    
    // The low part is now either the right size, or it is closer.  If not the
    // right size, make an illegal truncate so we recursively expand it.
    if (NewLo.getValueType() != Node->getValueType(0))
      NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo);
    ExpandOp(NewLo, Lo, Hi);
    break;
  }
    
  case ISD::BIT_CONVERT: {
    SDOperand Tmp;
    if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){
      // If the target wants to, allow it to lower this itself.
      switch (getTypeAction(Node->getOperand(0).getValueType())) {
      case Expand: assert(0 && "cannot expand FP!");
      case Legal:   Tmp = LegalizeOp(Node->getOperand(0)); break;
      case Promote: Tmp = PromoteOp (Node->getOperand(0)); break;
      }
      Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG);
    }

    // f32 / f64 must be expanded to i32 / i64.
    if (VT == MVT::f32 || VT == MVT::f64) {
      Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
      if (getTypeAction(NVT) == Expand)
        ExpandOp(Lo, Lo, Hi);
      break;
    }

    // If source operand will be expanded to the same type as VT, i.e.
    // i64 <- f64, i32 <- f32, expand the source operand instead.
    MVT::ValueType VT0 = Node->getOperand(0).getValueType();
    if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) {
      ExpandOp(Node->getOperand(0), Lo, Hi);
      break;
    }

    // Turn this into a load/store pair by default.
    if (Tmp.Val == 0)
      Tmp = EmitStackConvert(Node->getOperand(0), VT, VT);
    
    ExpandOp(Tmp, Lo, Hi);
    break;
  }

  case ISD::READCYCLECOUNTER: {
    assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 
                 TargetLowering::Custom &&
           "Must custom expand ReadCycleCounter");
    SDOperand Tmp = TLI.LowerOperation(Op, DAG);
    assert(Tmp.Val && "Node must be custom expanded!");
    ExpandOp(Tmp.getValue(0), Lo, Hi);
    AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain.
                        LegalizeOp(Tmp.getValue(1)));
    break;
  }

    // These operators cannot be expanded directly, emit them as calls to
    // library functions.
  case ISD::FP_TO_SINT: {
    if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) {
      SDOperand Op;
      switch (getTypeAction(Node->getOperand(0).getValueType())) {
      case Expand: assert(0 && "cannot expand FP!");
      case Legal:   Op = LegalizeOp(Node->getOperand(0)); break;
      case Promote: Op = PromoteOp (Node->getOperand(0)); break;
      }

      Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG);

      // Now that the custom expander is done, expand the result, which is still
      // VT.
      if (Op.Val) {
        ExpandOp(Op, Lo, Hi);
        break;
      }
    }

    RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
    if (Node->getOperand(0).getValueType() == MVT::f32)
      LC = RTLIB::FPTOSINT_F32_I64;
    else if (Node->getOperand(0).getValueType() == MVT::f64)
      LC = RTLIB::FPTOSINT_F64_I64;
    else if (Node->getOperand(0).getValueType() == MVT::f80)
      LC = RTLIB::FPTOSINT_F80_I64;
    else if (Node->getOperand(0).getValueType() == MVT::ppcf128)
      LC = RTLIB::FPTOSINT_PPCF128_I64;
    Lo = ExpandLibCall(TLI.getLibcallName(LC), Node,
                       false/*sign irrelevant*/, Hi);
    break;
  }

  case ISD::FP_TO_UINT: {
    if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) {
      SDOperand Op;
      switch (getTypeAction(Node->getOperand(0).getValueType())) {
        case Expand: assert(0 && "cannot expand FP!");
        case Legal:   Op = LegalizeOp(Node->getOperand(0)); break;
        case Promote: Op = PromoteOp (Node->getOperand(0)); break;
      }
        
      Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG);

      // Now that the custom expander is done, expand the result.
      if (Op.Val) {
        ExpandOp(Op, Lo, Hi);
        break;
      }
    }

    RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
    if (Node->getOperand(0).getValueType() == MVT::f32)
      LC = RTLIB::FPTOUINT_F32_I64;
    else if (Node->getOperand(0).getValueType() == MVT::f64)
      LC = RTLIB::FPTOUINT_F64_I64;
    else if (Node->getOperand(0).getValueType() == MVT::f80)
      LC = RTLIB::FPTOUINT_F80_I64;
    else if (Node->getOperand(0).getValueType() == MVT::ppcf128)
      LC = RTLIB::FPTOUINT_PPCF128_I64;
    Lo = ExpandLibCall(TLI.getLibcallName(LC), Node,
                       false/*sign irrelevant*/, Hi);
    break;
  }

  case ISD::SHL: {
    // If the target wants custom lowering, do so.
    SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1));
    if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) {
      SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt);
      Op = TLI.LowerOperation(Op, DAG);
      if (Op.Val) {
        // Now that the custom expander is done, expand the result, which is
        // still VT.
        ExpandOp(Op, Lo, Hi);
        break;
      }
    }
    
    // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 
    // this X << 1 as X+X.
    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) {
      if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 
          TLI.isOperationLegal(ISD::ADDE, NVT)) {
        SDOperand LoOps[2], HiOps[3];
        ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]);
        SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag);
        LoOps[1] = LoOps[0];
        Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);

        HiOps[1] = HiOps[0];
        HiOps[2] = Lo.getValue(1);
        Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
        break;
      }
    }
    
    // If we can emit an efficient shift operation, do so now.
    if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi))
      break;

    // If this target supports SHL_PARTS, use it.
    TargetLowering::LegalizeAction Action =
      TLI.getOperationAction(ISD::SHL_PARTS, NVT);
    if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
        Action == TargetLowering::Custom) {
      ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
      break;
    }

    // Otherwise, emit a libcall.
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node,
                       false/*left shift=unsigned*/, Hi);
    break;
  }

  case ISD::SRA: {
    // If the target wants custom lowering, do so.
    SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1));
    if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) {
      SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt);
      Op = TLI.LowerOperation(Op, DAG);
      if (Op.Val) {
        // Now that the custom expander is done, expand the result, which is
        // still VT.
        ExpandOp(Op, Lo, Hi);
        break;
      }
    }
    
    // If we can emit an efficient shift operation, do so now.
    if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi))
      break;

    // If this target supports SRA_PARTS, use it.
    TargetLowering::LegalizeAction Action =
      TLI.getOperationAction(ISD::SRA_PARTS, NVT);
    if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
        Action == TargetLowering::Custom) {
      ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
      break;
    }

    // Otherwise, emit a libcall.
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node,
                       true/*ashr is signed*/, Hi);
    break;
  }

  case ISD::SRL: {
    // If the target wants custom lowering, do so.
    SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1));
    if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) {
      SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt);
      Op = TLI.LowerOperation(Op, DAG);
      if (Op.Val) {
        // Now that the custom expander is done, expand the result, which is
        // still VT.
        ExpandOp(Op, Lo, Hi);
        break;
      }
    }

    // If we can emit an efficient shift operation, do so now.
    if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi))
      break;

    // If this target supports SRL_PARTS, use it.
    TargetLowering::LegalizeAction Action =
      TLI.getOperationAction(ISD::SRL_PARTS, NVT);
    if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
        Action == TargetLowering::Custom) {
      ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
      break;
    }

    // Otherwise, emit a libcall.
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node,
                       false/*lshr is unsigned*/, Hi);
    break;
  }

  case ISD::ADD:
  case ISD::SUB: {
    // If the target wants to custom expand this, let them.
    if (TLI.getOperationAction(Node->getOpcode(), VT) ==
            TargetLowering::Custom) {
      Op = TLI.LowerOperation(Op, DAG);
      if (Op.Val) {
        ExpandOp(Op, Lo, Hi);
        break;
      }
    }
    
    // Expand the subcomponents.
    SDOperand LHSL, LHSH, RHSL, RHSH;
    ExpandOp(Node->getOperand(0), LHSL, LHSH);
    ExpandOp(Node->getOperand(1), RHSL, RHSH);
    SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
    SDOperand LoOps[2], HiOps[3];
    LoOps[0] = LHSL;
    LoOps[1] = RHSL;
    HiOps[0] = LHSH;
    HiOps[1] = RHSH;
    if (Node->getOpcode() == ISD::ADD) {
      Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
      HiOps[2] = Lo.getValue(1);
      Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
    } else {
      Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
      HiOps[2] = Lo.getValue(1);
      Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
    }
    break;
  }
    
  case ISD::ADDC:
  case ISD::SUBC: {
    // Expand the subcomponents.
    SDOperand LHSL, LHSH, RHSL, RHSH;
    ExpandOp(Node->getOperand(0), LHSL, LHSH);
    ExpandOp(Node->getOperand(1), RHSL, RHSH);
    SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
    SDOperand LoOps[2] = { LHSL, RHSL };
    SDOperand HiOps[3] = { LHSH, RHSH };
    
    if (Node->getOpcode() == ISD::ADDC) {
      Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
      HiOps[2] = Lo.getValue(1);
      Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
    } else {
      Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
      HiOps[2] = Lo.getValue(1);
      Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
    }
    // Remember that we legalized the flag.
    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1)));
    break;
  }
  case ISD::ADDE:
  case ISD::SUBE: {
    // Expand the subcomponents.
    SDOperand LHSL, LHSH, RHSL, RHSH;
    ExpandOp(Node->getOperand(0), LHSL, LHSH);
    ExpandOp(Node->getOperand(1), RHSL, RHSH);
    SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
    SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) };
    SDOperand HiOps[3] = { LHSH, RHSH };
    
    Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3);
    HiOps[2] = Lo.getValue(1);
    Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3);
    
    // Remember that we legalized the flag.
    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1)));
    break;
  }
  case ISD::MUL: {
    // If the target wants to custom expand this, let them.
    if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) {
      SDOperand New = TLI.LowerOperation(Op, DAG);
      if (New.Val) {
        ExpandOp(New, Lo, Hi);
        break;
      }
    }
    
    bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT);
    bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT);
    bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT);
    bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT);
    if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
      SDOperand LL, LH, RL, RH;
      ExpandOp(Node->getOperand(0), LL, LH);
      ExpandOp(Node->getOperand(1), RL, RH);
      unsigned BitSize = MVT::getSizeInBits(RH.getValueType());
      unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0));
      unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1));
      // FIXME: generalize this to handle other bit sizes
      if (LHSSB == 32 && RHSSB == 32 &&
          DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) &&
          DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) {
        // The inputs are both zero-extended.
        if (HasUMUL_LOHI) {
          // We can emit a umul_lohi.
          Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
          Hi = SDOperand(Lo.Val, 1);
          break;
        }
        if (HasMULHU) {
          // We can emit a mulhu+mul.
          Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
          Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
          break;
        }
      }
      if (LHSSB > BitSize && RHSSB > BitSize) {
        // The input values are both sign-extended.
        if (HasSMUL_LOHI) {
          // We can emit a smul_lohi.
          Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
          Hi = SDOperand(Lo.Val, 1);
          break;
        }
        if (HasMULHS) {
          // We can emit a mulhs+mul.
          Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
          Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL);
          break;
        }
      }
      if (HasUMUL_LOHI) {
        // Lo,Hi = umul LHS, RHS.
        SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI,
                                         DAG.getVTList(NVT, NVT), LL, RL);
        Lo = UMulLOHI;
        Hi = UMulLOHI.getValue(1);
        RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
        LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
        Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
        Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
        break;
      }
      if (HasMULHU) {
        Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
        Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
        RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
        LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
        Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
        Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
        break;
      }
    }

    // If nothing else, we can make a libcall.
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node,
                       false/*sign irrelevant*/, Hi);
    break;
  }
  case ISD::SDIV:
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi);
    break;
  case ISD::UDIV:
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi);
    break;
  case ISD::SREM:
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi);
    break;
  case ISD::UREM:
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi);
    break;

  case ISD::FADD:
    Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::ADD_F32,
                                                       RTLIB::ADD_F64,
                                                       RTLIB::ADD_F80,
                                                       RTLIB::ADD_PPCF128)),
                       Node, false, Hi);
    break;
  case ISD::FSUB:
    Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::SUB_F32,
                                                       RTLIB::SUB_F64,
                                                       RTLIB::SUB_F80,
                                                       RTLIB::SUB_PPCF128)),
                       Node, false, Hi);
    break;
  case ISD::FMUL:
    Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::MUL_F32,
                                                       RTLIB::MUL_F64,
                                                       RTLIB::MUL_F80,
                                                       RTLIB::MUL_PPCF128)),
                       Node, false, Hi);
    break;
  case ISD::FDIV:
    Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::DIV_F32,
                                                       RTLIB::DIV_F64,
                                                       RTLIB::DIV_F80,
                                                       RTLIB::DIV_PPCF128)),
                       Node, false, Hi);
    break;
  case ISD::FP_EXTEND:
    if (VT == MVT::ppcf128) {
      assert(Node->getOperand(0).getValueType()==MVT::f32 ||
             Node->getOperand(0).getValueType()==MVT::f64);
      const uint64_t zero = 0;
      if (Node->getOperand(0).getValueType()==MVT::f32)
        Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0));
      else
        Hi = Node->getOperand(0);
      Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
      break;
    }
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi);
    break;
  case ISD::FP_ROUND:
    Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi);
    break;
  case ISD::FPOWI:
    Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::POWI_F32,
                                                       RTLIB::POWI_F64,
                                                       RTLIB::POWI_F80,
                                                       RTLIB::POWI_PPCF128)),
                       Node, false, Hi);
    break;
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS: {
    RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
    switch(Node->getOpcode()) {
    case ISD::FSQRT:
      LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
                        RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128);
      break;
    case ISD::FSIN:
      LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64,
                        RTLIB::SIN_F80, RTLIB::SIN_PPCF128);
      break;
    case ISD::FCOS:
      LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64,
                        RTLIB::COS_F80, RTLIB::COS_PPCF128);
      break;
    default: assert(0 && "Unreachable!");
    }
    Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi);
    break;
  }
  case ISD::FABS: {
    if (VT == MVT::ppcf128) {
      SDOperand Tmp;
      ExpandOp(Node->getOperand(0), Lo, Tmp);
      Hi = DAG.getNode(ISD::FABS, NVT, Tmp);
      // lo = hi==fabs(hi) ? lo : -lo;
      Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp,
                    Lo, DAG.getNode(ISD::FNEG, NVT, Lo),
                    DAG.getCondCode(ISD::SETEQ));
      break;
    }
    SDOperand Mask = (VT == MVT::f64)
      ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT)
      : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT);
    Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask);
    Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
    Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask);
    if (getTypeAction(NVT) == Expand)
      ExpandOp(Lo, Lo, Hi);
    break;
  }
  case ISD::FNEG: {
    if (VT == MVT::ppcf128) {
      ExpandOp(Node->getOperand(0), Lo, Hi);
      Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo);
      Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi);
      break;
    }
    SDOperand Mask = (VT == MVT::f64)
      ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT)
      : DAG.getConstantFP(BitsToFloat(1U << 31), VT);
    Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask);
    Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
    Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask);
    if (getTypeAction(NVT) == Expand)
      ExpandOp(Lo, Lo, Hi);
    break;
  }
  case ISD::FCOPYSIGN: {
    Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI);
    if (getTypeAction(NVT) == Expand)
      ExpandOp(Lo, Lo, Hi);
    break;
  }
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP: {
    bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP;
    MVT::ValueType SrcVT = Node->getOperand(0).getValueType();
    if (VT == MVT::ppcf128 && SrcVT != MVT::i64) {
      static uint64_t zero = 0;
      if (isSigned) {
        Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 
                                    Node->getOperand(0)));
        Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
      } else {
        static uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 };
        Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 
                                    Node->getOperand(0)));
        Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
        Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
        // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32
        ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0),
                             DAG.getConstant(0, MVT::i32), 
                             DAG.getNode(ISD::FADD, MVT::ppcf128, Hi,
                                         DAG.getConstantFP(
                                            APFloat(APInt(128, 2, TwoE32)),
                                            MVT::ppcf128)),
                             Hi,
                             DAG.getCondCode(ISD::SETLT)),
                 Lo, Hi);
      }
      break;
    }
    if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) {
      // si64->ppcf128 done by libcall, below
      static uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 };
      ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)),
               Lo, Hi);
      Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
      // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64
      ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0),
                           DAG.getConstant(0, MVT::i64), 
                           DAG.getNode(ISD::FADD, MVT::ppcf128, Hi,
                                       DAG.getConstantFP(
                                          APFloat(APInt(128, 2, TwoE64)),
                                          MVT::ppcf128)),
                           Hi,
                           DAG.getCondCode(ISD::SETLT)),
               Lo, Hi);
      break;
    }
    RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
    if (Node->getOperand(0).getValueType() == MVT::i64) {
      if (VT == MVT::f32)
        LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32;
      else if (VT == MVT::f64)
        LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64;
      else if (VT == MVT::f80) {
        assert(isSigned);
        LC = RTLIB::SINTTOFP_I64_F80;
      }
      else if (VT == MVT::ppcf128) {
        assert(isSigned);
        LC = RTLIB::SINTTOFP_I64_PPCF128;
      }
    } else {
      if (VT == MVT::f32)
        LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32;
      else
        LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64;
    }

    // Promote the operand if needed.
    if (getTypeAction(SrcVT) == Promote) {
      SDOperand Tmp = PromoteOp(Node->getOperand(0));
      Tmp = isSigned
        ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp,
                      DAG.getValueType(SrcVT))
        : DAG.getZeroExtendInReg(Tmp, SrcVT);
      Node = DAG.UpdateNodeOperands(Op, Tmp).Val;
    }

    const char *LibCall = TLI.getLibcallName(LC);
    if (LibCall)
      Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi);
    else  {
      Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT,
                         Node->getOperand(0));
      if (getTypeAction(Lo.getValueType()) == Expand)
        ExpandOp(Lo, Lo, Hi);
    }
    break;
  }
  }

  // Make sure the resultant values have been legalized themselves, unless this
  // is a type that requires multi-step expansion.
  if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) {
    Lo = LegalizeOp(Lo);
    if (Hi.Val)
      // Don't legalize the high part if it is expanded to a single node.
      Hi = LegalizeOp(Hi);
  }

  // Remember in a map if the values will be reused later.
  bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi)));
  assert(isNew && "Value already expanded?!?");
}

/// SplitVectorOp - Given an operand of vector type, break it down into
/// two smaller values, still of vector type.
void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo,
                                         SDOperand &Hi) {
  assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!");
  SDNode *Node = Op.Val;
  unsigned NumElements = MVT::getVectorNumElements(Op.getValueType());
  assert(NumElements > 1 && "Cannot split a single element vector!");

  MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType());

  unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1);
  unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;

  MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo);
  MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi);

  // See if we already split it.
  std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I
    = SplitNodes.find(Op);
  if (I != SplitNodes.end()) {
    Lo = I->second.first;
    Hi = I->second.second;
    return;
  }
  
  switch (Node->getOpcode()) {
  default: 
#ifndef NDEBUG
    Node->dump(&DAG);
#endif
    assert(0 && "Unhandled operation in SplitVectorOp!");
  case ISD::UNDEF:
    Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo);
    Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi);
    break;
  case ISD::BUILD_PAIR:
    Lo = Node->getOperand(0);
    Hi = Node->getOperand(1);
    break;
  case ISD::INSERT_VECTOR_ELT: {
    SplitVectorOp(Node->getOperand(0), Lo, Hi);
    unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue();
    SDOperand ScalarOp = Node->getOperand(1);
    if (Index < NewNumElts_Lo)
      Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp,
                       DAG.getConstant(Index, TLI.getPointerTy()));
    else
      Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp,
                       DAG.getConstant(Index - NewNumElts_Lo,
                                       TLI.getPointerTy()));
    break;
  }
  case ISD::VECTOR_SHUFFLE: {
    // Build the low part.
    SDOperand Mask = Node->getOperand(2);
    SmallVector<SDOperand, 8> Ops;
    MVT::ValueType PtrVT = TLI.getPointerTy();
    
    // Insert all of the elements from the input that are needed.  We use 
    // buildvector of extractelement here because the input vectors will have
    // to be legalized, so this makes the code simpler.
    for (unsigned i = 0; i != NewNumElts_Lo; ++i) {
      unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue();
      SDOperand InVec = Node->getOperand(0);
      if (Idx >= NumElements) {
        InVec = Node->getOperand(1);
        Idx -= NumElements;
      }
      Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec,
                                DAG.getConstant(Idx, PtrVT)));
    }
    Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size());
    Ops.clear();
    
    for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) {
      unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue();
      SDOperand InVec = Node->getOperand(0);
      if (Idx >= NumElements) {
        InVec = Node->getOperand(1);
        Idx -= NumElements;
      }
      Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec,
                                DAG.getConstant(Idx, PtrVT)));
    }
    Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size());
    break;
  }
  case ISD::BUILD_VECTOR: {
    SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 
                                    Node->op_begin()+NewNumElts_Lo);
    Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size());

    SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 
                                    Node->op_end());
    Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size());
    break;
  }
  case ISD::CONCAT_VECTORS: {
    // FIXME: Handle non-power-of-two vectors?
    unsigned NewNumSubvectors = Node->getNumOperands() / 2;
    if (NewNumSubvectors == 1) {
      Lo = Node->getOperand(0);
      Hi = Node->getOperand(1);
    } else {
      SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 
                                      Node->op_begin()+NewNumSubvectors);
      Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size());

      SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 
                                      Node->op_end());
      Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size());
    }
    break;
  }
  case ISD::SELECT: {
    SDOperand Cond = Node->getOperand(0);

    SDOperand LL, LH, RL, RH;
    SplitVectorOp(Node->getOperand(1), LL, LH);
    SplitVectorOp(Node->getOperand(2), RL, RH);

    if (MVT::isVector(Cond.getValueType())) {
      // Handle a vector merge.
      SDOperand CL, CH;
      SplitVectorOp(Cond, CL, CH);
      Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL);
      Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH);
    } else {
      // Handle a simple select with vector operands.
      Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL);
      Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH);
    }
    break;
  }
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::FDIV:
  case ISD::FPOW:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::UREM:
  case ISD::SREM:
  case ISD::FREM: {
    SDOperand LL, LH, RL, RH;
    SplitVectorOp(Node->getOperand(0), LL, LH);
    SplitVectorOp(Node->getOperand(1), RL, RH);
    
    Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL);
    Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH);
    break;
  }
  case ISD::FPOWI: {
    SDOperand L, H;
    SplitVectorOp(Node->getOperand(0), L, H);

    Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1));
    Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1));
    break;
  }
  case ISD::CTTZ:
  case ISD::CTLZ:
  case ISD::CTPOP:
  case ISD::FNEG:
  case ISD::FABS:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP: {
    SDOperand L, H;
    SplitVectorOp(Node->getOperand(0), L, H);

    Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L);
    Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H);
    break;
  }
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(Node);
    SDOperand Ch = LD->getChain();
    SDOperand Ptr = LD->getBasePtr();
    const Value *SV = LD->getSrcValue();
    int SVOffset = LD->getSrcValueOffset();
    unsigned Alignment = LD->getAlignment();
    bool isVolatile = LD->isVolatile();

    Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment);
    unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8;
    Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
                      DAG.getIntPtrConstant(IncrementSize));
    SVOffset += IncrementSize;
    Alignment = MinAlign(Alignment, IncrementSize);
    Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment);
    
    // Build a factor node to remember that this load is independent of the
    // other one.
    SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
                               Hi.getValue(1));
    
    // Remember that we legalized the chain.
    AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF));
    break;
  }
  case ISD::BIT_CONVERT: {
    // We know the result is a vector.  The input may be either a vector or a
    // scalar value.
    SDOperand InOp = Node->getOperand(0);
    if (!MVT::isVector(InOp.getValueType()) ||
        MVT::getVectorNumElements(InOp.getValueType()) == 1) {
      // The input is a scalar or single-element vector.
      // Lower to a store/load so that it can be split.
      // FIXME: this could be improved probably.
      SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType());
      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(Ptr.Val);

      SDOperand St = DAG.getStore(DAG.getEntryNode(),
                                  InOp, Ptr,
                                  PseudoSourceValue::getFixedStack(),
                                  FI->getIndex());
      InOp = DAG.getLoad(Op.getValueType(), St, Ptr,
                         PseudoSourceValue::getFixedStack(),
                         FI->getIndex());
    }
    // Split the vector and convert each of the pieces now.
    SplitVectorOp(InOp, Lo, Hi);
    Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo);
    Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi);
    break;
  }
  }
      
  // Remember in a map if the values will be reused later.
  bool isNew = 
    SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second;
  assert(isNew && "Value already split?!?");
}


/// ScalarizeVectorOp - Given an operand of single-element vector type
/// (e.g. v1f32), convert it into the equivalent operation that returns a
/// scalar (e.g. f32) value.
SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) {
  assert(MVT::isVector(Op.getValueType()) &&
         "Bad ScalarizeVectorOp invocation!");
  SDNode *Node = Op.Val;
  MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType());
  assert(MVT::getVectorNumElements(Op.getValueType()) == 1);
  
  // See if we already scalarized it.
  std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op);
  if (I != ScalarizedNodes.end()) return I->second;
  
  SDOperand Result;
  switch (Node->getOpcode()) {
  default: 
#ifndef NDEBUG
    Node->dump(&DAG); cerr << "\n";
#endif
    assert(0 && "Unknown vector operation in ScalarizeVectorOp!");
  case ISD::ADD:
  case ISD::FADD:
  case ISD::SUB:
  case ISD::FSUB:
  case ISD::MUL:
  case ISD::FMUL:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::FDIV:
  case ISD::SREM:
  case ISD::UREM:
  case ISD::FREM:
  case ISD::FPOW:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
    Result = DAG.getNode(Node->getOpcode(),
                         NewVT, 
                         ScalarizeVectorOp(Node->getOperand(0)),
                         ScalarizeVectorOp(Node->getOperand(1)));
    break;
  case ISD::FNEG:
  case ISD::FABS:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
    Result = DAG.getNode(Node->getOpcode(),
                         NewVT, 
                         ScalarizeVectorOp(Node->getOperand(0)));
    break;
  case ISD::FPOWI:
    Result = DAG.getNode(Node->getOpcode(),
                         NewVT, 
                         ScalarizeVectorOp(Node->getOperand(0)),
                         Node->getOperand(1));
    break;
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(Node);
    SDOperand Ch = LegalizeOp(LD->getChain());     // Legalize the chain.
    SDOperand Ptr = LegalizeOp(LD->getBasePtr());  // Legalize the pointer.
    
    const Value *SV = LD->getSrcValue();
    int SVOffset = LD->getSrcValueOffset();
    Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset,
                         LD->isVolatile(), LD->getAlignment());

    // Remember that we legalized the chain.
    AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
    break;
  }
  case ISD::BUILD_VECTOR:
    Result = Node->getOperand(0);
    break;
  case ISD::INSERT_VECTOR_ELT:
    // Returning the inserted scalar element.
    Result = Node->getOperand(1);
    break;
  case ISD::CONCAT_VECTORS:
    assert(Node->getOperand(0).getValueType() == NewVT &&
           "Concat of non-legal vectors not yet supported!");
    Result = Node->getOperand(0);
    break;
  case ISD::VECTOR_SHUFFLE: {
    // Figure out if the scalar is the LHS or RHS and return it.
    SDOperand EltNum = Node->getOperand(2).getOperand(0);
    if (cast<ConstantSDNode>(EltNum)->getValue())
      Result = ScalarizeVectorOp(Node->getOperand(1));
    else
      Result = ScalarizeVectorOp(Node->getOperand(0));
    break;
  }
  case ISD::EXTRACT_SUBVECTOR:
    Result = Node->getOperand(0);
    assert(Result.getValueType() == NewVT);
    break;
  case ISD::BIT_CONVERT:
    Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0));
    break;
  case ISD::SELECT:
    Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0),
                         ScalarizeVectorOp(Op.getOperand(1)),
                         ScalarizeVectorOp(Op.getOperand(2)));
    break;
  }

  if (TLI.isTypeLegal(NewVT))
    Result = LegalizeOp(Result);
  bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second;
  assert(isNew && "Value already scalarized?");
  return Result;
}


// SelectionDAG::Legalize - This is the entry point for the file.
//
void SelectionDAG::Legalize() {
  if (ViewLegalizeDAGs) viewGraph();

  /// run - This is the main entry point to this class.
  ///
  SelectionDAGLegalize(*this).LegalizeDAG();
}