aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
blob: fd05980cdc028e6d6c2fc36a0ed07905a828e57b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements bottom-up and top-down list schedulers, using standard
// algorithms.  The basic approach uses a priority queue of available nodes to
// schedule.  One at a time, nodes are taken from the priority queue (thus in
// priority order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <climits>
#include <iostream>
#include <queue>
#include <set>
#include <vector>
#include "llvm/Support/CommandLine.h"
using namespace llvm;

namespace {
  Statistic<> NumNoops ("scheduler", "Number of noops inserted");
  Statistic<> NumStalls("scheduler", "Number of pipeline stalls");

  /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
  /// a group of nodes flagged together.
  struct SUnit {
    SDNode *Node;                       // Representative node.
    std::vector<SDNode*> FlaggedNodes;  // All nodes flagged to Node.
    std::set<SUnit*> Preds;             // All real predecessors.
    std::set<SUnit*> ChainPreds;        // All chain predecessors.
    std::set<SUnit*> Succs;             // All real successors.
    std::set<SUnit*> ChainSuccs;        // All chain successors.
    short NumPredsLeft;                 // # of preds not scheduled.
    short NumSuccsLeft;                 // # of succs not scheduled.
    short NumChainPredsLeft;            // # of chain preds not scheduled.
    short NumChainSuccsLeft;            // # of chain succs not scheduled.
    bool isTwoAddress     : 1;          // Is a two-address instruction.
    bool isDefNUseOperand : 1;          // Is a def&use operand.
    unsigned short Latency;             // Node latency.
    unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
    unsigned NodeNum;                   // Entry # of node in the node vector.
    
    SUnit(SDNode *node, unsigned nodenum)
      : Node(node), NumPredsLeft(0), NumSuccsLeft(0),
      NumChainPredsLeft(0), NumChainSuccsLeft(0),
      isTwoAddress(false), isDefNUseOperand(false),
      Latency(0), CycleBound(0), NodeNum(nodenum) {}
    
    void dump(const SelectionDAG *G) const;
    void dumpAll(const SelectionDAG *G) const;
  };
}

void SUnit::dump(const SelectionDAG *G) const {
  std::cerr << "SU: ";
  Node->dump(G);
  std::cerr << "\n";
  if (FlaggedNodes.size() != 0) {
    for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
      std::cerr << "    ";
      FlaggedNodes[i]->dump(G);
      std::cerr << "\n";
    }
  }
}

void SUnit::dumpAll(const SelectionDAG *G) const {
  dump(G);

  std::cerr << "  # preds left       : " << NumPredsLeft << "\n";
  std::cerr << "  # succs left       : " << NumSuccsLeft << "\n";
  std::cerr << "  # chain preds left : " << NumChainPredsLeft << "\n";
  std::cerr << "  # chain succs left : " << NumChainSuccsLeft << "\n";
  std::cerr << "  Latency            : " << Latency << "\n";

  if (Preds.size() != 0) {
    std::cerr << "  Predecessors:\n";
    for (std::set<SUnit*>::const_iterator I = Preds.begin(),
           E = Preds.end(); I != E; ++I) {
      std::cerr << "    ";
      (*I)->dump(G);
    }
  }
  if (ChainPreds.size() != 0) {
    std::cerr << "  Chained Preds:\n";
    for (std::set<SUnit*>::const_iterator I = ChainPreds.begin(),
           E = ChainPreds.end(); I != E; ++I) {
      std::cerr << "    ";
      (*I)->dump(G);
    }
  }
  if (Succs.size() != 0) {
    std::cerr << "  Successors:\n";
    for (std::set<SUnit*>::const_iterator I = Succs.begin(),
           E = Succs.end(); I != E; ++I) {
      std::cerr << "    ";
      (*I)->dump(G);
    }
  }
  if (ChainSuccs.size() != 0) {
    std::cerr << "  Chained succs:\n";
    for (std::set<SUnit*>::const_iterator I = ChainSuccs.begin(),
           E = ChainSuccs.end(); I != E; ++I) {
      std::cerr << "    ";
      (*I)->dump(G);
    }
  }
  std::cerr << "\n";
}

//===----------------------------------------------------------------------===//
/// SchedulingPriorityQueue - This interface is used to plug different
/// priorities computation algorithms into the list scheduler. It implements the
/// interface of a standard priority queue, where nodes are inserted in 
/// arbitrary order and returned in priority order.  The computation of the
/// priority and the representation of the queue are totally up to the
/// implementation to decide.
/// 
namespace {
class SchedulingPriorityQueue {
public:
  virtual ~SchedulingPriorityQueue() {}
  
  virtual void initNodes(const std::vector<SUnit> &SUnits) = 0;
  virtual void releaseState() = 0;
  
  virtual bool empty() const = 0;
  virtual void push(SUnit *U) = 0;
  
  virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
  virtual SUnit *pop() = 0;
  
  /// ScheduledNode - As each node is scheduled, this method is invoked.  This
  /// allows the priority function to adjust the priority of node that have
  /// already been emitted.
  virtual void ScheduledNode(SUnit *Node) {}
};
}



namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGList - The actual list scheduler implementation.  This supports
/// both top-down and bottom-up scheduling.
///
class ScheduleDAGList : public ScheduleDAG {
private:
  // SDNode to SUnit mapping (many to one).
  std::map<SDNode*, SUnit*> SUnitMap;
  // The schedule.  Null SUnit*'s represent noop instructions.
  std::vector<SUnit*> Sequence;
  // Current scheduling cycle.
  unsigned CurrCycle;
  
  // The scheduling units.
  std::vector<SUnit> SUnits;

  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
  /// it is top-down.
  bool isBottomUp;
  
  /// PriorityQueue - The priority queue to use.
  SchedulingPriorityQueue *PriorityQueue;
  
  /// HazardRec - The hazard recognizer to use.
  HazardRecognizer *HazardRec;
  
public:
  ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
                  const TargetMachine &tm, bool isbottomup,
                  SchedulingPriorityQueue *priorityqueue,
                  HazardRecognizer *HR)
    : ScheduleDAG(listSchedulingBURR, dag, bb, tm),
      CurrCycle(0), isBottomUp(isbottomup), 
      PriorityQueue(priorityqueue), HazardRec(HR) {
    }

  ~ScheduleDAGList() {
    delete HazardRec;
    delete PriorityQueue;
  }

  void Schedule();

  void dumpSchedule() const;

private:
  SUnit *NewSUnit(SDNode *N);
  void ReleasePred(SUnit *PredSU, bool isChain = false);
  void ReleaseSucc(SUnit *SuccSU, bool isChain = false);
  void ScheduleNodeBottomUp(SUnit *SU);
  void ScheduleNodeTopDown(SUnit *SU);
  void ListScheduleTopDown();
  void ListScheduleBottomUp();
  void BuildSchedUnits();
  void EmitSchedule();
};
}  // end anonymous namespace

HazardRecognizer::~HazardRecognizer() {}


/// NewSUnit - Creates a new SUnit and return a ptr to it.
SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
  SUnits.push_back(SUnit(N, SUnits.size()));
  return &SUnits.back();
}

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the Available queue is the count reaches zero. Also update its cycle bound.
void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain) {
  // FIXME: the distance between two nodes is not always == the predecessor's
  // latency. For example, the reader can very well read the register written
  // by the predecessor later than the issue cycle. It also depends on the
  // interrupt model (drain vs. freeze).
  PredSU->CycleBound = std::max(PredSU->CycleBound,CurrCycle + PredSU->Latency);

  if (!isChain)
    PredSU->NumSuccsLeft--;
  else
    PredSU->NumChainSuccsLeft--;
  
#ifndef NDEBUG
  if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
    std::cerr << "*** List scheduling failed! ***\n";
    PredSU->dump(&DAG);
    std::cerr << " has been released too many times!\n";
    assert(0);
  }
#endif
  
  if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
    // EntryToken has to go last!  Special case it here.
    if (PredSU->Node->getOpcode() != ISD::EntryToken)
      PriorityQueue->push(PredSU);
  }
}

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the Available queue is the count reaches zero. Also update its cycle bound.
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
  // FIXME: the distance between two nodes is not always == the predecessor's
  // latency. For example, the reader can very well read the register written
  // by the predecessor later than the issue cycle. It also depends on the
  // interrupt model (drain vs. freeze).
  SuccSU->CycleBound = std::max(SuccSU->CycleBound,CurrCycle + SuccSU->Latency);
  
  if (!isChain)
    SuccSU->NumPredsLeft--;
  else
    SuccSU->NumChainPredsLeft--;
  
#ifndef NDEBUG
  if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
    std::cerr << "*** List scheduling failed! ***\n";
    SuccSU->dump(&DAG);
    std::cerr << " has been released too many times!\n";
    abort();
  }
#endif
  
  if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0)
    PriorityQueue->push(SuccSU);
}

/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU) {
  DEBUG(std::cerr << "*** Scheduling: ");
  DEBUG(SU->dump(&DAG));

  Sequence.push_back(SU);

  // Bottom up: release predecessors
  for (std::set<SUnit*>::iterator I1 = SU->Preds.begin(),
         E1 = SU->Preds.end(); I1 != E1; ++I1) {
    ReleasePred(*I1);
    SU->NumPredsLeft--;
  }
  for (std::set<SUnit*>::iterator I2 = SU->ChainPreds.begin(),
         E2 = SU->ChainPreds.end(); I2 != E2; ++I2)
    ReleasePred(*I2, true);

  CurrCycle++;
}

/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU) {
  DEBUG(std::cerr << "*** Scheduling: ");
  DEBUG(SU->dump(&DAG));
  
  Sequence.push_back(SU);
  
  // Bottom up: release successors.
  for (std::set<SUnit*>::iterator I1 = SU->Succs.begin(),
       E1 = SU->Succs.end(); I1 != E1; ++I1) {
    ReleaseSucc(*I1);
    SU->NumSuccsLeft--;
  }
  for (std::set<SUnit*>::iterator I2 = SU->ChainSuccs.begin(),
       E2 = SU->ChainSuccs.end(); I2 != E2; ++I2)
    ReleaseSucc(*I2, true);
  
  CurrCycle++;
}

/// isReady - True if node's lower cycle bound is less or equal to the current
/// scheduling cycle. Always true if all nodes have uniform latency 1.
static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
  return SU->CycleBound <= CurrCycle;
}

/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGList::ListScheduleBottomUp() {
  // Add root to Available queue.
  PriorityQueue->push(SUnitMap[DAG.getRoot().Val]);

  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back. Schedule the node.
  std::vector<SUnit*> NotReady;
  while (!PriorityQueue->empty()) {
    SUnit *CurrNode = PriorityQueue->pop();

    while (!isReady(CurrNode, CurrCycle)) {
      NotReady.push_back(CurrNode);
      CurrNode = PriorityQueue->pop();
    }
    
    // Add the nodes that aren't ready back onto the available list.
    PriorityQueue->push_all(NotReady);
    NotReady.clear();

    PriorityQueue->ScheduledNode(CurrNode);
    ScheduleNodeBottomUp(CurrNode);
  }

  // Add entry node last
  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
    Sequence.push_back(Entry);
  }

  // Reverse the order if it is bottom up.
  std::reverse(Sequence.begin(), Sequence.end());
  
  
#ifndef NDEBUG
  // Verify that all SUnits were scheduled.
  bool AnyNotSched = false;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
      if (!AnyNotSched)
        std::cerr << "*** List scheduling failed! ***\n";
      SUnits[i].dump(&DAG);
      std::cerr << "has not been scheduled!\n";
      AnyNotSched = true;
    }
  }
  assert(!AnyNotSched);
#endif
}

/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void ScheduleDAGList::ListScheduleTopDown() {
  // Emit the entry node first.
  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
  ScheduleNodeTopDown(Entry);
  HazardRec->EmitInstruction(Entry->Node);
                      
  // All leaves to Available queue.
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    // It is available if it has no predecessors.
    if ((SUnits[i].Preds.size() + SUnits[i].ChainPreds.size()) == 0 &&
        &SUnits[i] != Entry)
      PriorityQueue->push(&SUnits[i]);
  }
  
  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  std::vector<SUnit*> NotReady;
  while (!PriorityQueue->empty()) {
    SUnit *FoundNode = 0;

    bool HasNoopHazards = false;
    do {
      SUnit *CurNode = PriorityQueue->pop();
      
      // Get the node represented by this SUnit.
      SDNode *N = CurNode->Node;
      // If this is a pseudo op, like copyfromreg, look to see if there is a
      // real target node flagged to it.  If so, use the target node.
      for (unsigned i = 0, e = CurNode->FlaggedNodes.size(); 
           N->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
        N = CurNode->FlaggedNodes[i];
      
      HazardRecognizer::HazardType HT = HazardRec->getHazardType(N);
      if (HT == HazardRecognizer::NoHazard) {
        FoundNode = CurNode;
        break;
      }
      
      // Remember if this is a noop hazard.
      HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
      
      NotReady.push_back(CurNode);
    } while (!PriorityQueue->empty());
    
    // Add the nodes that aren't ready back onto the available list.
    PriorityQueue->push_all(NotReady);
    NotReady.clear();

    // If we found a node to schedule, do it now.
    if (FoundNode) {
      PriorityQueue->ScheduledNode(FoundNode);
      ScheduleNodeTopDown(FoundNode);
      HazardRec->EmitInstruction(FoundNode->Node);
    } else if (!HasNoopHazards) {
      // Otherwise, we have a pipeline stall, but no other problem, just advance
      // the current cycle and try again.
      DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
      HazardRec->AdvanceCycle();
      ++NumStalls;
    } else {
      // Otherwise, we have no instructions to issue and we have instructions
      // that will fault if we don't do this right.  This is the case for
      // processors without pipeline interlocks and other cases.
      DEBUG(std::cerr << "*** Emitting noop\n");
      HazardRec->EmitNoop();
      Sequence.push_back(0);   // NULL SUnit* -> noop
      ++NumNoops;
    }
  }

#ifndef NDEBUG
  // Verify that all SUnits were scheduled.
  bool AnyNotSched = false;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
      if (!AnyNotSched)
        std::cerr << "*** List scheduling failed! ***\n";
      SUnits[i].dump(&DAG);
      std::cerr << "has not been scheduled!\n";
      AnyNotSched = true;
    }
  }
  assert(!AnyNotSched);
#endif
}


void ScheduleDAGList::BuildSchedUnits() {
  // Reserve entries in the vector for each of the SUnits we are creating.  This
  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
  // invalidated.
  SUnits.reserve(NodeCount);
  
  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();

  // Pass 1: create the SUnit's.
  for (unsigned i = 0, NC = NodeCount; i < NC; i++) {
    NodeInfo *NI = &Info[i];
    SDNode *N = NI->Node;
    if (isPassiveNode(N))
      continue;

    SUnit *SU;
    if (NI->isInGroup()) {
      if (NI != NI->Group->getBottom())  // Bottom up, so only look at bottom
        continue;                        // node of the NodeGroup

      SU = NewSUnit(N);
      // Find the flagged nodes.
      SDOperand  FlagOp = N->getOperand(N->getNumOperands() - 1);
      SDNode    *Flag   = FlagOp.Val;
      unsigned   ResNo  = FlagOp.ResNo;
      while (Flag->getValueType(ResNo) == MVT::Flag) {
        NodeInfo *FNI = getNI(Flag);
        assert(FNI->Group == NI->Group);
        SU->FlaggedNodes.insert(SU->FlaggedNodes.begin(), Flag);
        SUnitMap[Flag] = SU;

        FlagOp = Flag->getOperand(Flag->getNumOperands() - 1);
        Flag   = FlagOp.Val;
        ResNo  = FlagOp.ResNo;
      }
    } else {
      SU = NewSUnit(N);
    }
    SUnitMap[N] = SU;

    // Compute the latency for the node.  We use the sum of the latencies for
    // all nodes flagged together into this SUnit.
    if (InstrItins.isEmpty()) {
      // No latency information.
      SU->Latency = 1;
    } else {
      SU->Latency = 0;
      if (N->isTargetOpcode()) {
        unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
        InstrStage *S = InstrItins.begin(SchedClass);
        InstrStage *E = InstrItins.end(SchedClass);
        for (; S != E; ++S)
          SU->Latency += S->Cycles;
      }
      for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i) {
        SDNode *FNode = SU->FlaggedNodes[i];
        if (FNode->isTargetOpcode()) {
          unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
          InstrStage *S = InstrItins.begin(SchedClass);
          InstrStage *E = InstrItins.end(SchedClass);
          for (; S != E; ++S)
            SU->Latency += S->Cycles;
        }
      }
    }
  }

  // Pass 2: add the preds, succs, etc.
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    SUnit *SU = &SUnits[i];
    SDNode   *N  = SU->Node;
    NodeInfo *NI = getNI(N);
    
    if (N->isTargetOpcode() && TII->isTwoAddrInstr(N->getTargetOpcode()))
      SU->isTwoAddress = true;

    if (NI->isInGroup()) {
      // Find all predecessors (of the group).
      NodeGroupOpIterator NGOI(NI);
      while (!NGOI.isEnd()) {
        SDOperand Op  = NGOI.next();
        SDNode   *OpN = Op.Val;
        MVT::ValueType VT = OpN->getValueType(Op.ResNo);
        NodeInfo *OpNI = getNI(OpN);
        if (OpNI->Group != NI->Group && !isPassiveNode(OpN)) {
          assert(VT != MVT::Flag);
          SUnit *OpSU = SUnitMap[OpN];
          if (VT == MVT::Other) {
            if (SU->ChainPreds.insert(OpSU).second)
              SU->NumChainPredsLeft++;
            if (OpSU->ChainSuccs.insert(SU).second)
              OpSU->NumChainSuccsLeft++;
          } else {
            if (SU->Preds.insert(OpSU).second)
              SU->NumPredsLeft++;
            if (OpSU->Succs.insert(SU).second)
              OpSU->NumSuccsLeft++;
          }
        }
      }
    } else {
      // Find node predecessors.
      for (unsigned j = 0, e = N->getNumOperands(); j != e; j++) {
        SDOperand Op  = N->getOperand(j);
        SDNode   *OpN = Op.Val;
        MVT::ValueType VT = OpN->getValueType(Op.ResNo);
        if (!isPassiveNode(OpN)) {
          assert(VT != MVT::Flag);
          SUnit *OpSU = SUnitMap[OpN];
          if (VT == MVT::Other) {
            if (SU->ChainPreds.insert(OpSU).second)
              SU->NumChainPredsLeft++;
            if (OpSU->ChainSuccs.insert(SU).second)
              OpSU->NumChainSuccsLeft++;
          } else {
            if (SU->Preds.insert(OpSU).second)
              SU->NumPredsLeft++;
            if (OpSU->Succs.insert(SU).second)
              OpSU->NumSuccsLeft++;
            if (j == 0 && SU->isTwoAddress) 
              OpSU->isDefNUseOperand = true;
          }
        }
      }
    }
    
    DEBUG(SU->dumpAll(&DAG));
  }
}

/// EmitSchedule - Emit the machine code in scheduled order.
void ScheduleDAGList::EmitSchedule() {
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    if (SUnit *SU = Sequence[i]) {
      for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++) {
        SDNode *N = SU->FlaggedNodes[j];
        EmitNode(getNI(N));
      }
      EmitNode(getNI(SU->Node));
    } else {
      // Null SUnit* is a noop.
      EmitNoop();
    }
  }
}

/// dump - dump the schedule.
void ScheduleDAGList::dumpSchedule() const {
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    if (SUnit *SU = Sequence[i])
      SU->dump(&DAG);
    else
      std::cerr << "**** NOOP ****\n";
  }
}

/// Schedule - Schedule the DAG using list scheduling.
/// FIXME: Right now it only supports the burr (bottom up register reducing)
/// heuristic.
void ScheduleDAGList::Schedule() {
  DEBUG(std::cerr << "********** List Scheduling **********\n");

  // Build scheduling units.
  BuildSchedUnits();
  
  PriorityQueue->initNodes(SUnits);
  
  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
  if (isBottomUp)
    ListScheduleBottomUp();
  else
    ListScheduleTopDown();

  PriorityQueue->releaseState();

  DEBUG(std::cerr << "*** Final schedule ***\n");
  DEBUG(dumpSchedule());
  DEBUG(std::cerr << "\n");
  
  // Emit in scheduled order
  EmitSchedule();
}

//===----------------------------------------------------------------------===//
//                RegReductionPriorityQueue Implementation
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
// to reduce register pressure.
// 
namespace {
  class RegReductionPriorityQueue;
  
  /// Sorting functions for the Available queue.
  struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
    RegReductionPriorityQueue *SPQ;
    ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {}
    ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
    
    bool operator()(const SUnit* left, const SUnit* right) const;
  };
}  // end anonymous namespace

namespace {
  class RegReductionPriorityQueue : public SchedulingPriorityQueue {
    // SUnits - The SUnits for the current graph.
    const std::vector<SUnit> *SUnits;
    
    // SethiUllmanNumbers - The SethiUllman number for each node.
    std::vector<int> SethiUllmanNumbers;
    
    std::priority_queue<SUnit*, std::vector<SUnit*>, ls_rr_sort> Queue;
  public:
    RegReductionPriorityQueue() : Queue(ls_rr_sort(this)) {
    }
    
    void initNodes(const std::vector<SUnit> &sunits) {
      SUnits = &sunits;
      // Calculate node priorities.
      CalculatePriorities();
    }
    void releaseState() {
      SUnits = 0;
      SethiUllmanNumbers.clear();
    }
    
    unsigned getSethiUllmanNumber(unsigned NodeNum) const {
      assert(NodeNum < SethiUllmanNumbers.size());
      return SethiUllmanNumbers[NodeNum];
    }
    
    bool empty() const { return Queue.empty(); }
    
    void push(SUnit *U) {
      Queue.push(U);
    }
    void push_all(const std::vector<SUnit *> &Nodes) {
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
        Queue.push(Nodes[i]);
    }
    
    SUnit *pop() {
      SUnit *V = Queue.top();
      Queue.pop();
      return V;
    }
  private:
    void CalculatePriorities();
    int CalcNodePriority(const SUnit *SU);
  };
}

bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
  unsigned LeftNum  = left->NodeNum;
  unsigned RightNum = right->NodeNum;
  
  int LBonus = (int)left ->isDefNUseOperand;
  int RBonus = (int)right->isDefNUseOperand;
  
  // Special tie breaker: if two nodes share a operand, the one that
  // use it as a def&use operand is preferred.
  if (left->isTwoAddress && !right->isTwoAddress) {
    SDNode *DUNode = left->Node->getOperand(0).Val;
    if (DUNode->isOperand(right->Node))
      LBonus++;
  }
  if (!left->isTwoAddress && right->isTwoAddress) {
    SDNode *DUNode = right->Node->getOperand(0).Val;
    if (DUNode->isOperand(left->Node))
      RBonus++;
  }
  
  // Priority1 is just the number of live range genned.
  int LPriority1 = left ->NumPredsLeft - LBonus;
  int RPriority1 = right->NumPredsLeft - RBonus;
  int LPriority2 = SPQ->getSethiUllmanNumber(LeftNum) + LBonus;
  int RPriority2 = SPQ->getSethiUllmanNumber(RightNum) + RBonus;
  
  if (LPriority1 > RPriority1)
    return true;
  else if (LPriority1 == RPriority1)
    if (LPriority2 < RPriority2)
      return true;
    else if (LPriority2 == RPriority2)
      if (left->CycleBound > right->CycleBound) 
        return true;
  
  return false;
}


/// CalcNodePriority - Priority is the Sethi Ullman number. 
/// Smaller number is the higher priority.
int RegReductionPriorityQueue::CalcNodePriority(const SUnit *SU) {
  int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
  if (SethiUllmanNumber != INT_MIN)
    return SethiUllmanNumber;
  
  if (SU->Preds.size() == 0) {
    SethiUllmanNumber = 1;
  } else {
    int Extra = 0;
    for (std::set<SUnit*>::const_iterator I = SU->Preds.begin(),
         E = SU->Preds.end(); I != E; ++I) {
      SUnit *PredSU = *I;
      int PredSethiUllman = CalcNodePriority(PredSU);
      if (PredSethiUllman > SethiUllmanNumber) {
        SethiUllmanNumber = PredSethiUllman;
        Extra = 0;
      } else if (PredSethiUllman == SethiUllmanNumber)
        Extra++;
    }
    
    if (SU->Node->getOpcode() != ISD::TokenFactor)
      SethiUllmanNumber += Extra;
    else
      SethiUllmanNumber = (Extra == 1) ? 0 : Extra-1;
  }
  
  return SethiUllmanNumber;
}

/// CalculatePriorities - Calculate priorities of all scheduling units.
void RegReductionPriorityQueue::CalculatePriorities() {
  SethiUllmanNumbers.assign(SUnits->size(), INT_MIN);
  
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
    CalcNodePriority(&(*SUnits)[i]);
}

//===----------------------------------------------------------------------===//
//                    LatencyPriorityQueue Implementation
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using latency information to
// reduce the length of the critical path through the basic block.
// 
namespace {
  class LatencyPriorityQueue;
  
  /// Sorting functions for the Available queue.
  struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
    LatencyPriorityQueue *PQ;
    latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
    latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
    
    bool operator()(const SUnit* left, const SUnit* right) const;
  };
}  // end anonymous namespace

namespace {
  class LatencyPriorityQueue : public SchedulingPriorityQueue {
    // SUnits - The SUnits for the current graph.
    const std::vector<SUnit> *SUnits;
    
    // Latencies - The latency (max of latency from this node to the bb exit)
    // for each node.
    std::vector<int> Latencies;
    
    std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
public:
    LatencyPriorityQueue() : Queue(latency_sort(this)) {
    }
    
    void initNodes(const std::vector<SUnit> &sunits) {
      SUnits = &sunits;
      // Calculate node priorities.
      CalculatePriorities();
    }
    void releaseState() {
      SUnits = 0;
      Latencies.clear();
    }
    
    unsigned getLatency(unsigned NodeNum) const {
      assert(NodeNum < Latencies.size());
      return Latencies[NodeNum];
    }
    
    bool empty() const { return Queue.empty(); }
    
    void push(SUnit *U) {
      Queue.push(U);
    }
    void push_all(const std::vector<SUnit *> &Nodes) {
      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
        Queue.push(Nodes[i]);
    }
    
    SUnit *pop() {
      SUnit *V = Queue.top();
      Queue.pop();
      return V;
    }
private:
    void CalculatePriorities();
    int CalcLatency(const SUnit &SU);
  };
}

bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
  unsigned LHSNum = LHS->NodeNum;
  unsigned RHSNum = RHS->NodeNum;
  
  return PQ->getLatency(LHSNum) < PQ->getLatency(RHSNum);
}


/// CalcNodePriority - Calculate the maximal path from the node to the exit.
///
int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
  int &Latency = Latencies[SU.NodeNum];
  if (Latency != -1)
    return Latency;
  
  int MaxSuccLatency = 0;
  for (std::set<SUnit*>::const_iterator I = SU.Succs.begin(),
       E = SU.Succs.end(); I != E; ++I)
    MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(**I));

  for (std::set<SUnit*>::const_iterator I = SU.ChainSuccs.begin(),
       E = SU.ChainSuccs.end(); I != E; ++I)
    MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(**I));

  return Latency = MaxSuccLatency + SU.Latency;
}

/// CalculatePriorities - Calculate priorities of all scheduling units.
void LatencyPriorityQueue::CalculatePriorities() {
  Latencies.assign(SUnits->size(), -1);
  
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
    CalcLatency((*SUnits)[i]);
}


//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
                                                    MachineBasicBlock *BB) {
  return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true, 
                             new RegReductionPriorityQueue(),
                             new HazardRecognizer());
}

/// createTDListDAGScheduler - This creates a top-down list scheduler with the
/// specified hazard recognizer.
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
                                            MachineBasicBlock *BB,
                                            HazardRecognizer *HR) {
  return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false,
                             new LatencyPriorityQueue(),
                             HR);
}