aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/LegalizeTypes.h
blob: 610c2daa732def00d473d7de3193939f34796766 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DAGTypeLegalizer class.  This is a private interface
// shared between the code that implements the SelectionDAG::LegalizeTypes
// method.
//
//===----------------------------------------------------------------------===//

#ifndef SELECTIONDAG_LEGALIZETYPES_H
#define SELECTIONDAG_LEGALIZETYPES_H

#define DEBUG_TYPE "legalize-types"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"

namespace llvm {

//===----------------------------------------------------------------------===//
/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
/// on it until only value types the target machine can handle are left.  This
/// involves promoting small sizes to large sizes or splitting up large values
/// into small values.
///
class VISIBILITY_HIDDEN DAGTypeLegalizer {
  TargetLowering &TLI;
  SelectionDAG &DAG;
public:
  // NodeIDFlags - This pass uses the NodeID on the SDNodes to hold information
  // about the state of the node.  The enum has all the values.
  enum NodeIDFlags {
    /// ReadyToProcess - All operands have been processed, so this node is ready
    /// to be handled.
    ReadyToProcess = 0,

    /// NewNode - This is a new node that was created in the process of
    /// legalizing some other node.
    NewNode = -1,

    /// Processed - This is a node that has already been processed.
    Processed = -2

    // 1+ - This is a node which has this many unlegalized operands.
  };
private:
  enum LegalizeAction {
    Legal,           // The target natively supports this type.
    PromoteInteger,  // Replace this integer type with a larger one.
    ExpandInteger,   // Split this integer type into two of half the size.
    SoftenFloat,     // Convert this float type to a same size integer type.
    ExpandFloat,     // Split this float type into two of half the size.
    ScalarizeVector, // Replace this one-element vector with its element type.
    SplitVector      // This vector type should be split into smaller vectors.
  };

  /// ValueTypeActions - This is a bitvector that contains two bits for each
  /// simple value type, where the two bits correspond to the LegalizeAction
  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
  TargetLowering::ValueTypeActionImpl ValueTypeActions;

  /// getTypeAction - Return how we should legalize values of this type, either
  /// it is already legal, or we need to promote it to a larger integer type, or
  /// we need to expand it into multiple registers of a smaller integer type, or
  /// we need to split a vector type into smaller vector types, or we need to
  /// convert it to a different type of the same size.
  LegalizeAction getTypeAction(MVT VT) const {
    switch (ValueTypeActions.getTypeAction(VT)) {
    default:
      assert(false && "Unknown legalize action!");
    case TargetLowering::Legal:
      return Legal;
    case TargetLowering::Promote:
      return PromoteInteger;
    case TargetLowering::Expand:
      // Expand can mean
      // 1) split scalar in half, 2) convert a float to an integer,
      // 3) scalarize a single-element vector, 4) split a vector in two.
      if (!VT.isVector()) {
        if (VT.isInteger())
          return ExpandInteger;
        else if (VT.getSizeInBits() ==
                 TLI.getTypeToTransformTo(VT).getSizeInBits())
          return SoftenFloat;
        else
          return ExpandFloat;
      } else if (VT.getVectorNumElements() == 1) {
        return ScalarizeVector;
      } else {
        return SplitVector;
      }
    }
  }

  /// isTypeLegal - Return true if this type is legal on this target.
  bool isTypeLegal(MVT VT) const {
    return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
  }

  /// IgnoreNodeResults - Pretend all of this node's results are legal.
  bool IgnoreNodeResults(SDNode *N) const {
    return N->getOpcode() == ISD::TargetConstant;
  }

  /// PromotedIntegers - For integer nodes that are below legal width, this map
  /// indicates what promoted value to use.
  DenseMap<SDValue, SDValue> PromotedIntegers;

  /// ExpandedIntegers - For integer nodes that need to be expanded this map
  /// indicates which operands are the expanded version of the input.
  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;

  /// SoftenedFloats - For floating point nodes converted to integers of
  /// the same size, this map indicates the converted value to use.
  DenseMap<SDValue, SDValue> SoftenedFloats;

  /// ExpandedFloats - For float nodes that need to be expanded this map
  /// indicates which operands are the expanded version of the input.
  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;

  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
  /// scalar value of type 'ty' to use.
  DenseMap<SDValue, SDValue> ScalarizedVectors;

  /// SplitVectors - For nodes that need to be split this map indicates
  /// which operands are the expanded version of the input.
  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;

  /// ReplacedValues - For values that have been replaced with another,
  /// indicates the replacement value to use.
  DenseMap<SDValue, SDValue> ReplacedValues;

  /// Worklist - This defines a worklist of nodes to process.  In order to be
  /// pushed onto this worklist, all operands of a node must have already been
  /// processed.
  SmallVector<SDNode*, 128> Worklist;

public:
  explicit DAGTypeLegalizer(SelectionDAG &dag)
    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
    ValueTypeActions(TLI.getValueTypeActions()) {
    assert(MVT::LAST_VALUETYPE <= 32 &&
           "Too many value types for ValueTypeActions to hold!");
  }

  void run();

  /// ReanalyzeNode - Recompute the NodeID and correct processed operands
  /// for the specified node, adding it to the worklist if ready.
  void ReanalyzeNode(SDNode *N) {
    N->setNodeId(NewNode);
    AnalyzeNewNode(N);
    // The node may have changed but we don't care.
  }

  void NoteDeletion(SDNode *Old, SDNode *New) {
    ExpungeNode(Old);
    ExpungeNode(New);
    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
  }

private:
  SDNode *AnalyzeNewNode(SDNode *N);
  void AnalyzeNewValue(SDValue &Val);

  void ReplaceValueWith(SDValue From, SDValue To);
  void ReplaceNodeWith(SDNode *From, SDNode *To);

  void RemapValue(SDValue &N);
  void ExpungeNode(SDNode *N);

  // Common routines.
  SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
  SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
                        const SDValue *Ops, unsigned NumOps, bool isSigned);

  SDValue BitConvertToInteger(SDValue Op);
  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
  void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
                    SDValue &Lo, SDValue &Hi);

  SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index);

  //===--------------------------------------------------------------------===//
  // Integer Promotion Support: LegalizeIntegerTypes.cpp
  //===--------------------------------------------------------------------===//

  SDValue GetPromotedInteger(SDValue Op) {
    SDValue &PromotedOp = PromotedIntegers[Op];
    RemapValue(PromotedOp);
    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
    return PromotedOp;
  }
  void SetPromotedInteger(SDValue Op, SDValue Result);

  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
  /// final size.
  SDValue ZExtPromotedInteger(SDValue Op) {
    MVT OldVT = Op.getValueType();
    Op = GetPromotedInteger(Op);
    return DAG.getZeroExtendInReg(Op, OldVT);
  }

  // Integer Result Promotion.
  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
  SDValue PromoteIntRes_AssertSext(SDNode *N);
  SDValue PromoteIntRes_AssertZext(SDNode *N);
  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
  SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
  SDValue PromoteIntRes_BSWAP(SDNode *N);
  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
  SDValue PromoteIntRes_Constant(SDNode *N);
  SDValue PromoteIntRes_CTLZ(SDNode *N);
  SDValue PromoteIntRes_CTPOP(SDNode *N);
  SDValue PromoteIntRes_CTTZ(SDNode *N);
  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
  SDValue PromoteIntRes_SDIV(SDNode *N);
  SDValue PromoteIntRes_SELECT   (SDNode *N);
  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
  SDValue PromoteIntRes_SETCC(SDNode *N);
  SDValue PromoteIntRes_SHL(SDNode *N);
  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
  SDValue PromoteIntRes_SRA(SDNode *N);
  SDValue PromoteIntRes_SRL(SDNode *N);
  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
  SDValue PromoteIntRes_UDIV(SDNode *N);
  SDValue PromoteIntRes_UNDEF(SDNode *N);
  SDValue PromoteIntRes_VAARG(SDNode *N);

  // Integer Operand Promotion.
  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
  SDValue PromoteIntOp_FP_EXTEND(SDNode *N);
  SDValue PromoteIntOp_FP_ROUND(SDNode *N);
  SDValue PromoteIntOp_INT_TO_FP(SDNode *N);
  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);

  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);

  //===--------------------------------------------------------------------===//
  // Integer Expansion Support: LegalizeIntegerTypes.cpp
  //===--------------------------------------------------------------------===//

  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);

  // Integer Result Expansion.
  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);

  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);

  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
                             SDValue &Lo, SDValue &Hi);
  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);

  // Integer Operand Expansion.
  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
  SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
  SDValue ExpandIntOp_BR_CC(SDNode *N);
  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
  SDValue ExpandIntOp_SETCC(SDNode *N);
  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);

  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
                                  ISD::CondCode &CCCode);

  //===--------------------------------------------------------------------===//
  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
  //===--------------------------------------------------------------------===//

  SDValue GetSoftenedFloat(SDValue Op) {
    SDValue &SoftenedOp = SoftenedFloats[Op];
    RemapValue(SoftenedOp);
    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
    return SoftenedOp;
  }
  void SetSoftenedFloat(SDValue Op, SDValue Result);

  // Result Float to Integer Conversion.
  void SoftenFloatResult(SDNode *N, unsigned OpNo);
  SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
  SDValue SoftenFloatRes_FABS(SDNode *N);
  SDValue SoftenFloatRes_FADD(SDNode *N);
  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
  SDValue SoftenFloatRes_FDIV(SDNode *N);
  SDValue SoftenFloatRes_FMUL(SDNode *N);
  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
  SDValue SoftenFloatRes_FPOW(SDNode *N);
  SDValue SoftenFloatRes_FPOWI(SDNode *N);
  SDValue SoftenFloatRes_FSUB(SDNode *N);
  SDValue SoftenFloatRes_LOAD(SDNode *N);
  SDValue SoftenFloatRes_SELECT(SDNode *N);
  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
  SDValue SoftenFloatRes_SINT_TO_FP(SDNode *N);
  SDValue SoftenFloatRes_UINT_TO_FP(SDNode *N);

  // Operand Float to Integer Conversion.
  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
  SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
  SDValue SoftenFloatOp_BR_CC(SDNode *N);
  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
  SDValue SoftenFloatOp_SETCC(SDNode *N);
  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);

  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
                           ISD::CondCode &CCCode);

  //===--------------------------------------------------------------------===//
  // Float Expansion Support: LegalizeFloatTypes.cpp
  //===--------------------------------------------------------------------===//

  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);

  // Float Result Expansion.
  void ExpandFloatResult(SDNode *N, unsigned ResNo);
  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);

  // Float Operand Expansion.
  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
  SDValue ExpandFloatOp_BR_CC(SDNode *N);
  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
  SDValue ExpandFloatOp_SETCC(SDNode *N);
  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);

  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
                                ISD::CondCode &CCCode);

  //===--------------------------------------------------------------------===//
  // Scalarization Support: LegalizeVectorTypes.cpp
  //===--------------------------------------------------------------------===//

  SDValue GetScalarizedVector(SDValue Op) {
    SDValue &ScalarizedOp = ScalarizedVectors[Op];
    RemapValue(ScalarizedOp);
    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
    return ScalarizedOp;
  }
  void SetScalarizedVector(SDValue Op, SDValue Result);

  // Vector Result Scalarization: <1 x ty> -> ty.
  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
  SDValue ScalarizeVecRes_BinOp(SDNode *N);
  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);

  SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
  SDValue ScalarizeVecRes_SELECT(SDNode *N);
  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
  SDValue ScalarizeVecRes_VSETCC(SDNode *N);

  // Vector Operand Scalarization: <1 x ty> -> ty.
  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
  SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);

  //===--------------------------------------------------------------------===//
  // Vector Splitting Support: LegalizeVectorTypes.cpp
  //===--------------------------------------------------------------------===//

  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);

  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
  void SplitVectorResult(SDNode *N, unsigned OpNo);
  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);

  void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);

  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
  SDValue SplitVecOp_UnaryOp(SDNode *N);

  SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
  SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);

  //===--------------------------------------------------------------------===//
  // Generic Splitting: LegalizeTypesGeneric.cpp
  //===--------------------------------------------------------------------===//

  // Legalization methods which only use that the illegal type is split into two
  // not necessarily identical types.  As such they can be used for splitting
  // vectors and expanding integers and floats.

  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    if (Op.getValueType().isVector())
      GetSplitVector(Op, Lo, Hi);
    else if (Op.getValueType().isInteger())
      GetExpandedInteger(Op, Lo, Hi);
    else
      GetExpandedFloat(Op, Lo, Hi);
  }

  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
  /// which is split (or expanded) into two not necessarily identical pieces.
  void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);

  // Generic Result Splitting.
  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);

  //===--------------------------------------------------------------------===//
  // Generic Expansion: LegalizeTypesGeneric.cpp
  //===--------------------------------------------------------------------===//

  // Legalization methods which only use that the illegal type is split into two
  // identical types of half the size, and that the Lo/Hi part is stored first
  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
  // such they can be used for expanding integers and floats.

  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    if (Op.getValueType().isInteger())
      GetExpandedInteger(Op, Lo, Hi);
    else
      GetExpandedFloat(Op, Lo, Hi);
  }

  // Generic Result Expansion.
  void ExpandRes_BIT_CONVERT       (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);

  // Generic Operand Expansion.
  SDValue ExpandOp_BIT_CONVERT    (SDNode *N);
  SDValue ExpandOp_BUILD_VECTOR   (SDNode *N);
  SDValue ExpandOp_EXTRACT_ELEMENT(SDNode *N);
  SDValue ExpandOp_NormalStore    (SDNode *N, unsigned OpNo);

};

} // end namespace llvm.

#endif