aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
blob: c4e72072103a8e0b6371d4fac0577cd141c506ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a simple two pass scheduler.  The first pass attempts to push
// backward any lengthy instructions and critical paths.  The second pass packs
// instructions into semi-optimal time slots.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <iostream>
using namespace llvm;

namespace {
  // Style of scheduling to use.
  enum ScheduleChoices {
    noScheduling,
    simpleScheduling,
  };
} // namespace

cl::opt<ScheduleChoices> ScheduleStyle("sched",
  cl::desc("Choose scheduling style"),
  cl::init(noScheduling),
  cl::values(
    clEnumValN(noScheduling, "none",
              "Trivial emission with no analysis"),
    clEnumValN(simpleScheduling, "simple",
              "Minimize critical path and maximize processor utilization"),
   clEnumValEnd));


#ifndef NDEBUG
static cl::opt<bool>
ViewDAGs("view-sched-dags", cl::Hidden,
         cl::desc("Pop up a window to show sched dags as they are processed"));
#else
static const bool ViewDAGs = 0;
#endif

namespace {
//===----------------------------------------------------------------------===//
///
/// BitsIterator - Provides iteration through individual bits in a bit vector.
///
template<class T>
class BitsIterator {
private:
  T Bits;                               // Bits left to iterate through

public:
  /// Ctor.
  BitsIterator(T Initial) : Bits(Initial) {}
  
  /// Next - Returns the next bit set or zero if exhausted.
  inline T Next() {
    // Get the rightmost bit set
    T Result = Bits & -Bits;
    // Remove from rest
    Bits &= ~Result;
    // Return single bit or zero
    return Result;
  }
};
  
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
///
/// ResourceTally - Manages the use of resources over time intervals.  Each
/// item (slot) in the tally vector represents the resources used at a given
/// moment.  A bit set to 1 indicates that a resource is in use, otherwise
/// available.  An assumption is made that the tally is large enough to schedule 
/// all current instructions (asserts otherwise.)
///
template<class T>
class ResourceTally {
private:
  std::vector<T> Tally;                 // Resources used per slot
  typedef typename std::vector<T>::iterator Iter;
                                        // Tally iterator 
  
  /// AllInUse - Test to see if all of the resources in the slot are busy (set.)
  inline bool AllInUse(Iter Cursor, unsigned ResourceSet) {
    return (*Cursor & ResourceSet) == ResourceSet;
  }

  /// Skip - Skip over slots that use all of the specified resource (all are
  /// set.)
  Iter Skip(Iter Cursor, unsigned ResourceSet) {
    assert(ResourceSet && "At least one resource bit needs to bet set");
    
    // Continue to the end
    while (true) {
      // Break out if one of the resource bits is not set
      if (!AllInUse(Cursor, ResourceSet)) return Cursor;
      // Try next slot
      Cursor++;
      assert(Cursor < Tally.end() && "Tally is not large enough for schedule");
    }
  }
  
  /// FindSlots - Starting from Begin, locate N consecutive slots where at least 
  /// one of the resource bits is available.  Returns the address of first slot.
  Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet,
                                         unsigned &Resource) {
    // Track position      
    Iter Cursor = Begin;
    
    // Try all possible slots forward
    while (true) {
      // Skip full slots
      Cursor = Skip(Cursor, ResourceSet);
      // Determine end of interval
      Iter End = Cursor + N;
      assert(End <= Tally.end() && "Tally is not large enough for schedule");
      
      // Iterate thru each resource
      BitsIterator<T> Resources(ResourceSet & ~*Cursor);
      while (unsigned Res = Resources.Next()) {
        // Check if resource is available for next N slots
        // Break out if resource is busy
        Iter Interval = Cursor;
        for (; Interval < End && !(*Interval & Res); Interval++) {}
        
        // If available for interval, return where and which resource
        if (Interval == End) {
          Resource = Res;
          return Cursor;
        }
        // Otherwise, check if worth checking other resources
        if (AllInUse(Interval, ResourceSet)) {
          // Start looking beyond interval
          Cursor = Interval;
          break;
        }
      }
      Cursor++;
    }
  }
  
  /// Reserve - Mark busy (set) the specified N slots.
  void Reserve(Iter Begin, unsigned N, unsigned Resource) {
    // Determine end of interval
    Iter End = Begin + N;
    assert(End <= Tally.end() && "Tally is not large enough for schedule");
 
    // Set resource bit in each slot
    for (; Begin < End; Begin++)
      *Begin |= Resource;
  }

public:
  /// Initialize - Resize and zero the tally to the specified number of time
  /// slots.
  inline void Initialize(unsigned N) {
    Tally.assign(N, 0);   // Initialize tally to all zeros.
  }
  
  // FindAndReserve - Locate and mark busy (set) N bits started at slot I, using
  // ResourceSet for choices.
  unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) {
    // Which resource used
    unsigned Resource;
    // Find slots for instruction.
    Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource);
    // Reserve the slots
    Reserve(Where, N, Resource);
    // Return time slot (index)
    return Where - Tally.begin();
  }

};
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
// This struct tracks information used to schedule the a node.
struct ScheduleInfo {
  SDOperand     Op;                     // Operand information
  unsigned      Latency;                // Cycles to complete instruction
  unsigned      ResourceSet;            // Bit vector of usable resources
  unsigned      Slot;                   // Operand's time slot
  
  // Ctor.
  ScheduleInfo(SDOperand op)
  : Op(op)
  , Latency(0)
  , ResourceSet(0)
  , Slot(0)
  {}
};
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
class SimpleSched {
private:
  // TODO - get ResourceSet from TII
  enum {
    RSInteger = 0x3,                    // Two integer units
    RSFloat = 0xC,                      // Two float units
    RSLoadStore = 0x30,                 // Two load store units
    RSOther = 0                         // Processing unit independent
  };
  
  MachineBasicBlock *BB;                // Current basic block
  SelectionDAG &DAG;                    // DAG of the current basic block
  const TargetMachine &TM;              // Target processor
  const TargetInstrInfo &TII;           // Target instruction information
  const MRegisterInfo &MRI;             // Target processor register information
  SSARegMap *RegMap;                    // Virtual/real register map
  MachineConstantPool *ConstPool;       // Target constant pool
  std::vector<ScheduleInfo> Operands;   // All operands to be scheduled
  std::vector<ScheduleInfo*> Ordering;  // Emit ordering of operands
  std::map<SDNode *, int> Visited;      // Operands that have been visited
  ResourceTally<unsigned> Tally;        // Resource usage tally
  unsigned NSlots;                      // Total latency
  std::map<SDNode *, unsigned>VRMap;    // Operand to VR map
  static const unsigned NotFound = ~0U; // Search marker
  
public:

  // Ctor.
  SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
    : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
      MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
      ConstPool(BB->getParent()->getConstantPool()),
      NSlots(0) {
    assert(&TII && "Target doesn't provide instr info?");
    assert(&MRI && "Target doesn't provide register info?");
  }
  
  // Run - perform scheduling.
  MachineBasicBlock *Run() {
    Schedule();
    return BB;
  }
  
private:
  static bool isFlagDefiner(SDOperand Op) { return isFlagDefiner(Op.Val); }
  static bool isFlagUser(SDOperand Op) { return isFlagUser(Op.Val); }
  static bool isFlagDefiner(SDNode *A);
  static bool isFlagUser(SDNode *A);
  static bool isDefiner(SDNode *A, SDNode *B);
  static bool isPassiveOperand(SDOperand Op);
  void IncludeOperand(SDOperand Op);
  void VisitAll();
  void Schedule();
  void GatherOperandInfo();
  bool isStrongDependency(SDOperand A, SDOperand B) {
    return isStrongDependency(A.Val, B.Val);
  }
  bool isWeakDependency(SDOperand A, SDOperand B) {
    return isWeakDependency(A.Val, B.Val);
  }
  static bool isStrongDependency(SDNode *A, SDNode *B);
  static bool isWeakDependency(SDNode *A, SDNode *B);
  void ScheduleBackward();
  void ScheduleForward();
  void EmitAll();
  void EmitFlagUsers(SDOperand Op);
  static unsigned CountResults(SDOperand Op);
  static unsigned CountOperands(SDOperand Op);
  unsigned CreateVirtualRegisters(SDOperand Op, MachineInstr *MI,
                                  unsigned NumResults,
                                  const TargetInstrDescriptor &II);
  unsigned Emit(SDOperand A);

  void printSI(std::ostream &O, ScheduleInfo *SI) const ;
  void print(std::ostream &O) const ;
  inline void dump(const char *tag) const { std::cerr << tag; dump(); }
  void dump() const;
};
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
class FlagUserIterator {
private:
  SDNode               *Definer;        // Node defining flag
  SDNode::use_iterator UI;              // User node iterator
  SDNode::use_iterator E;               // End of user nodes
  unsigned             MinRes;          // Minimum flag result

public:
  // Ctor.
  FlagUserIterator(SDNode *D)
  : Definer(D)
  , UI(D->use_begin())
  , E(D->use_end())
  , MinRes(D->getNumValues()) {
    // Find minimum flag result.
    while (MinRes && D->getValueType(MinRes - 1) == MVT::Flag) --MinRes;
  }
  
  /// isFlagUser - Return true if  node uses definer's flag.
  bool isFlagUser(SDNode *U) {
    // For each operand (in reverse to only look at flags)
    for (unsigned N = U->getNumOperands(); 0 < N--;) {
      // Get operand
      SDOperand Op = U->getOperand(N);
      // Not user if there are no flags
      if (Op.getValueType() != MVT::Flag) return false;
      // Return true if it is one of the flag results 
      if (Op.Val == Definer && Op.ResNo >= MinRes) return true;
    }
    // Not a flag user
    return false;
  }
  
  SDNode *next() {
    // Continue to next user
    while (UI != E) {
      // Next user node
      SDNode *User = *UI++;
      // Return true if is a flag user
      if (isFlagUser(User)) return User;
    }
    
    // No more user nodes
    return NULL;
  }
};

} // namespace


//===----------------------------------------------------------------------===//
/// isFlagDefiner - Returns true if the operand defines a flag result.
bool SimpleSched::isFlagDefiner(SDNode *A) {
  unsigned N = A->getNumValues();
  return N && A->getValueType(N - 1) == MVT::Flag;
}

/// isFlagUser - Returns true if the operand uses a flag result.
///
bool SimpleSched::isFlagUser(SDNode *A) {
  unsigned N = A->getNumOperands();
  return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
}

/// isDefiner - Return true if Node A is a definder for B.
///
bool SimpleSched::isDefiner(SDNode *A, SDNode *B) {
  for (unsigned i = 0, N = B->getNumOperands(); i < N; i++) {
    if (B->getOperand(i).Val == A) return true;
  }
  return false;
}

/// isPassiveOperand - Return true if the operand is a non-scheduled leaf
/// operand.
bool SimpleSched::isPassiveOperand(SDOperand Op) {
  if (isa<ConstantSDNode>(Op))       return true;
  if (isa<RegisterSDNode>(Op))       return true;
  if (isa<GlobalAddressSDNode>(Op))  return true;
  if (isa<BasicBlockSDNode>(Op))     return true;
  if (isa<FrameIndexSDNode>(Op))     return true;
  if (isa<ConstantPoolSDNode>(Op))   return true;
  if (isa<ExternalSymbolSDNode>(Op)) return true;
  return false;
}

/// IncludeOperand - Add operand to ScheduleInfo vector.
///
void SimpleSched::IncludeOperand(SDOperand Op) {
  // Ignore entry node
  if (Op.getOpcode() == ISD::EntryToken) return;
  // Check current count for operand
  int Count = Visited[Op.Val];
  // If the operand is already in list
  if (Count < 0) return;
  // If this the first time then get count 
  if (!Count) Count = Op.Val->use_size();
  // Decrement count to indicate a visit
  Count--;
  // If count has gone to zero then add operand to list
  if (!Count) {
    // Add operand
    Operands.push_back(ScheduleInfo(Op));
    // indicate operand has been added
    Count--;
  }
  // Mark as visited with new count 
  Visited[Op.Val] = Count;
}

/// VisitAll - Visit each operand breadth-wise to produce an initial ordering.
/// Note that the ordering in the Operands vector is reversed.
void SimpleSched::VisitAll() {
  // Add first element to list
  Operands.push_back(DAG.getRoot());
  for (unsigned i = 0; i < Operands.size(); i++) { // note: size() varies
    // Get next operand. Need copy because Operands vector is growing and
    // addresses can be ScheduleInfo changing.
    SDOperand Op = Operands[i].Op;
    // Get the number of real operands
    unsigned NodeOperands = CountOperands(Op);
    // Get the total number of operands
    unsigned NumOperands = Op.getNumOperands();

    // Visit all operands skipping the Other operand if present
    for (unsigned i = NumOperands; 0 < i--;) {
      SDOperand OpI = Op.getOperand(i);
      // Ignore passive operands
      if (isPassiveOperand(OpI)) continue;
      // Check out operand
      IncludeOperand(OpI);
    }
  }

  // Add entry node last (IncludeOperand filters entry nodes)
  if (DAG.getEntryNode().Val != DAG.getRoot().Val)
    Operands.push_back(DAG.getEntryNode());
}

/// GatherOperandInfo - Get latency and resource information about each operand.
///
void SimpleSched::GatherOperandInfo() {
  // Add addresses of operand info to ordering vector
  // Get number of operands
  unsigned N = Operands.size();
  // FIXME: This is an ugly (but temporary!) hack to test the scheduler before
  // we have real target info.
  
  // For each operand being scheduled
  for (unsigned i = 0; i < N; i++) {
    ScheduleInfo* SI = &Operands[N - i - 1];
    SDOperand Op = SI->Op;
    MVT::ValueType VT = Op.Val->getValueType(0);
    if (Op.isTargetOpcode()) {
      MachineOpCode TOpc = Op.getTargetOpcode();
      // FIXME SI->Latency = std::max(1, TII.maxLatency(TOpc));
      // FIXME SI->ResourceSet = TII.resources(TOpc);
      if (TII.isCall(TOpc)) {
        SI->ResourceSet = RSInteger;
        SI->Latency = 40;
      } else if (TII.isLoad(TOpc)) {
        SI->ResourceSet = RSLoadStore;
        SI->Latency = 5;
      } else if (TII.isStore(TOpc)) {
        SI->ResourceSet = RSLoadStore;
        SI->Latency = 2;
      } else if (MVT::isInteger(VT)) {
        SI->ResourceSet = RSInteger;
        SI->Latency = 2;
      } else if (MVT::isFloatingPoint(VT)) {
        SI->ResourceSet = RSFloat;
        SI->Latency = 3;
      } else {
        SI->ResourceSet = RSOther;
        SI->Latency = 0;
      }
    } else {
      if (MVT::isInteger(VT)) {
        SI->ResourceSet = RSInteger;
        SI->Latency = 2;
      } else if (MVT::isFloatingPoint(VT)) {
        SI->ResourceSet = RSFloat;
        SI->Latency = 3;
      } else {
        SI->ResourceSet = RSOther;
        SI->Latency = 0;
      }
    }
    
    // Add one slot for the instruction itself
    SI->Latency++;
    
    // Sum up all the latencies for max tally size
    NSlots += SI->Latency;
    
    // Place in initial sorted order
    // FIXME - PUNT - ignore flag users 
    if (!isFlagUser(Op)) Ordering.push_back(SI);
  }
}

/// isStrongDependency - Return true if operand A has results used by operand B. 
/// I.E., B must wait for latency of A.
bool SimpleSched::isStrongDependency(SDNode *A, SDNode *B) {
  // If A defines for B then it's a strong dependency
  if (isDefiner(A, B)) return true;
  // If A defines a flag then it's users are part of the dependency
  if (isFlagDefiner(A)) {
    // Check each flag user
    FlagUserIterator FI(A);
    while (SDNode *User = FI.next()) {
      // If flag user has strong dependency so does B
      if (isStrongDependency(User, B)) return true;
    }
  }
  // If B defines a flag then it's users are part of the dependency
  if (isFlagDefiner(B)) {
    // Check each flag user
    FlagUserIterator FI(B);
    while (SDNode *User = FI.next()) {
      // If flag user has strong dependency so does B
      if (isStrongDependency(A, User)) return true;
    }
  }
  return false;
}

/// isWeakDependency Return true if operand A produces a result that will
/// conflict with operands of B.
bool SimpleSched::isWeakDependency(SDNode *A, SDNode *B) {
  // TODO check for conflicting real registers and aliases
#if 0 // Since we are in SSA form and not checking register aliasing
  return A->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
#else
  return A->getOpcode() == ISD::EntryToken;
#endif
}

/// ScheduleBackward - Schedule instructions so that any long latency
/// instructions and the critical path get pushed back in time. Time is run in
/// reverse to allow code reuse of the Tally and eliminate the overhead of
/// biasing every slot indices against NSlots.
void SimpleSched::ScheduleBackward() {
  // Size and clear the resource tally
  Tally.Initialize(NSlots);
  // Get number of operands to schedule
  unsigned N = Ordering.size();
  
  // For each operand being scheduled
  for (unsigned i = N; 0 < i--;) {
    ScheduleInfo *SI = Ordering[i];
    // Track insertion
    unsigned Slot = NotFound;
    
    // Compare against those previously scheduled operands
    for (unsigned j = i + 1; j < N; j++) {
      // Get following instruction
      ScheduleInfo *Other = Ordering[j];
      
      // Check dependency against previously inserted operands
      if (isStrongDependency(SI->Op, Other->Op)) {
        Slot = Other->Slot + Other->Latency;
        break;
      } else if (isWeakDependency(SI->Op, Other->Op)) {
        Slot = Other->Slot;
        break;
      }
    }
    
    // If independent of others (or first entry)
    if (Slot == NotFound) Slot = 0;
    
    // Find a slot where the needed resources are available
    if (SI->ResourceSet)
      Slot = Tally.FindAndReserve(Slot, SI->Latency, SI->ResourceSet);
      
    // Set operand slot
    SI->Slot = Slot;
    
    // Insert sort based on slot
    unsigned j = i + 1;
    for (; j < N; j++) {
      // Get following instruction
      ScheduleInfo *Other = Ordering[j];
      // Should we look further
      if (Slot >= Other->Slot) break;
      // Shuffle other into ordering
      Ordering[j - 1] = Other;
    }
    // Insert operand in proper slot
    if (j != i + 1) Ordering[j - 1] = SI;
  }
}

/// ScheduleForward - Schedule instructions to maximize packing.
///
void SimpleSched::ScheduleForward() {
  // Size and clear the resource tally
  Tally.Initialize(NSlots);
  // Get number of operands to schedule
  unsigned N = Ordering.size();
  
  // For each operand being scheduled
  for (unsigned i = 0; i < N; i++) {
    ScheduleInfo *SI = Ordering[i];
    // Track insertion
    unsigned Slot = NotFound;
    
    // Compare against those previously scheduled operands
    for (unsigned j = i; 0 < j--;) {
      // Get following instruction
      ScheduleInfo *Other = Ordering[j];
      
      // Check dependency against previously inserted operands
      if (isStrongDependency(Other->Op, SI->Op)) {
        Slot = Other->Slot + Other->Latency;
        break;
      } else if (isWeakDependency(Other->Op, SI->Op)) {
        Slot = Other->Slot;
        break;
      }
    }
    
    // If independent of others (or first entry)
    if (Slot == NotFound) Slot = 0;
    
    // Find a slot where the needed resources are available
    if (SI->ResourceSet)
      Slot = Tally.FindAndReserve(Slot, SI->Latency, SI->ResourceSet);
      
    // Set operand slot
    SI->Slot = Slot;
    
    // Insert sort based on slot
    unsigned j = i;
    for (; 0 < j--;) {
      // Get following instruction
      ScheduleInfo *Other = Ordering[j];
      // Should we look further
      if (Slot >= Other->Slot) break;
      // Shuffle other into ordering
      Ordering[j + 1] = Other;
    }
    // Insert operand in proper slot
    if (j != i) Ordering[j + 1] = SI;
  }
}

/// EmitAll - Emit all operands in schedule sorted order.
///
void SimpleSched::EmitAll() {
  // For each operand in the ordering
  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
    // Get the scheduling info
    ScheduleInfo *SI = Ordering[i];
    // Get the operand
    SDOperand Op = SI->Op;
    // Emit the operand
    Emit(Op);
    // FIXME - PUNT - If Op defines a flag then it's users need to be emitted now
    if (isFlagDefiner(Op)) EmitFlagUsers(Op);
  }
}

/// EmitFlagUsers - Emit users of operands flag.
///
void SimpleSched::EmitFlagUsers(SDOperand Op) {
  // Check each flag user
  FlagUserIterator FI(Op.Val);
  while (SDNode *User = FI.next()) {
    // Construct user node as operand
    SDOperand OpU(User, 0);
    // Emit  user node
    Emit(OpU);
    // If user defines a flag then it's users need to be emitted now
    if (isFlagDefiner(User)) EmitFlagUsers(OpU);
  }
}

/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the machine instrs.)
unsigned SimpleSched::CountResults(SDOperand Op) {
  unsigned N = Op.Val->getNumValues();
  while (N && Op.Val->getValueType(N - 1) == MVT::Flag)
    --N;
  if (N && Op.Val->getValueType(N - 1) == MVT::Other)
    --N;    // Skip over chain result.
  return N;
}

/// CountOperands  The inputs to target nodes have any actual inputs first,
/// followed by an optional chain operand, then flag operands.  Compute the
/// number of actual operands that  will go into the machine instr.
unsigned SimpleSched::CountOperands(SDOperand Op) {
  unsigned N = Op.getNumOperands();
  while (N && Op.getOperand(N - 1).getValueType() == MVT::Flag)
    --N;
  if (N && Op.getOperand(N - 1).getValueType() == MVT::Other)
    --N; // Ignore chain if it exists.
  return N;
}

/// CreateVirtualRegisters - Add result register values for things that are
/// defined by this instruction.
unsigned SimpleSched::CreateVirtualRegisters(SDOperand Op, MachineInstr *MI,
                                             unsigned NumResults,
                                             const TargetInstrDescriptor &II) {
  // Create the result registers for this node and add the result regs to
  // the machine instruction.
  const TargetOperandInfo *OpInfo = II.OpInfo;
  unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
  MI->addRegOperand(ResultReg, MachineOperand::Def);
  for (unsigned i = 1; i != NumResults; ++i) {
    assert(OpInfo[i].RegClass && "Isn't a register operand!");
    MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[0].RegClass),
                      MachineOperand::Def);
  }
  return ResultReg;
}

/// Emit - Generate machine code for an operand and needed dependencies.
///
unsigned SimpleSched::Emit(SDOperand Op) {
  std::map<SDNode *, unsigned>::iterator OpI = VRMap.lower_bound(Op.Val);
  if (OpI != VRMap.end() && OpI->first == Op.Val)
    return OpI->second + Op.ResNo;
  unsigned &OpSlot = VRMap.insert(OpI, std::make_pair(Op.Val, 0))->second;
  
  unsigned ResultReg = 0;
  if (Op.isTargetOpcode()) {
    unsigned Opc = Op.getTargetOpcode();
    const TargetInstrDescriptor &II = TII.get(Opc);

    unsigned NumResults = CountResults(Op);
    unsigned NodeOperands = CountOperands(Op);
    unsigned NumMIOperands = NodeOperands + NumResults;
#ifndef NDEBUG
    assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
           "#operands for dag node doesn't match .td file!"); 
#endif

    // Create the new machine instruction.
    MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true);
    
    // Add result register values for things that are defined by this
    // instruction.
    if (NumResults) ResultReg = CreateVirtualRegisters(Op, MI, NumResults, II);
    
    // If there is a token chain operand, emit it first, as a hack to get avoid
    // really bad cases.
    if (Op.getNumOperands() > NodeOperands &&
        Op.getOperand(NodeOperands).getValueType() == MVT::Other) {
      Emit(Op.getOperand(NodeOperands));
    }
    
    // Emit all of the actual operands of this instruction, adding them to the
    // instruction as appropriate.
    for (unsigned i = 0; i != NodeOperands; ++i) {
      if (Op.getOperand(i).isTargetOpcode()) {
        // Note that this case is redundant with the final else block, but we
        // include it because it is the most common and it makes the logic
        // simpler here.
        assert(Op.getOperand(i).getValueType() != MVT::Other &&
               Op.getOperand(i).getValueType() != MVT::Flag &&
               "Chain and flag operands should occur at end of operand list!");
        
        MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use);
      } else if (ConstantSDNode *C =
                                   dyn_cast<ConstantSDNode>(Op.getOperand(i))) {
        MI->addZeroExtImm64Operand(C->getValue());
      } else if (RegisterSDNode*R =dyn_cast<RegisterSDNode>(Op.getOperand(i))) {
        MI->addRegOperand(R->getReg(), MachineOperand::Use);
      } else if (GlobalAddressSDNode *TGA =
                       dyn_cast<GlobalAddressSDNode>(Op.getOperand(i))) {
        MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0);
      } else if (BasicBlockSDNode *BB =
                       dyn_cast<BasicBlockSDNode>(Op.getOperand(i))) {
        MI->addMachineBasicBlockOperand(BB->getBasicBlock());
      } else if (FrameIndexSDNode *FI =
                       dyn_cast<FrameIndexSDNode>(Op.getOperand(i))) {
        MI->addFrameIndexOperand(FI->getIndex());
      } else if (ConstantPoolSDNode *CP = 
                    dyn_cast<ConstantPoolSDNode>(Op.getOperand(i))) {
        unsigned Idx = ConstPool->getConstantPoolIndex(CP->get());
        MI->addConstantPoolIndexOperand(Idx);
      } else if (ExternalSymbolSDNode *ES = 
                 dyn_cast<ExternalSymbolSDNode>(Op.getOperand(i))) {
        MI->addExternalSymbolOperand(ES->getSymbol(), false);
      } else {
        assert(Op.getOperand(i).getValueType() != MVT::Other &&
               Op.getOperand(i).getValueType() != MVT::Flag &&
               "Chain and flag operands should occur at end of operand list!");
        MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use);
      }
    }

    // Finally, if this node has any flag operands, we *must* emit them last, to
    // avoid emitting operations that might clobber the flags.
    if (Op.getNumOperands() > NodeOperands) {
      unsigned i = NodeOperands;
      if (Op.getOperand(i).getValueType() == MVT::Other)
        ++i;  // the chain is already selected.
      for (unsigned N = Op.getNumOperands(); i < N; i++) {
        assert(Op.getOperand(i).getValueType() == MVT::Flag &&
               "Must be flag operands!");
        Emit(Op.getOperand(i));
      }
    }
    
    // Now that we have emitted all operands, emit this instruction itself.
    if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
      BB->insert(BB->end(), MI);
    } else {
      // Insert this instruction into the end of the basic block, potentially
      // taking some custom action.
      BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
    }
  } else {
    switch (Op.getOpcode()) {
    default:
      Op.Val->dump(); 
      assert(0 && "This target-independent node should have been selected!");
    case ISD::EntryToken: break;
    case ISD::TokenFactor:
      for (unsigned i = 0, N = Op.getNumOperands(); i < N; i++) {
        Emit(Op.getOperand(i));
      }
      break;
    case ISD::CopyToReg: {
      SDOperand FlagOp;
      if (Op.getNumOperands() == 4) {
        FlagOp = Op.getOperand(3);
      }
      if (Op.getOperand(0).Val != FlagOp.Val) {
        Emit(Op.getOperand(0));   // Emit the chain.
      }
      unsigned Val = Emit(Op.getOperand(2));
      if (FlagOp.Val) {
        Emit(FlagOp);
      }
      MRI.copyRegToReg(*BB, BB->end(),
                       cast<RegisterSDNode>(Op.getOperand(1))->getReg(), Val,
                       RegMap->getRegClass(Val));
      break;
    }
    case ISD::CopyFromReg: {
      Emit(Op.getOperand(0));   // Emit the chain.
      unsigned SrcReg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
      
      // Figure out the register class to create for the destreg.
      const TargetRegisterClass *TRC = 0;
      if (MRegisterInfo::isVirtualRegister(SrcReg)) {
        TRC = RegMap->getRegClass(SrcReg);
      } else {
        // FIXME: we don't know what register class to generate this for.  Do
        // a brute force search and pick the first match. :(
        for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
               E = MRI.regclass_end(); I != E; ++I)
          if ((*I)->contains(SrcReg)) {
            TRC = *I;
            break;
          }
        assert(TRC && "Couldn't find register class for reg copy!");
      }
      
      // Create the reg, emit the copy.
      ResultReg = RegMap->createVirtualRegister(TRC);
      MRI.copyRegToReg(*BB, BB->end(), ResultReg, SrcReg, TRC);
      break;
    }
    }
  }

  OpSlot = ResultReg;
  return ResultReg+Op.ResNo;
}

/// Schedule - Order operands according to selected style.
///
void SimpleSched::Schedule() {
  switch (ScheduleStyle) {
  case simpleScheduling:
    // Breadth first walk of DAG
    VisitAll();
    // Get latency and resource requirements
    GatherOperandInfo();
    // Don't waste time if is only entry and return
    if (Operands.size() > 2) {
      DEBUG(dump("Pre-"));
      // Push back long instructions and critical path
      ScheduleBackward();
      DEBUG(dump("Mid-"));
      // Pack instructions to maximize resource utilization
      ScheduleForward();
      DEBUG(dump("Post-"));
      // Emit in scheduled order
      EmitAll();
      break;
    } // fall thru
  case noScheduling:
    // Emit instructions in using a DFS from the exit root
    Emit(DAG.getRoot());
    break;
  }
}

/// printSI - Print schedule info.
///
void SimpleSched::printSI(std::ostream &O, ScheduleInfo *SI) const {
#ifndef NDEBUG
  using namespace std;
  SDOperand Op = SI->Op;
  O << " "
    << hex << Op.Val
    << ", RS=" << SI->ResourceSet
    << ", Lat=" << SI->Latency
    << ", Slot=" << SI->Slot
    << ", ARITY=(" << Op.getNumOperands() << ","
                   << Op.Val->getNumValues() << ")"
    << " " << Op.Val->getOperationName(&DAG);
  if (isFlagDefiner(Op)) O << "<#";
  if (isFlagUser(Op)) O << ">#";
#endif
}

/// print - Print ordering to specified output stream.
///
void SimpleSched::print(std::ostream &O) const {
#ifndef NDEBUG
  using namespace std;
  O << "Ordering\n";
  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
    printSI(O, Ordering[i]);
    O << "\n";
  }
#endif
}

/// dump - Print ordering to std::cerr.
///
void SimpleSched::dump() const {
  print(std::cerr);
}
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
/// target node in the graph.
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
  if (ViewDAGs) SD.viewGraph();
  BB = SimpleSched(SD, BB).Run();  
}