aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
blob: 6c5e0ab8b2cf56a0b82941608f471572a4a38013 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a fast scheduler.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "InstrEmitter.h"
#include "ScheduleDAGSDNodes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;

STATISTIC(NumUnfolds,    "Number of nodes unfolded");
STATISTIC(NumDups,       "Number of duplicated nodes");
STATISTIC(NumPRCopies,   "Number of physical copies");

static RegisterScheduler
  fastDAGScheduler("fast", "Fast suboptimal list scheduling",
                   createFastDAGScheduler);
static RegisterScheduler
  linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
                        createDAGLinearizer);


namespace {
  /// FastPriorityQueue - A degenerate priority queue that considers
  /// all nodes to have the same priority.
  ///
  struct FastPriorityQueue {
    SmallVector<SUnit *, 16> Queue;

    bool empty() const { return Queue.empty(); }

    void push(SUnit *U) {
      Queue.push_back(U);
    }

    SUnit *pop() {
      if (empty()) return NULL;
      SUnit *V = Queue.back();
      Queue.pop_back();
      return V;
    }
  };

//===----------------------------------------------------------------------===//
/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
///
class ScheduleDAGFast : public ScheduleDAGSDNodes {
private:
  /// AvailableQueue - The priority queue to use for the available SUnits.
  FastPriorityQueue AvailableQueue;

  /// LiveRegDefs - A set of physical registers and their definition
  /// that are "live". These nodes must be scheduled before any other nodes that
  /// modifies the registers can be scheduled.
  unsigned NumLiveRegs;
  std::vector<SUnit*> LiveRegDefs;
  std::vector<unsigned> LiveRegCycles;

public:
  ScheduleDAGFast(MachineFunction &mf)
    : ScheduleDAGSDNodes(mf) {}

  void Schedule();

  /// AddPred - adds a predecessor edge to SUnit SU.
  /// This returns true if this is a new predecessor.
  void AddPred(SUnit *SU, const SDep &D) {
    SU->addPred(D);
  }

  /// RemovePred - removes a predecessor edge from SUnit SU.
  /// This returns true if an edge was removed.
  void RemovePred(SUnit *SU, const SDep &D) {
    SU->removePred(D);
  }

private:
  void ReleasePred(SUnit *SU, SDep *PredEdge);
  void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
  void ScheduleNodeBottomUp(SUnit*, unsigned);
  SUnit *CopyAndMoveSuccessors(SUnit*);
  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
                                const TargetRegisterClass*,
                                const TargetRegisterClass*,
                                SmallVectorImpl<SUnit*>&);
  bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
  void ListScheduleBottomUp();

  /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
  bool forceUnitLatencies() const { return true; }
};
}  // end anonymous namespace


/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGFast::Schedule() {
  DEBUG(dbgs() << "********** List Scheduling **********\n");

  NumLiveRegs = 0;
  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
  LiveRegCycles.resize(TRI->getNumRegs(), 0);

  // Build the scheduling graph.
  BuildSchedGraph(NULL);

  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(this));

  // Execute the actual scheduling loop.
  ListScheduleBottomUp();
}

//===----------------------------------------------------------------------===//
//  Bottom-Up Scheduling
//===----------------------------------------------------------------------===//

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();

#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    PredSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --PredSU->NumSuccsLeft;

  // If all the node's successors are scheduled, this node is ready
  // to be scheduled. Ignore the special EntrySU node.
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    PredSU->isAvailable = true;
    AvailableQueue.push(PredSU);
  }
}

void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
  // Bottom up: release predecessors
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    ReleasePred(SU, &*I);
    if (I->isAssignedRegDep()) {
      // This is a physical register dependency and it's impossible or
      // expensive to copy the register. Make sure nothing that can
      // clobber the register is scheduled between the predecessor and
      // this node.
      if (!LiveRegDefs[I->getReg()]) {
        ++NumLiveRegs;
        LiveRegDefs[I->getReg()] = I->getSUnit();
        LiveRegCycles[I->getReg()] = CurCycle;
      }
    }
  }
}

/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
  DEBUG(SU->dump(this));

  assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
  SU->setHeightToAtLeast(CurCycle);
  Sequence.push_back(SU);

  ReleasePredecessors(SU, CurCycle);

  // Release all the implicit physical register defs that are live.
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isAssignedRegDep()) {
      if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
        assert(LiveRegDefs[I->getReg()] == SU &&
               "Physical register dependency violated?");
        --NumLiveRegs;
        LiveRegDefs[I->getReg()] = NULL;
        LiveRegCycles[I->getReg()] = 0;
      }
    }
  }

  SU->isScheduled = true;
}

/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
  if (SU->getNode()->getGluedNode())
    return NULL;

  SDNode *N = SU->getNode();
  if (!N)
    return NULL;

  SUnit *NewSU;
  bool TryUnfold = false;
  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    EVT VT = N->getValueType(i);
    if (VT == MVT::Glue)
      return NULL;
    else if (VT == MVT::Other)
      TryUnfold = true;
  }
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    const SDValue &Op = N->getOperand(i);
    EVT VT = Op.getNode()->getValueType(Op.getResNo());
    if (VT == MVT::Glue)
      return NULL;
  }

  if (TryUnfold) {
    SmallVector<SDNode*, 2> NewNodes;
    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
      return NULL;

    DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
    assert(NewNodes.size() == 2 && "Expected a load folding node!");

    N = NewNodes[1];
    SDNode *LoadNode = NewNodes[0];
    unsigned NumVals = N->getNumValues();
    unsigned OldNumVals = SU->getNode()->getNumValues();
    for (unsigned i = 0; i != NumVals; ++i)
      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
                                   SDValue(LoadNode, 1));

    SUnit *NewSU = newSUnit(N);
    assert(N->getNodeId() == -1 && "Node already inserted!");
    N->setNodeId(NewSU->NodeNum);

    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
        NewSU->isTwoAddress = true;
        break;
      }
    }
    if (MCID.isCommutable())
      NewSU->isCommutable = true;

    // LoadNode may already exist. This can happen when there is another
    // load from the same location and producing the same type of value
    // but it has different alignment or volatileness.
    bool isNewLoad = true;
    SUnit *LoadSU;
    if (LoadNode->getNodeId() != -1) {
      LoadSU = &SUnits[LoadNode->getNodeId()];
      isNewLoad = false;
    } else {
      LoadSU = newSUnit(LoadNode);
      LoadNode->setNodeId(LoadSU->NodeNum);
    }

    SDep ChainPred;
    SmallVector<SDep, 4> ChainSuccs;
    SmallVector<SDep, 4> LoadPreds;
    SmallVector<SDep, 4> NodePreds;
    SmallVector<SDep, 4> NodeSuccs;
    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
         I != E; ++I) {
      if (I->isCtrl())
        ChainPred = *I;
      else if (I->getSUnit()->getNode() &&
               I->getSUnit()->getNode()->isOperandOf(LoadNode))
        LoadPreds.push_back(*I);
      else
        NodePreds.push_back(*I);
    }
    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
         I != E; ++I) {
      if (I->isCtrl())
        ChainSuccs.push_back(*I);
      else
        NodeSuccs.push_back(*I);
    }

    if (ChainPred.getSUnit()) {
      RemovePred(SU, ChainPred);
      if (isNewLoad)
        AddPred(LoadSU, ChainPred);
    }
    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
      const SDep &Pred = LoadPreds[i];
      RemovePred(SU, Pred);
      if (isNewLoad) {
        AddPred(LoadSU, Pred);
      }
    }
    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
      const SDep &Pred = NodePreds[i];
      RemovePred(SU, Pred);
      AddPred(NewSU, Pred);
    }
    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
      SDep D = NodeSuccs[i];
      SUnit *SuccDep = D.getSUnit();
      D.setSUnit(SU);
      RemovePred(SuccDep, D);
      D.setSUnit(NewSU);
      AddPred(SuccDep, D);
    }
    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
      SDep D = ChainSuccs[i];
      SUnit *SuccDep = D.getSUnit();
      D.setSUnit(SU);
      RemovePred(SuccDep, D);
      if (isNewLoad) {
        D.setSUnit(LoadSU);
        AddPred(SuccDep, D);
      }
    }
    if (isNewLoad) {
      SDep D(LoadSU, SDep::Barrier);
      D.setLatency(LoadSU->Latency);
      AddPred(NewSU, D);
    }

    ++NumUnfolds;

    if (NewSU->NumSuccsLeft == 0) {
      NewSU->isAvailable = true;
      return NewSU;
    }
    SU = NewSU;
  }

  DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
  NewSU = Clone(SU);

  // New SUnit has the exact same predecessors.
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I)
    if (!I->isArtificial())
      AddPred(NewSU, *I);

  // Only copy scheduled successors. Cut them from old node's successor
  // list and move them over.
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isArtificial())
      continue;
    SUnit *SuccSU = I->getSUnit();
    if (SuccSU->isScheduled) {
      SDep D = *I;
      D.setSUnit(NewSU);
      AddPred(SuccSU, D);
      D.setSUnit(SU);
      DelDeps.push_back(std::make_pair(SuccSU, D));
    }
  }
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
    RemovePred(DelDeps[i].first, DelDeps[i].second);

  ++NumDups;
  return NewSU;
}

/// InsertCopiesAndMoveSuccs - Insert register copies and move all
/// scheduled successors of the given SUnit to the last copy.
void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
                                              const TargetRegisterClass *DestRC,
                                              const TargetRegisterClass *SrcRC,
                                              SmallVectorImpl<SUnit*> &Copies) {
  SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(NULL));
  CopyFromSU->CopySrcRC = SrcRC;
  CopyFromSU->CopyDstRC = DestRC;

  SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(NULL));
  CopyToSU->CopySrcRC = DestRC;
  CopyToSU->CopyDstRC = SrcRC;

  // Only copy scheduled successors. Cut them from old node's successor
  // list and move them over.
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isArtificial())
      continue;
    SUnit *SuccSU = I->getSUnit();
    if (SuccSU->isScheduled) {
      SDep D = *I;
      D.setSUnit(CopyToSU);
      AddPred(SuccSU, D);
      DelDeps.push_back(std::make_pair(SuccSU, *I));
    }
  }
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
    RemovePred(DelDeps[i].first, DelDeps[i].second);
  }
  SDep FromDep(SU, SDep::Data, Reg);
  FromDep.setLatency(SU->Latency);
  AddPred(CopyFromSU, FromDep);
  SDep ToDep(CopyFromSU, SDep::Data, 0);
  ToDep.setLatency(CopyFromSU->Latency);
  AddPred(CopyToSU, ToDep);

  Copies.push_back(CopyFromSU);
  Copies.push_back(CopyToSU);

  ++NumPRCopies;
}

/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
                                 const TargetInstrInfo *TII) {
  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
  unsigned NumRes = MCID.getNumDefs();
  for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
    if (Reg == *ImpDef)
      break;
    ++NumRes;
  }
  return N->getValueType(NumRes);
}

/// CheckForLiveRegDef - Return true and update live register vector if the
/// specified register def of the specified SUnit clobbers any "live" registers.
static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
                               std::vector<SUnit*> &LiveRegDefs,
                               SmallSet<unsigned, 4> &RegAdded,
                               SmallVectorImpl<unsigned> &LRegs,
                               const TargetRegisterInfo *TRI) {
  bool Added = false;
  for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
    if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
      if (RegAdded.insert(*AI)) {
        LRegs.push_back(*AI);
        Added = true;
      }
    }
  }
  return Added;
}

/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
                                              SmallVectorImpl<unsigned> &LRegs){
  if (NumLiveRegs == 0)
    return false;

  SmallSet<unsigned, 4> RegAdded;
  // If this node would clobber any "live" register, then it's not ready.
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isAssignedRegDep()) {
      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
                         RegAdded, LRegs, TRI);
    }
  }

  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
    if (Node->getOpcode() == ISD::INLINEASM) {
      // Inline asm can clobber physical defs.
      unsigned NumOps = Node->getNumOperands();
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
        --NumOps;  // Ignore the glue operand.

      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
        unsigned Flags =
          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);

        ++i; // Skip the ID value.
        if (InlineAsm::isRegDefKind(Flags) ||
            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
            InlineAsm::isClobberKind(Flags)) {
          // Check for def of register or earlyclobber register.
          for (; NumVals; --NumVals, ++i) {
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
            if (TargetRegisterInfo::isPhysicalRegister(Reg))
              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
          }
        } else
          i += NumVals;
      }
      continue;
    }
    if (!Node->isMachineOpcode())
      continue;
    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
    if (!MCID.ImplicitDefs)
      continue;
    for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
    }
  }
  return !LRegs.empty();
}


/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGFast::ListScheduleBottomUp() {
  unsigned CurCycle = 0;

  // Release any predecessors of the special Exit node.
  ReleasePredecessors(&ExitSU, CurCycle);

  // Add root to Available queue.
  if (!SUnits.empty()) {
    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
    RootSU->isAvailable = true;
    AvailableQueue.push(RootSU);
  }

  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  SmallVector<SUnit*, 4> NotReady;
  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
  Sequence.reserve(SUnits.size());
  while (!AvailableQueue.empty()) {
    bool Delayed = false;
    LRegsMap.clear();
    SUnit *CurSU = AvailableQueue.pop();
    while (CurSU) {
      SmallVector<unsigned, 4> LRegs;
      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
        break;
      Delayed = true;
      LRegsMap.insert(std::make_pair(CurSU, LRegs));

      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
      NotReady.push_back(CurSU);
      CurSU = AvailableQueue.pop();
    }

    // All candidates are delayed due to live physical reg dependencies.
    // Try code duplication or inserting cross class copies
    // to resolve it.
    if (Delayed && !CurSU) {
      if (!CurSU) {
        // Try duplicating the nodes that produces these
        // "expensive to copy" values to break the dependency. In case even
        // that doesn't work, insert cross class copies.
        SUnit *TrySU = NotReady[0];
        SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
        assert(LRegs.size() == 1 && "Can't handle this yet!");
        unsigned Reg = LRegs[0];
        SUnit *LRDef = LiveRegDefs[Reg];
        EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
        const TargetRegisterClass *RC =
          TRI->getMinimalPhysRegClass(Reg, VT);
        const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);

        // If cross copy register class is the same as RC, then it must be
        // possible copy the value directly. Do not try duplicate the def.
        // If cross copy register class is not the same as RC, then it's
        // possible to copy the value but it require cross register class copies
        // and it is expensive.
        // If cross copy register class is null, then it's not possible to copy
        // the value at all.
        SUnit *NewDef = 0;
        if (DestRC != RC) {
          NewDef = CopyAndMoveSuccessors(LRDef);
          if (!DestRC && !NewDef)
            report_fatal_error("Can't handle live physical "
                               "register dependency!");
        }
        if (!NewDef) {
          // Issue copies, these can be expensive cross register class copies.
          SmallVector<SUnit*, 2> Copies;
          InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
          DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
                       << " to SU #" << Copies.front()->NodeNum << "\n");
          AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
          NewDef = Copies.back();
        }

        DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
                     << " to SU #" << TrySU->NodeNum << "\n");
        LiveRegDefs[Reg] = NewDef;
        AddPred(NewDef, SDep(TrySU, SDep::Artificial));
        TrySU->isAvailable = false;
        CurSU = NewDef;
      }

      if (!CurSU) {
        llvm_unreachable("Unable to resolve live physical register dependencies!");
      }
    }

    // Add the nodes that aren't ready back onto the available list.
    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
      NotReady[i]->isPending = false;
      // May no longer be available due to backtracking.
      if (NotReady[i]->isAvailable)
        AvailableQueue.push(NotReady[i]);
    }
    NotReady.clear();

    if (CurSU)
      ScheduleNodeBottomUp(CurSU, CurCycle);
    ++CurCycle;
  }

  // Reverse the order since it is bottom up.
  std::reverse(Sequence.begin(), Sequence.end());

#ifndef NDEBUG
  VerifyScheduledSequence(/*isBottomUp=*/true);
#endif
}


namespace {
//===----------------------------------------------------------------------===//
// ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
// DAG in topological order.
// IMPORTANT: this may not work for targets with phyreg dependency.
//
class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
public:
  ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}

  void Schedule();

  MachineBasicBlock *EmitSchedule(MachineBasicBlock::iterator &InsertPos);

private:
  std::vector<SDNode*> Sequence;
  DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user

  void ScheduleNode(SDNode *N);
};
} // end anonymous namespace

void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
  if (N->getNodeId() != 0)
    llvm_unreachable(0);

  if (!N->isMachineOpcode() &&
      (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
    // These nodes do not need to be translated into MIs.
    return;

  DEBUG(dbgs() << "\n*** Scheduling: ");
  DEBUG(N->dump(DAG));
  Sequence.push_back(N);

  unsigned NumOps = N->getNumOperands();
  if (unsigned NumLeft = NumOps) {
    SDNode *GluedOpN = 0;
    do {
      const SDValue &Op = N->getOperand(NumLeft-1);
      SDNode *OpN = Op.getNode();

      if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
        // Schedule glue operand right above N.
        GluedOpN = OpN;
        assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
        OpN->setNodeId(0);
        ScheduleNode(OpN);
        continue;
      }

      if (OpN == GluedOpN)
        // Glue operand is already scheduled.
        continue;

      DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
      if (DI != GluedMap.end() && DI->second != N)
        // Users of glues are counted against the glued users.
        OpN = DI->second;

      unsigned Degree = OpN->getNodeId();
      assert(Degree > 0 && "Predecessor over-released!");
      OpN->setNodeId(--Degree);
      if (Degree == 0)
        ScheduleNode(OpN);
    } while (--NumLeft);
  }
}

/// findGluedUser - Find the representative use of a glue value by walking
/// the use chain.
static SDNode *findGluedUser(SDNode *N) {
  while (SDNode *Glued = N->getGluedUser())
    N = Glued;
  return N;
}

void ScheduleDAGLinearize::Schedule() {
  DEBUG(dbgs() << "********** DAG Linearization **********\n");

  SmallVector<SDNode*, 8> Glues;
  unsigned DAGSize = 0;
  for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(),
         E = DAG->allnodes_end(); I != E; ++I) {
    SDNode *N = I;

    // Use node id to record degree.
    unsigned Degree = N->use_size();
    N->setNodeId(Degree);
    unsigned NumVals = N->getNumValues();
    if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
        N->hasAnyUseOfValue(NumVals-1)) {
      SDNode *User = findGluedUser(N);
      if (User) {
        Glues.push_back(N);
        GluedMap.insert(std::make_pair(N, User));
      }
    }

    if (N->isMachineOpcode() ||
        (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
      ++DAGSize;
  }

  for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
    SDNode *Glue = Glues[i];
    SDNode *GUser = GluedMap[Glue];
    unsigned Degree = Glue->getNodeId();
    unsigned UDegree = GUser->getNodeId();

    // Glue user must be scheduled together with the glue operand. So other
    // users of the glue operand must be treated as its users.
    SDNode *ImmGUser = Glue->getGluedUser();
    for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
         ui != ue; ++ui)
      if (*ui == ImmGUser)
        --Degree;
    GUser->setNodeId(UDegree + Degree);
    Glue->setNodeId(1);
  }

  Sequence.reserve(DAGSize);
  ScheduleNode(DAG->getRoot().getNode());
}

MachineBasicBlock*
ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
  InstrEmitter Emitter(BB, InsertPos);
  DenseMap<SDValue, unsigned> VRBaseMap;

  DEBUG({
      dbgs() << "\n*** Final schedule ***\n";
    });

  // FIXME: Handle dbg_values.
  unsigned NumNodes = Sequence.size();
  for (unsigned i = 0; i != NumNodes; ++i) {
    SDNode *N = Sequence[NumNodes-i-1];
    DEBUG(N->dump(DAG));
    Emitter.EmitNode(N, false, false, VRBaseMap);
  }

  DEBUG(dbgs() << '\n');

  InsertPos = Emitter.getInsertPos();
  return Emitter.getBlock();
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

llvm::ScheduleDAGSDNodes *
llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
  return new ScheduleDAGFast(*IS->MF);
}

llvm::ScheduleDAGSDNodes *
llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
  return new ScheduleDAGLinearize(*IS->MF);
}