aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
blob: b52f648cfdaca944231fe595a4d290ddf017dfd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/SelectionDAG.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cmath>

using namespace llvm;

/// makeVTList - Return an instance of the SDVTList struct initialized with the
/// specified members.
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
  SDVTList Res = {VTs, NumVTs};
  return Res;
}

// Default null implementations of the callbacks.
void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}

//===----------------------------------------------------------------------===//
//                              ConstantFPSDNode Class
//===----------------------------------------------------------------------===//

/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
  return getValueAPF().bitwiseIsEqual(V);
}

bool ConstantFPSDNode::isValueValidForType(EVT VT,
                                           const APFloat& Val) {
  assert(VT.isFloatingPoint() && "Can only convert between FP types");

  // convert modifies in place, so make a copy.
  APFloat Val2 = APFloat(Val);
  bool losesInfo;
  (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
                      APFloat::rmNearestTiesToEven,
                      &losesInfo);
  return !losesInfo;
}

//===----------------------------------------------------------------------===//
//                              ISD Namespace
//===----------------------------------------------------------------------===//

/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
  // Look through a bit convert.
  while (N->getOpcode() == ISD::BITCAST)
    N = N->getOperand(0).getNode();

  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;

  unsigned i = 0, e = N->getNumOperands();

  // Skip over all of the undef values.
  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
    ++i;

  // Do not accept an all-undef vector.
  if (i == e) return false;

  // Do not accept build_vectors that aren't all constants or which have non-~0
  // elements. We have to be a bit careful here, as the type of the constant
  // may not be the same as the type of the vector elements due to type
  // legalization (the elements are promoted to a legal type for the target and
  // a vector of a type may be legal when the base element type is not).
  // We only want to check enough bits to cover the vector elements, because
  // we care if the resultant vector is all ones, not whether the individual
  // constants are.
  SDValue NotZero = N->getOperand(i);
  unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
    if (CN->getAPIntValue().countTrailingOnes() < EltSize)
      return false;
  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
    if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
      return false;
  } else
    return false;

  // Okay, we have at least one ~0 value, check to see if the rest match or are
  // undefs. Even with the above element type twiddling, this should be OK, as
  // the same type legalization should have applied to all the elements.
  for (++i; i != e; ++i)
    if (N->getOperand(i) != NotZero &&
        N->getOperand(i).getOpcode() != ISD::UNDEF)
      return false;
  return true;
}


/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
  // Look through a bit convert.
  while (N->getOpcode() == ISD::BITCAST)
    N = N->getOperand(0).getNode();

  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;

  bool IsAllUndef = true;
  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) {
    if (N->getOperand(i).getOpcode() == ISD::UNDEF)
      continue;
    IsAllUndef = false;
    // Do not accept build_vectors that aren't all constants or which have non-0
    // elements. We have to be a bit careful here, as the type of the constant
    // may not be the same as the type of the vector elements due to type
    // legalization (the elements are promoted to a legal type for the target
    // and a vector of a type may be legal when the base element type is not).
    // We only want to check enough bits to cover the vector elements, because
    // we care if the resultant vector is all zeros, not whether the individual
    // constants are.
    SDValue Zero = N->getOperand(i);
    unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
      if (CN->getAPIntValue().countTrailingZeros() < EltSize)
        return false;
    } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
      if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
        return false;
    } else
      return false;
  }

  // Do not accept an all-undef vector.
  if (IsAllUndef)
    return false;
  return true;
}

/// \brief Return true if the specified node is a BUILD_VECTOR node of
/// all ConstantSDNode or undef.
bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
  if (N->getOpcode() != ISD::BUILD_VECTOR)
    return false;

  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    SDValue Op = N->getOperand(i);
    if (Op.getOpcode() == ISD::UNDEF)
      continue;
    if (!isa<ConstantSDNode>(Op))
      return false;
  }
  return true;
}

/// \brief Return true if the specified node is a BUILD_VECTOR node of
/// all ConstantFPSDNode or undef.
bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
  if (N->getOpcode() != ISD::BUILD_VECTOR)
    return false;

  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    SDValue Op = N->getOperand(i);
    if (Op.getOpcode() == ISD::UNDEF)
      continue;
    if (!isa<ConstantFPSDNode>(Op))
      return false;
  }
  return true;
}

/// isScalarToVector - Return true if the specified node is a
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
/// element is not an undef.
bool ISD::isScalarToVector(const SDNode *N) {
  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
    return true;

  if (N->getOpcode() != ISD::BUILD_VECTOR)
    return false;
  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
    return false;
  unsigned NumElems = N->getNumOperands();
  if (NumElems == 1)
    return false;
  for (unsigned i = 1; i < NumElems; ++i) {
    SDValue V = N->getOperand(i);
    if (V.getOpcode() != ISD::UNDEF)
      return false;
  }
  return true;
}

/// allOperandsUndef - Return true if the node has at least one operand
/// and all operands of the specified node are ISD::UNDEF.
bool ISD::allOperandsUndef(const SDNode *N) {
  // Return false if the node has no operands.
  // This is "logically inconsistent" with the definition of "all" but
  // is probably the desired behavior.
  if (N->getNumOperands() == 0)
    return false;

  for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
    if (N->getOperand(i).getOpcode() != ISD::UNDEF)
      return false;

  return true;
}

ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
  switch (ExtType) {
  case ISD::EXTLOAD:
    return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
  case ISD::SEXTLOAD:
    return ISD::SIGN_EXTEND;
  case ISD::ZEXTLOAD:
    return ISD::ZERO_EXTEND;
  default:
    break;
  }

  llvm_unreachable("Invalid LoadExtType");
}

/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
  // To perform this operation, we just need to swap the L and G bits of the
  // operation.
  unsigned OldL = (Operation >> 2) & 1;
  unsigned OldG = (Operation >> 1) & 1;
  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
                       (OldL << 1) |       // New G bit
                       (OldG << 2));       // New L bit.
}

/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
  unsigned Operation = Op;
  if (isInteger)
    Operation ^= 7;   // Flip L, G, E bits, but not U.
  else
    Operation ^= 15;  // Flip all of the condition bits.

  if (Operation > ISD::SETTRUE2)
    Operation &= ~8;  // Don't let N and U bits get set.

  return ISD::CondCode(Operation);
}


/// isSignedOp - For an integer comparison, return 1 if the comparison is a
/// signed operation and 2 if the result is an unsigned comparison.  Return zero
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
  switch (Opcode) {
  default: llvm_unreachable("Illegal integer setcc operation!");
  case ISD::SETEQ:
  case ISD::SETNE: return 0;
  case ISD::SETLT:
  case ISD::SETLE:
  case ISD::SETGT:
  case ISD::SETGE: return 1;
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETUGT:
  case ISD::SETUGE: return 2;
  }
}

/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
/// returns SETCC_INVALID if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
                                       bool isInteger) {
  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
    // Cannot fold a signed integer setcc with an unsigned integer setcc.
    return ISD::SETCC_INVALID;

  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.

  // If the N and U bits get set then the resultant comparison DOES suddenly
  // care about orderedness, and is true when ordered.
  if (Op > ISD::SETTRUE2)
    Op &= ~16;     // Clear the U bit if the N bit is set.

  // Canonicalize illegal integer setcc's.
  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
    Op = ISD::SETNE;

  return ISD::CondCode(Op);
}

/// getSetCCAndOperation - Return the result of a logical AND between different
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
/// function returns zero if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
                                        bool isInteger) {
  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
    // Cannot fold a signed setcc with an unsigned setcc.
    return ISD::SETCC_INVALID;

  // Combine all of the condition bits.
  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);

  // Canonicalize illegal integer setcc's.
  if (isInteger) {
    switch (Result) {
    default: break;
    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
    }
  }

  return Result;
}

//===----------------------------------------------------------------------===//
//                           SDNode Profile Support
//===----------------------------------------------------------------------===//

/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
///
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
  ID.AddInteger(OpC);
}

/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
/// solely with their pointer.
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
  ID.AddPointer(VTList.VTs);
}

/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
///
static void AddNodeIDOperands(FoldingSetNodeID &ID,
                              ArrayRef<SDValue> Ops) {
  for (auto& Op : Ops) {
    ID.AddPointer(Op.getNode());
    ID.AddInteger(Op.getResNo());
  }
}

/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
///
static void AddNodeIDOperands(FoldingSetNodeID &ID,
                              ArrayRef<SDUse> Ops) {
  for (auto& Op : Ops) {
    ID.AddPointer(Op.getNode());
    ID.AddInteger(Op.getResNo());
  }
}

static void AddBinaryNodeIDCustom(FoldingSetNodeID &ID, bool nuw, bool nsw,
                                  bool exact) {
  ID.AddBoolean(nuw);
  ID.AddBoolean(nsw);
  ID.AddBoolean(exact);
}

/// AddBinaryNodeIDCustom - Add BinarySDNodes special infos
static void AddBinaryNodeIDCustom(FoldingSetNodeID &ID, unsigned Opcode,
                                  bool nuw, bool nsw, bool exact) {
  if (isBinOpWithFlags(Opcode))
    AddBinaryNodeIDCustom(ID, nuw, nsw, exact);
}

static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
                          SDVTList VTList, ArrayRef<SDValue> OpList) {
  AddNodeIDOpcode(ID, OpC);
  AddNodeIDValueTypes(ID, VTList);
  AddNodeIDOperands(ID, OpList);
}

/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
/// the NodeID data.
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
  switch (N->getOpcode()) {
  case ISD::TargetExternalSymbol:
  case ISD::ExternalSymbol:
    llvm_unreachable("Should only be used on nodes with operands");
  default: break;  // Normal nodes don't need extra info.
  case ISD::TargetConstant:
  case ISD::Constant: {
    const ConstantSDNode *C = cast<ConstantSDNode>(N);
    ID.AddPointer(C->getConstantIntValue());
    ID.AddBoolean(C->isOpaque());
    break;
  }
  case ISD::TargetConstantFP:
  case ISD::ConstantFP: {
    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
    break;
  }
  case ISD::TargetGlobalAddress:
  case ISD::GlobalAddress:
  case ISD::TargetGlobalTLSAddress:
  case ISD::GlobalTLSAddress: {
    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
    ID.AddPointer(GA->getGlobal());
    ID.AddInteger(GA->getOffset());
    ID.AddInteger(GA->getTargetFlags());
    ID.AddInteger(GA->getAddressSpace());
    break;
  }
  case ISD::BasicBlock:
    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
    break;
  case ISD::Register:
    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
    break;
  case ISD::RegisterMask:
    ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
    break;
  case ISD::SRCVALUE:
    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
    break;
  case ISD::FrameIndex:
  case ISD::TargetFrameIndex:
    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
    break;
  case ISD::JumpTable:
  case ISD::TargetJumpTable:
    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
    break;
  case ISD::ConstantPool:
  case ISD::TargetConstantPool: {
    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
    ID.AddInteger(CP->getAlignment());
    ID.AddInteger(CP->getOffset());
    if (CP->isMachineConstantPoolEntry())
      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
    else
      ID.AddPointer(CP->getConstVal());
    ID.AddInteger(CP->getTargetFlags());
    break;
  }
  case ISD::TargetIndex: {
    const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
    ID.AddInteger(TI->getIndex());
    ID.AddInteger(TI->getOffset());
    ID.AddInteger(TI->getTargetFlags());
    break;
  }
  case ISD::LOAD: {
    const LoadSDNode *LD = cast<LoadSDNode>(N);
    ID.AddInteger(LD->getMemoryVT().getRawBits());
    ID.AddInteger(LD->getRawSubclassData());
    ID.AddInteger(LD->getPointerInfo().getAddrSpace());
    break;
  }
  case ISD::STORE: {
    const StoreSDNode *ST = cast<StoreSDNode>(N);
    ID.AddInteger(ST->getMemoryVT().getRawBits());
    ID.AddInteger(ST->getRawSubclassData());
    ID.AddInteger(ST->getPointerInfo().getAddrSpace());
    break;
  }
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::SRA:
  case ISD::SRL:
  case ISD::MUL:
  case ISD::ADD:
  case ISD::SUB:
  case ISD::SHL: {
    const BinaryWithFlagsSDNode *BinNode = cast<BinaryWithFlagsSDNode>(N);
    AddBinaryNodeIDCustom(ID, N->getOpcode(), BinNode->hasNoUnsignedWrap(),
                          BinNode->hasNoSignedWrap(), BinNode->isExact());
    break;
  }
  case ISD::ATOMIC_CMP_SWAP:
  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
  case ISD::ATOMIC_SWAP:
  case ISD::ATOMIC_LOAD_ADD:
  case ISD::ATOMIC_LOAD_SUB:
  case ISD::ATOMIC_LOAD_AND:
  case ISD::ATOMIC_LOAD_OR:
  case ISD::ATOMIC_LOAD_XOR:
  case ISD::ATOMIC_LOAD_NAND:
  case ISD::ATOMIC_LOAD_MIN:
  case ISD::ATOMIC_LOAD_MAX:
  case ISD::ATOMIC_LOAD_UMIN:
  case ISD::ATOMIC_LOAD_UMAX:
  case ISD::ATOMIC_LOAD:
  case ISD::ATOMIC_STORE: {
    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
    ID.AddInteger(AT->getMemoryVT().getRawBits());
    ID.AddInteger(AT->getRawSubclassData());
    ID.AddInteger(AT->getPointerInfo().getAddrSpace());
    break;
  }
  case ISD::PREFETCH: {
    const MemSDNode *PF = cast<MemSDNode>(N);
    ID.AddInteger(PF->getPointerInfo().getAddrSpace());
    break;
  }
  case ISD::VECTOR_SHUFFLE: {
    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
         i != e; ++i)
      ID.AddInteger(SVN->getMaskElt(i));
    break;
  }
  case ISD::TargetBlockAddress:
  case ISD::BlockAddress: {
    const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
    ID.AddPointer(BA->getBlockAddress());
    ID.AddInteger(BA->getOffset());
    ID.AddInteger(BA->getTargetFlags());
    break;
  }
  } // end switch (N->getOpcode())

  // Target specific memory nodes could also have address spaces to check.
  if (N->isTargetMemoryOpcode())
    ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
}

/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
/// data.
static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
  AddNodeIDOpcode(ID, N->getOpcode());
  // Add the return value info.
  AddNodeIDValueTypes(ID, N->getVTList());
  // Add the operand info.
  AddNodeIDOperands(ID, N->ops());

  // Handle SDNode leafs with special info.
  AddNodeIDCustom(ID, N);
}

/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
/// the CSE map that carries volatility, temporalness, indexing mode, and
/// extension/truncation information.
///
static inline unsigned
encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
                     bool isNonTemporal, bool isInvariant) {
  assert((ConvType & 3) == ConvType &&
         "ConvType may not require more than 2 bits!");
  assert((AM & 7) == AM &&
         "AM may not require more than 3 bits!");
  return ConvType |
         (AM << 2) |
         (isVolatile << 5) |
         (isNonTemporal << 6) |
         (isInvariant << 7);
}

//===----------------------------------------------------------------------===//
//                              SelectionDAG Class
//===----------------------------------------------------------------------===//

/// doNotCSE - Return true if CSE should not be performed for this node.
static bool doNotCSE(SDNode *N) {
  if (N->getValueType(0) == MVT::Glue)
    return true; // Never CSE anything that produces a flag.

  switch (N->getOpcode()) {
  default: break;
  case ISD::HANDLENODE:
  case ISD::EH_LABEL:
    return true;   // Never CSE these nodes.
  }

  // Check that remaining values produced are not flags.
  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
    if (N->getValueType(i) == MVT::Glue)
      return true; // Never CSE anything that produces a flag.

  return false;
}

/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void SelectionDAG::RemoveDeadNodes() {
  // Create a dummy node (which is not added to allnodes), that adds a reference
  // to the root node, preventing it from being deleted.
  HandleSDNode Dummy(getRoot());

  SmallVector<SDNode*, 128> DeadNodes;

  // Add all obviously-dead nodes to the DeadNodes worklist.
  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
    if (I->use_empty())
      DeadNodes.push_back(I);

  RemoveDeadNodes(DeadNodes);

  // If the root changed (e.g. it was a dead load, update the root).
  setRoot(Dummy.getValue());
}

/// RemoveDeadNodes - This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {

  // Process the worklist, deleting the nodes and adding their uses to the
  // worklist.
  while (!DeadNodes.empty()) {
    SDNode *N = DeadNodes.pop_back_val();

    for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
      DUL->NodeDeleted(N, nullptr);

    // Take the node out of the appropriate CSE map.
    RemoveNodeFromCSEMaps(N);

    // Next, brutally remove the operand list.  This is safe to do, as there are
    // no cycles in the graph.
    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
      SDUse &Use = *I++;
      SDNode *Operand = Use.getNode();
      Use.set(SDValue());

      // Now that we removed this operand, see if there are no uses of it left.
      if (Operand->use_empty())
        DeadNodes.push_back(Operand);
    }

    DeallocateNode(N);
  }
}

void SelectionDAG::RemoveDeadNode(SDNode *N){
  SmallVector<SDNode*, 16> DeadNodes(1, N);

  // Create a dummy node that adds a reference to the root node, preventing
  // it from being deleted.  (This matters if the root is an operand of the
  // dead node.)
  HandleSDNode Dummy(getRoot());

  RemoveDeadNodes(DeadNodes);
}

void SelectionDAG::DeleteNode(SDNode *N) {
  // First take this out of the appropriate CSE map.
  RemoveNodeFromCSEMaps(N);

  // Finally, remove uses due to operands of this node, remove from the
  // AllNodes list, and delete the node.
  DeleteNodeNotInCSEMaps(N);
}

void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
  assert(N->use_empty() && "Cannot delete a node that is not dead!");

  // Drop all of the operands and decrement used node's use counts.
  N->DropOperands();

  DeallocateNode(N);
}

void SDDbgInfo::erase(const SDNode *Node) {
  DbgValMapType::iterator I = DbgValMap.find(Node);
  if (I == DbgValMap.end())
    return;
  for (auto &Val: I->second)
    Val->setIsInvalidated();
  DbgValMap.erase(I);
}

void SelectionDAG::DeallocateNode(SDNode *N) {
  if (N->OperandsNeedDelete)
    delete[] N->OperandList;

  // Set the opcode to DELETED_NODE to help catch bugs when node
  // memory is reallocated.
  N->NodeType = ISD::DELETED_NODE;

  NodeAllocator.Deallocate(AllNodes.remove(N));

  // If any of the SDDbgValue nodes refer to this SDNode, invalidate
  // them and forget about that node.
  DbgInfo->erase(N);
}

#ifndef NDEBUG
/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
static void VerifySDNode(SDNode *N) {
  switch (N->getOpcode()) {
  default:
    break;
  case ISD::BUILD_PAIR: {
    EVT VT = N->getValueType(0);
    assert(N->getNumValues() == 1 && "Too many results!");
    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
           "Wrong return type!");
    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
           "Mismatched operand types!");
    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
           "Wrong operand type!");
    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
           "Wrong return type size");
    break;
  }
  case ISD::BUILD_VECTOR: {
    assert(N->getNumValues() == 1 && "Too many results!");
    assert(N->getValueType(0).isVector() && "Wrong return type!");
    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
           "Wrong number of operands!");
    EVT EltVT = N->getValueType(0).getVectorElementType();
    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
      assert((I->getValueType() == EltVT ||
             (EltVT.isInteger() && I->getValueType().isInteger() &&
              EltVT.bitsLE(I->getValueType()))) &&
            "Wrong operand type!");
      assert(I->getValueType() == N->getOperand(0).getValueType() &&
             "Operands must all have the same type");
    }
    break;
  }
  }
}
#endif // NDEBUG

/// \brief Insert a newly allocated node into the DAG.
///
/// Handles insertion into the all nodes list and CSE map, as well as
/// verification and other common operations when a new node is allocated.
void SelectionDAG::InsertNode(SDNode *N) {
  AllNodes.push_back(N);
#ifndef NDEBUG
  VerifySDNode(N);
#endif
}

/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it.  This is useful when we're about to delete or repurpose
/// the node.  We don't want future request for structurally identical nodes
/// to return N anymore.
bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
  bool Erased = false;
  switch (N->getOpcode()) {
  case ISD::HANDLENODE: return false;  // noop.
  case ISD::CONDCODE:
    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
           "Cond code doesn't exist!");
    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
    break;
  case ISD::ExternalSymbol:
    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
    break;
  case ISD::TargetExternalSymbol: {
    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
    Erased = TargetExternalSymbols.erase(
               std::pair<std::string,unsigned char>(ESN->getSymbol(),
                                                    ESN->getTargetFlags()));
    break;
  }
  case ISD::VALUETYPE: {
    EVT VT = cast<VTSDNode>(N)->getVT();
    if (VT.isExtended()) {
      Erased = ExtendedValueTypeNodes.erase(VT);
    } else {
      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
    }
    break;
  }
  default:
    // Remove it from the CSE Map.
    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
    Erased = CSEMap.RemoveNode(N);
    break;
  }
#ifndef NDEBUG
  // Verify that the node was actually in one of the CSE maps, unless it has a
  // flag result (which cannot be CSE'd) or is one of the special cases that are
  // not subject to CSE.
  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
      !N->isMachineOpcode() && !doNotCSE(N)) {
    N->dump(this);
    dbgs() << "\n";
    llvm_unreachable("Node is not in map!");
  }
#endif
  return Erased;
}

/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
/// maps and modified in place. Add it back to the CSE maps, unless an identical
/// node already exists, in which case transfer all its users to the existing
/// node. This transfer can potentially trigger recursive merging.
///
void
SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
  // For node types that aren't CSE'd, just act as if no identical node
  // already exists.
  if (!doNotCSE(N)) {
    SDNode *Existing = CSEMap.GetOrInsertNode(N);
    if (Existing != N) {
      // If there was already an existing matching node, use ReplaceAllUsesWith
      // to replace the dead one with the existing one.  This can cause
      // recursive merging of other unrelated nodes down the line.
      ReplaceAllUsesWith(N, Existing);

      // N is now dead. Inform the listeners and delete it.
      for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
        DUL->NodeDeleted(N, Existing);
      DeleteNodeNotInCSEMaps(N);
      return;
    }
  }

  // If the node doesn't already exist, we updated it.  Inform listeners.
  for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
    DUL->NodeUpdated(N);
}

/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified.  If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take.  If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
                                           void *&InsertPos) {
  if (doNotCSE(N))
    return nullptr;

  SDValue Ops[] = { Op };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
  AddNodeIDCustom(ID, N);
  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
  return Node;
}

/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified.  If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take.  If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
                                           SDValue Op1, SDValue Op2,
                                           void *&InsertPos) {
  if (doNotCSE(N))
    return nullptr;

  SDValue Ops[] = { Op1, Op2 };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
  AddNodeIDCustom(ID, N);
  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
  return Node;
}


/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified.  If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take.  If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
                                           void *&InsertPos) {
  if (doNotCSE(N))
    return nullptr;

  FoldingSetNodeID ID;
  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
  AddNodeIDCustom(ID, N);
  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
  return Node;
}

/// getEVTAlignment - Compute the default alignment value for the
/// given type.
///
unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
  Type *Ty = VT == MVT::iPTR ?
                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
                   VT.getTypeForEVT(*getContext());

  return TLI->getDataLayout()->getABITypeAlignment(Ty);
}

// EntryNode could meaningfully have debug info if we can find it...
SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
    : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
      EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
      Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
      UpdateListeners(nullptr) {
  AllNodes.push_back(&EntryNode);
  DbgInfo = new SDDbgInfo();
}

void SelectionDAG::init(MachineFunction &mf) {
  MF = &mf;
  TLI = getSubtarget().getTargetLowering();
  TSI = getSubtarget().getSelectionDAGInfo();
  Context = &mf.getFunction()->getContext();
}

SelectionDAG::~SelectionDAG() {
  assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
  allnodes_clear();
  delete DbgInfo;
}

void SelectionDAG::allnodes_clear() {
  assert(&*AllNodes.begin() == &EntryNode);
  AllNodes.remove(AllNodes.begin());
  while (!AllNodes.empty())
    DeallocateNode(AllNodes.begin());
}

BinarySDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, SDLoc DL,
                                            SDVTList VTs, SDValue N1,
                                            SDValue N2, bool nuw, bool nsw,
                                            bool exact) {
  if (isBinOpWithFlags(Opcode)) {
    BinaryWithFlagsSDNode *FN = new (NodeAllocator) BinaryWithFlagsSDNode(
        Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2);
    FN->setHasNoUnsignedWrap(nuw);
    FN->setHasNoSignedWrap(nsw);
    FN->setIsExact(exact);

    return FN;
  }

  BinarySDNode *N = new (NodeAllocator)
      BinarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2);
  return N;
}

void SelectionDAG::clear() {
  allnodes_clear();
  OperandAllocator.Reset();
  CSEMap.clear();

  ExtendedValueTypeNodes.clear();
  ExternalSymbols.clear();
  TargetExternalSymbols.clear();
  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
            static_cast<CondCodeSDNode*>(nullptr));
  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
            static_cast<SDNode*>(nullptr));

  EntryNode.UseList = nullptr;
  AllNodes.push_back(&EntryNode);
  Root = getEntryNode();
  DbgInfo->clear();
}

SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
  return VT.bitsGT(Op.getValueType()) ?
    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
    getNode(ISD::TRUNCATE, DL, VT, Op);
}

SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
  return VT.bitsGT(Op.getValueType()) ?
    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
    getNode(ISD::TRUNCATE, DL, VT, Op);
}

SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
  return VT.bitsGT(Op.getValueType()) ?
    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
    getNode(ISD::TRUNCATE, DL, VT, Op);
}

SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, SDLoc SL, EVT VT,
                                        EVT OpVT) {
  if (VT.bitsLE(Op.getValueType()))
    return getNode(ISD::TRUNCATE, SL, VT, Op);

  TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
  return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
}

SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, SDLoc DL, EVT VT) {
  assert(!VT.isVector() &&
         "getZeroExtendInReg should use the vector element type instead of "
         "the vector type!");
  if (Op.getValueType() == VT) return Op;
  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
  APInt Imm = APInt::getLowBitsSet(BitWidth,
                                   VT.getSizeInBits());
  return getNode(ISD::AND, DL, Op.getValueType(), Op,
                 getConstant(Imm, Op.getValueType()));
}

SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
  assert(VT.isVector() && "This DAG node is restricted to vector types.");
  assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
         "The sizes of the input and result must match in order to perform the "
         "extend in-register.");
  assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
         "The destination vector type must have fewer lanes than the input.");
  return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
}

SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
  assert(VT.isVector() && "This DAG node is restricted to vector types.");
  assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
         "The sizes of the input and result must match in order to perform the "
         "extend in-register.");
  assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
         "The destination vector type must have fewer lanes than the input.");
  return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
}

SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
  assert(VT.isVector() && "This DAG node is restricted to vector types.");
  assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
         "The sizes of the input and result must match in order to perform the "
         "extend in-register.");
  assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
         "The destination vector type must have fewer lanes than the input.");
  return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
}

/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
///
SDValue SelectionDAG::getNOT(SDLoc DL, SDValue Val, EVT VT) {
  EVT EltVT = VT.getScalarType();
  SDValue NegOne =
    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
  return getNode(ISD::XOR, DL, VT, Val, NegOne);
}

SDValue SelectionDAG::getLogicalNOT(SDLoc DL, SDValue Val, EVT VT) {
  EVT EltVT = VT.getScalarType();
  SDValue TrueValue;
  switch (TLI->getBooleanContents(VT)) {
    case TargetLowering::ZeroOrOneBooleanContent:
    case TargetLowering::UndefinedBooleanContent:
      TrueValue = getConstant(1, VT);
      break;
    case TargetLowering::ZeroOrNegativeOneBooleanContent:
      TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()),
                              VT);
      break;
  }
  return getNode(ISD::XOR, DL, VT, Val, TrueValue);
}

SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT, bool isO) {
  EVT EltVT = VT.getScalarType();
  assert((EltVT.getSizeInBits() >= 64 ||
         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
         "getConstant with a uint64_t value that doesn't fit in the type!");
  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT, isO);
}

SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT, bool isO)
{
  return getConstant(*ConstantInt::get(*Context, Val), VT, isT, isO);
}

SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT,
                                  bool isO) {
  assert(VT.isInteger() && "Cannot create FP integer constant!");

  EVT EltVT = VT.getScalarType();
  const ConstantInt *Elt = &Val;

  // In some cases the vector type is legal but the element type is illegal and
  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
  // inserted value (the type does not need to match the vector element type).
  // Any extra bits introduced will be truncated away.
  if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
      TargetLowering::TypePromoteInteger) {
   EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
   Elt = ConstantInt::get(*getContext(), NewVal);
  }
  // In other cases the element type is illegal and needs to be expanded, for
  // example v2i64 on MIPS32. In this case, find the nearest legal type, split
  // the value into n parts and use a vector type with n-times the elements.
  // Then bitcast to the type requested.
  // Legalizing constants too early makes the DAGCombiner's job harder so we
  // only legalize if the DAG tells us we must produce legal types.
  else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
           TLI->getTypeAction(*getContext(), EltVT) ==
           TargetLowering::TypeExpandInteger) {
    APInt NewVal = Elt->getValue();
    EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
    unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
    unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
    EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);

    // Check the temporary vector is the correct size. If this fails then
    // getTypeToTransformTo() probably returned a type whose size (in bits)
    // isn't a power-of-2 factor of the requested type size.
    assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());

    SmallVector<SDValue, 2> EltParts;
    for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
      EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
                                           .trunc(ViaEltSizeInBits),
                                     ViaEltVT, isT, isO));
    }

    // EltParts is currently in little endian order. If we actually want
    // big-endian order then reverse it now.
    if (TLI->isBigEndian())
      std::reverse(EltParts.begin(), EltParts.end());

    // The elements must be reversed when the element order is different
    // to the endianness of the elements (because the BITCAST is itself a
    // vector shuffle in this situation). However, we do not need any code to
    // perform this reversal because getConstant() is producing a vector
    // splat.
    // This situation occurs in MIPS MSA.

    SmallVector<SDValue, 8> Ops;
    for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
      Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());

    SDValue Result = getNode(ISD::BITCAST, SDLoc(), VT,
                             getNode(ISD::BUILD_VECTOR, SDLoc(), ViaVecVT,
                                     Ops));
    return Result;
  }

  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
         "APInt size does not match type size!");
  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
  ID.AddPointer(Elt);
  ID.AddBoolean(isO);
  void *IP = nullptr;
  SDNode *N = nullptr;
  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
    if (!VT.isVector())
      return SDValue(N, 0);

  if (!N) {
    N = new (NodeAllocator) ConstantSDNode(isT, isO, Elt, EltVT);
    CSEMap.InsertNode(N, IP);
    InsertNode(N);
  }

  SDValue Result(N, 0);
  if (VT.isVector()) {
    SmallVector<SDValue, 8> Ops;
    Ops.assign(VT.getVectorNumElements(), Result);
    Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Ops);
  }
  return Result;
}

SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
  return getConstant(Val, TLI->getPointerTy(), isTarget);
}


SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
}

SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");

  EVT EltVT = VT.getScalarType();

  // Do the map lookup using the actual bit pattern for the floating point
  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
  // we don't have issues with SNANs.
  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
  ID.AddPointer(&V);
  void *IP = nullptr;
  SDNode *N = nullptr;
  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
    if (!VT.isVector())
      return SDValue(N, 0);

  if (!N) {
    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
    CSEMap.InsertNode(N, IP);
    InsertNode(N);
  }

  SDValue Result(N, 0);
  if (VT.isVector()) {
    SmallVector<SDValue, 8> Ops;
    Ops.assign(VT.getVectorNumElements(), Result);
    // FIXME SDLoc info might be appropriate here
    Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Ops);
  }
  return Result;
}

SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
  EVT EltVT = VT.getScalarType();
  if (EltVT==MVT::f32)
    return getConstantFP(APFloat((float)Val), VT, isTarget);
  else if (EltVT==MVT::f64)
    return getConstantFP(APFloat(Val), VT, isTarget);
  else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 ||
           EltVT==MVT::f16) {
    bool ignored;
    APFloat apf = APFloat(Val);
    apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
                &ignored);
    return getConstantFP(apf, VT, isTarget);
  } else
    llvm_unreachable("Unsupported type in getConstantFP");
}

SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, SDLoc DL,
                                       EVT VT, int64_t Offset,
                                       bool isTargetGA,
                                       unsigned char TargetFlags) {
  assert((TargetFlags == 0 || isTargetGA) &&
         "Cannot set target flags on target-independent globals");

  // Truncate (with sign-extension) the offset value to the pointer size.
  unsigned BitWidth = TLI->getPointerTypeSizeInBits(GV->getType());
  if (BitWidth < 64)
    Offset = SignExtend64(Offset, BitWidth);

  unsigned Opc;
  if (GV->isThreadLocal())
    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
  else
    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;

  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), None);
  ID.AddPointer(GV);
  ID.AddInteger(Offset);
  ID.AddInteger(TargetFlags);
  ID.AddInteger(GV->getType()->getAddressSpace());
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL.getIROrder(),
                                                      DL.getDebugLoc(), GV, VT,
                                                      Offset, TargetFlags);
  CSEMap.InsertNode(N, IP);
    InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), None);
  ID.AddInteger(FI);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
                                   unsigned char TargetFlags) {
  assert((TargetFlags == 0 || isTarget) &&
         "Cannot set target flags on target-independent jump tables");
  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), None);
  ID.AddInteger(JTI);
  ID.AddInteger(TargetFlags);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
                                                  TargetFlags);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
                                      unsigned Alignment, int Offset,
                                      bool isTarget,
                                      unsigned char TargetFlags) {
  assert((TargetFlags == 0 || isTarget) &&
         "Cannot set target flags on target-independent globals");
  if (Alignment == 0)
    Alignment = TLI->getDataLayout()->getPrefTypeAlignment(C->getType());
  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), None);
  ID.AddInteger(Alignment);
  ID.AddInteger(Offset);
  ID.AddPointer(C);
  ID.AddInteger(TargetFlags);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
                                                     Alignment, TargetFlags);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}


SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
                                      unsigned Alignment, int Offset,
                                      bool isTarget,
                                      unsigned char TargetFlags) {
  assert((TargetFlags == 0 || isTarget) &&
         "Cannot set target flags on target-independent globals");
  if (Alignment == 0)
    Alignment = TLI->getDataLayout()->getPrefTypeAlignment(C->getType());
  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), None);
  ID.AddInteger(Alignment);
  ID.AddInteger(Offset);
  C->addSelectionDAGCSEId(ID);
  ID.AddInteger(TargetFlags);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
                                                     Alignment, TargetFlags);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
                                     unsigned char TargetFlags) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
  ID.AddInteger(Index);
  ID.AddInteger(Offset);
  ID.AddInteger(TargetFlags);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
                                                    TargetFlags);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
  ID.AddPointer(MBB);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getValueType(EVT VT) {
  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
      ValueTypeNodes.size())
    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);

  SDNode *&N = VT.isExtended() ?
    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];

  if (N) return SDValue(N, 0);
  N = new (NodeAllocator) VTSDNode(VT);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
  SDNode *&N = ExternalSymbols[Sym];
  if (N) return SDValue(N, 0);
  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
                                              unsigned char TargetFlags) {
  SDNode *&N =
    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
                                                               TargetFlags)];
  if (N) return SDValue(N, 0);
  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
  if ((unsigned)Cond >= CondCodeNodes.size())
    CondCodeNodes.resize(Cond+1);

  if (!CondCodeNodes[Cond]) {
    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
    CondCodeNodes[Cond] = N;
    InsertNode(N);
  }

  return SDValue(CondCodeNodes[Cond], 0);
}

// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
// the shuffle mask M that point at N1 to point at N2, and indices that point
// N2 to point at N1.
static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
  std::swap(N1, N2);
  ShuffleVectorSDNode::commuteMask(M);
}

SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1,
                                       SDValue N2, const int *Mask) {
  assert(VT == N1.getValueType() && VT == N2.getValueType() &&
         "Invalid VECTOR_SHUFFLE");

  // Canonicalize shuffle undef, undef -> undef
  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
    return getUNDEF(VT);

  // Validate that all indices in Mask are within the range of the elements
  // input to the shuffle.
  unsigned NElts = VT.getVectorNumElements();
  SmallVector<int, 8> MaskVec;
  for (unsigned i = 0; i != NElts; ++i) {
    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
    MaskVec.push_back(Mask[i]);
  }

  // Canonicalize shuffle v, v -> v, undef
  if (N1 == N2) {
    N2 = getUNDEF(VT);
    for (unsigned i = 0; i != NElts; ++i)
      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
  }

  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
  if (N1.getOpcode() == ISD::UNDEF)
    commuteShuffle(N1, N2, MaskVec);

  // If shuffling a splat, try to blend the splat instead. We do this here so
  // that even when this arises during lowering we don't have to re-handle it.
  auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
    BitVector UndefElements;
    SDValue Splat = BV->getSplatValue(&UndefElements);
    if (!Splat)
      return;

    for (int i = 0; i < (int)NElts; ++i) {
      if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + (int)NElts))
        continue;

      // If this input comes from undef, mark it as such.
      if (UndefElements[MaskVec[i] - Offset]) {
        MaskVec[i] = -1;
        continue;
      }

      // If we can blend a non-undef lane, use that instead.
      if (!UndefElements[i])
        MaskVec[i] = i + Offset;
    }
  };
  if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
    BlendSplat(N1BV, 0);
  if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
    BlendSplat(N2BV, NElts);

  // Canonicalize all index into lhs, -> shuffle lhs, undef
  // Canonicalize all index into rhs, -> shuffle rhs, undef
  bool AllLHS = true, AllRHS = true;
  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
  for (unsigned i = 0; i != NElts; ++i) {
    if (MaskVec[i] >= (int)NElts) {
      if (N2Undef)
        MaskVec[i] = -1;
      else
        AllLHS = false;
    } else if (MaskVec[i] >= 0) {
      AllRHS = false;
    }
  }
  if (AllLHS && AllRHS)
    return getUNDEF(VT);
  if (AllLHS && !N2Undef)
    N2 = getUNDEF(VT);
  if (AllRHS) {
    N1 = getUNDEF(VT);
    commuteShuffle(N1, N2, MaskVec);
  }
  // Reset our undef status after accounting for the mask.
  N2Undef = N2.getOpcode() == ISD::UNDEF;
  // Re-check whether both sides ended up undef.
  if (N1.getOpcode() == ISD::UNDEF && N2Undef)
    return getUNDEF(VT);

  // If Identity shuffle return that node.
  bool Identity = true, AllSame = true;
  for (unsigned i = 0; i != NElts; ++i) {
    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
    if (MaskVec[i] != MaskVec[0]) AllSame = false;
  }
  if (Identity && NElts)
    return N1;

  // Shuffling a constant splat doesn't change the result.
  if (N2Undef) {
    SDValue V = N1;

    // Look through any bitcasts. We check that these don't change the number
    // (and size) of elements and just changes their types.
    while (V.getOpcode() == ISD::BITCAST)
      V = V->getOperand(0);

    // A splat should always show up as a build vector node.
    if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
      BitVector UndefElements;
      SDValue Splat = BV->getSplatValue(&UndefElements);
      // If this is a splat of an undef, shuffling it is also undef.
      if (Splat && Splat.getOpcode() == ISD::UNDEF)
        return getUNDEF(VT);

      bool SameNumElts =
          V.getValueType().getVectorNumElements() == VT.getVectorNumElements();

      // We only have a splat which can skip shuffles if there is a splatted
      // value and no undef lanes rearranged by the shuffle.
      if (Splat && UndefElements.none()) {
        // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
        // number of elements match or the value splatted is a zero constant.
        if (SameNumElts)
          return N1;
        if (auto *C = dyn_cast<ConstantSDNode>(Splat))
          if (C->isNullValue())
            return N1;
      }

      // If the shuffle itself creates a splat, build the vector directly.
      if (AllSame && SameNumElts) {
        const SDValue &Splatted = BV->getOperand(MaskVec[0]);
        SmallVector<SDValue, 8> Ops(NElts, Splatted);

        EVT BuildVT = BV->getValueType(0);
        SDValue NewBV = getNode(ISD::BUILD_VECTOR, dl, BuildVT, Ops);

        // We may have jumped through bitcasts, so the type of the
        // BUILD_VECTOR may not match the type of the shuffle.
        if (BuildVT != VT)
          NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
        return NewBV;
      }
    }
  }

  FoldingSetNodeID ID;
  SDValue Ops[2] = { N1, N2 };
  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
  for (unsigned i = 0; i != NElts; ++i)
    ID.AddInteger(MaskVec[i]);

  void* IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  // Allocate the mask array for the node out of the BumpPtrAllocator, since
  // SDNode doesn't have access to it.  This memory will be "leaked" when
  // the node is deallocated, but recovered when the NodeAllocator is released.
  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));

  ShuffleVectorSDNode *N =
    new (NodeAllocator) ShuffleVectorSDNode(VT, dl.getIROrder(),
                                            dl.getDebugLoc(), N1, N2,
                                            MaskAlloc);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
  MVT VT = SV.getSimpleValueType(0);
  SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
  ShuffleVectorSDNode::commuteMask(MaskVec);

  SDValue Op0 = SV.getOperand(0);
  SDValue Op1 = SV.getOperand(1);
  return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, &MaskVec[0]);
}

SDValue SelectionDAG::getConvertRndSat(EVT VT, SDLoc dl,
                                       SDValue Val, SDValue DTy,
                                       SDValue STy, SDValue Rnd, SDValue Sat,
                                       ISD::CvtCode Code) {
  // If the src and dest types are the same and the conversion is between
  // integer types of the same sign or two floats, no conversion is necessary.
  if (DTy == STy &&
      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
    return Val;

  FoldingSetNodeID ID;
  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops);
  void* IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl.getIROrder(),
                                                           dl.getDebugLoc(),
                                                           Ops, Code);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
  ID.AddInteger(RegNo);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
  ID.AddPointer(RegMask);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getEHLabel(SDLoc dl, SDValue Root, MCSymbol *Label) {
  FoldingSetNodeID ID;
  SDValue Ops[] = { Root };
  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
  ID.AddPointer(Label);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl.getIROrder(),
                                                dl.getDebugLoc(), Root, Label);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}


SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
                                      int64_t Offset,
                                      bool isTarget,
                                      unsigned char TargetFlags) {
  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;

  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), None);
  ID.AddPointer(BA);
  ID.AddInteger(Offset);
  ID.AddInteger(TargetFlags);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
                                                     TargetFlags);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getSrcValue(const Value *V) {
  assert((!V || V->getType()->isPointerTy()) &&
         "SrcValue is not a pointer?");

  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
  ID.AddPointer(V);

  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
SDValue SelectionDAG::getMDNode(const MDNode *MD) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
  ID.AddPointer(MD);

  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

/// getAddrSpaceCast - Return an AddrSpaceCastSDNode.
SDValue SelectionDAG::getAddrSpaceCast(SDLoc dl, EVT VT, SDValue Ptr,
                                       unsigned SrcAS, unsigned DestAS) {
  SDValue Ops[] = {Ptr};
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
  ID.AddInteger(SrcAS);
  ID.AddInteger(DestAS);

  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) AddrSpaceCastSDNode(dl.getIROrder(),
                                                      dl.getDebugLoc(),
                                                      VT, Ptr, SrcAS, DestAS);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

/// getShiftAmountOperand - Return the specified value casted to
/// the target's desired shift amount type.
SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
  EVT OpTy = Op.getValueType();
  EVT ShTy = TLI->getShiftAmountTy(LHSTy);
  if (OpTy == ShTy || OpTy.isVector()) return Op;

  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
  return getNode(Opcode, SDLoc(Op), ShTy, Op);
}

/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type.
SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
  unsigned ByteSize = VT.getStoreSize();
  Type *Ty = VT.getTypeForEVT(*getContext());
  unsigned StackAlign =
  std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), minAlign);

  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
  return getFrameIndex(FrameIdx, TLI->getPointerTy());
}

/// CreateStackTemporary - Create a stack temporary suitable for holding
/// either of the specified value types.
SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
                            VT2.getStoreSizeInBits())/8;
  Type *Ty1 = VT1.getTypeForEVT(*getContext());
  Type *Ty2 = VT2.getTypeForEVT(*getContext());
  const DataLayout *TD = TLI->getDataLayout();
  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
                            TD->getPrefTypeAlignment(Ty2));

  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
  return getFrameIndex(FrameIdx, TLI->getPointerTy());
}

SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
                                SDValue N2, ISD::CondCode Cond, SDLoc dl) {
  // These setcc operations always fold.
  switch (Cond) {
  default: break;
  case ISD::SETFALSE:
  case ISD::SETFALSE2: return getConstant(0, VT);
  case ISD::SETTRUE:
  case ISD::SETTRUE2: {
    TargetLowering::BooleanContent Cnt =
        TLI->getBooleanContents(N1->getValueType(0));
    return getConstant(
        Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
  }

  case ISD::SETOEQ:
  case ISD::SETOGT:
  case ISD::SETOGE:
  case ISD::SETOLT:
  case ISD::SETOLE:
  case ISD::SETONE:
  case ISD::SETO:
  case ISD::SETUO:
  case ISD::SETUEQ:
  case ISD::SETUNE:
    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
    break;
  }

  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
    const APInt &C2 = N2C->getAPIntValue();
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
      const APInt &C1 = N1C->getAPIntValue();

      switch (Cond) {
      default: llvm_unreachable("Unknown integer setcc!");
      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
      case ISD::SETNE:  return getConstant(C1 != C2, VT);
      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
      }
    }
  }
  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
      switch (Cond) {
      default: break;
      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
                          return getUNDEF(VT);
                        // fall through
      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
                          return getUNDEF(VT);
                        // fall through
      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
                                           R==APFloat::cmpLessThan, VT);
      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
                          return getUNDEF(VT);
                        // fall through
      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
                          return getUNDEF(VT);
                        // fall through
      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
                          return getUNDEF(VT);
                        // fall through
      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
                                           R==APFloat::cmpEqual, VT);
      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
                          return getUNDEF(VT);
                        // fall through
      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
                                           R==APFloat::cmpEqual, VT);
      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
                                           R==APFloat::cmpEqual, VT);
      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
                                           R==APFloat::cmpLessThan, VT);
      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
                                           R==APFloat::cmpUnordered, VT);
      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
      }
    } else {
      // Ensure that the constant occurs on the RHS.
      ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
      MVT CompVT = N1.getValueType().getSimpleVT();
      if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
        return SDValue();

      return getSetCC(dl, VT, N2, N1, SwappedCond);
    }
  }

  // Could not fold it.
  return SDValue();
}

/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
/// use this predicate to simplify operations downstream.
bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
  // This predicate is not safe for vector operations.
  if (Op.getValueType().isVector())
    return false;

  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
}

/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
/// this predicate to simplify operations downstream.  Mask is known to be zero
/// for bits that V cannot have.
bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
                                     unsigned Depth) const {
  APInt KnownZero, KnownOne;
  computeKnownBits(Op, KnownZero, KnownOne, Depth);
  return (KnownZero & Mask) == Mask;
}

/// Determine which bits of Op are known to be either zero or one and return
/// them in the KnownZero/KnownOne bitsets.
void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
                                    APInt &KnownOne, unsigned Depth) const {
  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();

  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
  if (Depth == 6)
    return;  // Limit search depth.

  APInt KnownZero2, KnownOne2;

  switch (Op.getOpcode()) {
  case ISD::Constant:
    // We know all of the bits for a constant!
    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
    KnownZero = ~KnownOne;
    break;
  case ISD::AND:
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
    computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);

    // Output known-1 bits are only known if set in both the LHS & RHS.
    KnownOne &= KnownOne2;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    KnownZero |= KnownZero2;
    break;
  case ISD::OR:
    computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
    computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);

    // Output known-0 bits are only known if clear in both the LHS & RHS.
    KnownZero &= KnownZero2;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    KnownOne |= KnownOne2;
    break;
  case ISD::XOR: {
    computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
    computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    KnownZero = KnownZeroOut;
    break;
  }
  case ISD::MUL: {
    computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
    computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);

    // If low bits are zero in either operand, output low known-0 bits.
    // Also compute a conserative estimate for high known-0 bits.
    // More trickiness is possible, but this is sufficient for the
    // interesting case of alignment computation.
    KnownOne.clearAllBits();
    unsigned TrailZ = KnownZero.countTrailingOnes() +
                      KnownZero2.countTrailingOnes();
    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
                               KnownZero2.countLeadingOnes(),
                               BitWidth) - BitWidth;

    TrailZ = std::min(TrailZ, BitWidth);
    LeadZ = std::min(LeadZ, BitWidth);
    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
                APInt::getHighBitsSet(BitWidth, LeadZ);
    break;
  }
  case ISD::UDIV: {
    // For the purposes of computing leading zeros we can conservatively
    // treat a udiv as a logical right shift by the power of 2 known to
    // be less than the denominator.
    computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
    unsigned LeadZ = KnownZero2.countLeadingOnes();

    KnownOne2.clearAllBits();
    KnownZero2.clearAllBits();
    computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
    if (RHSUnknownLeadingOnes != BitWidth)
      LeadZ = std::min(BitWidth,
                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);

    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
    break;
  }
  case ISD::SELECT:
    computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
    computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);

    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    break;
  case ISD::SELECT_CC:
    computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
    computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);

    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    break;
  case ISD::SADDO:
  case ISD::UADDO:
  case ISD::SSUBO:
  case ISD::USUBO:
  case ISD::SMULO:
  case ISD::UMULO:
    if (Op.getResNo() != 1)
      break;
    // The boolean result conforms to getBooleanContents.
    // If we know the result of a setcc has the top bits zero, use this info.
    // We know that we have an integer-based boolean since these operations
    // are only available for integer.
    if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
            TargetLowering::ZeroOrOneBooleanContent &&
        BitWidth > 1)
      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
    break;
  case ISD::SETCC:
    // If we know the result of a setcc has the top bits zero, use this info.
    if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
            TargetLowering::ZeroOrOneBooleanContent &&
        BitWidth > 1)
      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
    break;
  case ISD::SHL:
    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned ShAmt = SA->getZExtValue();

      // If the shift count is an invalid immediate, don't do anything.
      if (ShAmt >= BitWidth)
        break;

      computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
      KnownZero <<= ShAmt;
      KnownOne  <<= ShAmt;
      // low bits known zero.
      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
    }
    break;
  case ISD::SRL:
    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned ShAmt = SA->getZExtValue();

      // If the shift count is an invalid immediate, don't do anything.
      if (ShAmt >= BitWidth)
        break;

      computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
      KnownZero = KnownZero.lshr(ShAmt);
      KnownOne  = KnownOne.lshr(ShAmt);

      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
      KnownZero |= HighBits;  // High bits known zero.
    }
    break;
  case ISD::SRA:
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned ShAmt = SA->getZExtValue();

      // If the shift count is an invalid immediate, don't do anything.
      if (ShAmt >= BitWidth)
        break;

      // If any of the demanded bits are produced by the sign extension, we also
      // demand the input sign bit.
      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);

      computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
      KnownZero = KnownZero.lshr(ShAmt);
      KnownOne  = KnownOne.lshr(ShAmt);

      // Handle the sign bits.
      APInt SignBit = APInt::getSignBit(BitWidth);
      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.

      if (KnownZero.intersects(SignBit)) {
        KnownZero |= HighBits;  // New bits are known zero.
      } else if (KnownOne.intersects(SignBit)) {
        KnownOne  |= HighBits;  // New bits are known one.
      }
    }
    break;
  case ISD::SIGN_EXTEND_INREG: {
    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    unsigned EBits = EVT.getScalarType().getSizeInBits();

    // Sign extension.  Compute the demanded bits in the result that are not
    // present in the input.
    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);

    APInt InSignBit = APInt::getSignBit(EBits);
    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);

    // If the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    InSignBit = InSignBit.zext(BitWidth);
    if (NewBits.getBoolValue())
      InputDemandedBits |= InSignBit;

    computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
    KnownOne &= InputDemandedBits;
    KnownZero &= InputDemandedBits;

    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
      KnownZero |= NewBits;
      KnownOne  &= ~NewBits;
    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
      KnownOne  |= NewBits;
      KnownZero &= ~NewBits;
    } else {                              // Input sign bit unknown
      KnownZero &= ~NewBits;
      KnownOne  &= ~NewBits;
    }
    break;
  }
  case ISD::CTTZ:
  case ISD::CTTZ_ZERO_UNDEF:
  case ISD::CTLZ:
  case ISD::CTLZ_ZERO_UNDEF:
  case ISD::CTPOP: {
    unsigned LowBits = Log2_32(BitWidth)+1;
    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    KnownOne.clearAllBits();
    break;
  }
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(Op);
    // If this is a ZEXTLoad and we are looking at the loaded value.
    if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
      EVT VT = LD->getMemoryVT();
      unsigned MemBits = VT.getScalarType().getSizeInBits();
      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
    } else if (const MDNode *Ranges = LD->getRanges()) {
      computeKnownBitsFromRangeMetadata(*Ranges, KnownZero);
    }
    break;
  }
  case ISD::ZERO_EXTEND: {
    EVT InVT = Op.getOperand(0).getValueType();
    unsigned InBits = InVT.getScalarType().getSizeInBits();
    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
    KnownZero = KnownZero.trunc(InBits);
    KnownOne = KnownOne.trunc(InBits);
    computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
    KnownZero = KnownZero.zext(BitWidth);
    KnownOne = KnownOne.zext(BitWidth);
    KnownZero |= NewBits;
    break;
  }
  case ISD::SIGN_EXTEND: {
    EVT InVT = Op.getOperand(0).getValueType();
    unsigned InBits = InVT.getScalarType().getSizeInBits();
    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);

    KnownZero = KnownZero.trunc(InBits);
    KnownOne = KnownOne.trunc(InBits);
    computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);

    // Note if the sign bit is known to be zero or one.
    bool SignBitKnownZero = KnownZero.isNegative();
    bool SignBitKnownOne  = KnownOne.isNegative();

    KnownZero = KnownZero.zext(BitWidth);
    KnownOne = KnownOne.zext(BitWidth);

    // If the sign bit is known zero or one, the top bits match.
    if (SignBitKnownZero)
      KnownZero |= NewBits;
    else if (SignBitKnownOne)
      KnownOne  |= NewBits;
    break;
  }
  case ISD::ANY_EXTEND: {
    EVT InVT = Op.getOperand(0).getValueType();
    unsigned InBits = InVT.getScalarType().getSizeInBits();
    KnownZero = KnownZero.trunc(InBits);
    KnownOne = KnownOne.trunc(InBits);
    computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
    KnownZero = KnownZero.zext(BitWidth);
    KnownOne = KnownOne.zext(BitWidth);
    break;
  }
  case ISD::TRUNCATE: {
    EVT InVT = Op.getOperand(0).getValueType();
    unsigned InBits = InVT.getScalarType().getSizeInBits();
    KnownZero = KnownZero.zext(InBits);
    KnownOne = KnownOne.zext(InBits);
    computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
    KnownZero = KnownZero.trunc(BitWidth);
    KnownOne = KnownOne.trunc(BitWidth);
    break;
  }
  case ISD::AssertZext: {
    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
    computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
    KnownZero |= (~InMask);
    KnownOne  &= (~KnownZero);
    break;
  }
  case ISD::FGETSIGN:
    // All bits are zero except the low bit.
    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
    break;

  case ISD::SUB: {
    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
      // We know that the top bits of C-X are clear if X contains less bits
      // than C (i.e. no wrap-around can happen).  For example, 20-X is
      // positive if we can prove that X is >= 0 and < 16.
      if (CLHS->getAPIntValue().isNonNegative()) {
        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
        // NLZ can't be BitWidth with no sign bit
        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
        computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);

        // If all of the MaskV bits are known to be zero, then we know the
        // output top bits are zero, because we now know that the output is
        // from [0-C].
        if ((KnownZero2 & MaskV) == MaskV) {
          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
          // Top bits known zero.
          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
        }
      }
    }
  }
  // fall through
  case ISD::ADD:
  case ISD::ADDE: {
    // Output known-0 bits are known if clear or set in both the low clear bits
    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
    // low 3 bits clear.
    computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();

    computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
    KnownZeroOut = std::min(KnownZeroOut,
                            KnownZero2.countTrailingOnes());

    if (Op.getOpcode() == ISD::ADD) {
      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
      break;
    }

    // With ADDE, a carry bit may be added in, so we can only use this
    // information if we know (at least) that the low two bits are clear.  We
    // then return to the caller that the low bit is unknown but that other bits
    // are known zero.
    if (KnownZeroOut >= 2) // ADDE
      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
    break;
  }
  case ISD::SREM:
    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      const APInt &RA = Rem->getAPIntValue().abs();
      if (RA.isPowerOf2()) {
        APInt LowBits = RA - 1;
        computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);

        // The low bits of the first operand are unchanged by the srem.
        KnownZero = KnownZero2 & LowBits;
        KnownOne = KnownOne2 & LowBits;

        // If the first operand is non-negative or has all low bits zero, then
        // the upper bits are all zero.
        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
          KnownZero |= ~LowBits;

        // If the first operand is negative and not all low bits are zero, then
        // the upper bits are all one.
        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
          KnownOne |= ~LowBits;
        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
      }
    }
    break;
  case ISD::UREM: {
    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      const APInt &RA = Rem->getAPIntValue();
      if (RA.isPowerOf2()) {
        APInt LowBits = (RA - 1);
        computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1);

        // The upper bits are all zero, the lower ones are unchanged.
        KnownZero = KnownZero2 | ~LowBits;
        KnownOne = KnownOne2 & LowBits;
        break;
      }
    }

    // Since the result is less than or equal to either operand, any leading
    // zero bits in either operand must also exist in the result.
    computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
    computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);

    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
                                KnownZero2.countLeadingOnes());
    KnownOne.clearAllBits();
    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
    break;
  }
  case ISD::EXTRACT_ELEMENT: {
    computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
    const unsigned Index =
      cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
    const unsigned BitWidth = Op.getValueType().getSizeInBits();

    // Remove low part of known bits mask
    KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
    KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);

    // Remove high part of known bit mask
    KnownZero = KnownZero.trunc(BitWidth);
    KnownOne = KnownOne.trunc(BitWidth);
    break;
  }
  case ISD::FrameIndex:
  case ISD::TargetFrameIndex:
    if (unsigned Align = InferPtrAlignment(Op)) {
      // The low bits are known zero if the pointer is aligned.
      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
      break;
    }
    break;

  default:
    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
      break;
    // Fallthrough
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_W_CHAIN:
  case ISD::INTRINSIC_VOID:
    // Allow the target to implement this method for its nodes.
    TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
    break;
  }

  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}

/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits.  We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information.  For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
  EVT VT = Op.getValueType();
  assert(VT.isInteger() && "Invalid VT!");
  unsigned VTBits = VT.getScalarType().getSizeInBits();
  unsigned Tmp, Tmp2;
  unsigned FirstAnswer = 1;

  if (Depth == 6)
    return 1;  // Limit search depth.

  switch (Op.getOpcode()) {
  default: break;
  case ISD::AssertSext:
    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
    return VTBits-Tmp+1;
  case ISD::AssertZext:
    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
    return VTBits-Tmp;

  case ISD::Constant: {
    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
    return Val.getNumSignBits();
  }

  case ISD::SIGN_EXTEND:
    Tmp =
        VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;

  case ISD::SIGN_EXTEND_INREG:
    // Max of the input and what this extends.
    Tmp =
      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
    Tmp = VTBits-Tmp+1;

    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    return std::max(Tmp, Tmp2);

  case ISD::SRA:
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    // SRA X, C   -> adds C sign bits.
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      Tmp += C->getZExtValue();
      if (Tmp > VTBits) Tmp = VTBits;
    }
    return Tmp;
  case ISD::SHL:
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      // shl destroys sign bits.
      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
      if (C->getZExtValue() >= VTBits ||      // Bad shift.
          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
      return Tmp - C->getZExtValue();
    }
    break;
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:    // NOT is handled here.
    // Logical binary ops preserve the number of sign bits at the worst.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp != 1) {
      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
      FirstAnswer = std::min(Tmp, Tmp2);
      // We computed what we know about the sign bits as our first
      // answer. Now proceed to the generic code that uses
      // computeKnownBits, and pick whichever answer is better.
    }
    break;

  case ISD::SELECT:
    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
    return std::min(Tmp, Tmp2);

  case ISD::SADDO:
  case ISD::UADDO:
  case ISD::SSUBO:
  case ISD::USUBO:
  case ISD::SMULO:
  case ISD::UMULO:
    if (Op.getResNo() != 1)
      break;
    // The boolean result conforms to getBooleanContents.  Fall through.
    // If setcc returns 0/-1, all bits are sign bits.
    // We know that we have an integer-based boolean since these operations
    // are only available for integer.
    if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
        TargetLowering::ZeroOrNegativeOneBooleanContent)
      return VTBits;
    break;
  case ISD::SETCC:
    // If setcc returns 0/-1, all bits are sign bits.
    if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
        TargetLowering::ZeroOrNegativeOneBooleanContent)
      return VTBits;
    break;
  case ISD::ROTL:
  case ISD::ROTR:
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned RotAmt = C->getZExtValue() & (VTBits-1);

      // Handle rotate right by N like a rotate left by 32-N.
      if (Op.getOpcode() == ISD::ROTR)
        RotAmt = (VTBits-RotAmt) & (VTBits-1);

      // If we aren't rotating out all of the known-in sign bits, return the
      // number that are left.  This handles rotl(sext(x), 1) for example.
      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
      if (Tmp > RotAmt+1) return Tmp-RotAmt;
    }
    break;
  case ISD::ADD:
    // Add can have at most one carry bit.  Thus we know that the output
    // is, at worst, one more bit than the inputs.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.

    // Special case decrementing a value (ADD X, -1):
    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
      if (CRHS->isAllOnesValue()) {
        APInt KnownZero, KnownOne;
        computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);

        // If the input is known to be 0 or 1, the output is 0/-1, which is all
        // sign bits set.
        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
          return VTBits;

        // If we are subtracting one from a positive number, there is no carry
        // out of the result.
        if (KnownZero.isNegative())
          return Tmp;
      }

    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    if (Tmp2 == 1) return 1;
    return std::min(Tmp, Tmp2)-1;

  case ISD::SUB:
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    if (Tmp2 == 1) return 1;

    // Handle NEG.
    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
      if (CLHS->isNullValue()) {
        APInt KnownZero, KnownOne;
        computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
        // If the input is known to be 0 or 1, the output is 0/-1, which is all
        // sign bits set.
        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
          return VTBits;

        // If the input is known to be positive (the sign bit is known clear),
        // the output of the NEG has the same number of sign bits as the input.
        if (KnownZero.isNegative())
          return Tmp2;

        // Otherwise, we treat this like a SUB.
      }

    // Sub can have at most one carry bit.  Thus we know that the output
    // is, at worst, one more bit than the inputs.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
    return std::min(Tmp, Tmp2)-1;
  case ISD::TRUNCATE:
    // FIXME: it's tricky to do anything useful for this, but it is an important
    // case for targets like X86.
    break;
  case ISD::EXTRACT_ELEMENT: {
    const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    const int BitWidth = Op.getValueType().getSizeInBits();
    const int Items =
      Op.getOperand(0).getValueType().getSizeInBits() / BitWidth;

    // Get reverse index (starting from 1), Op1 value indexes elements from
    // little end. Sign starts at big end.
    const int rIndex = Items - 1 -
      cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();

    // If the sign portion ends in our element the substraction gives correct
    // result. Otherwise it gives either negative or > bitwidth result
    return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
  }
  }

  // If we are looking at the loaded value of the SDNode.
  if (Op.getResNo() == 0) {
    // Handle LOADX separately here. EXTLOAD case will fallthrough.
    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
      unsigned ExtType = LD->getExtensionType();
      switch (ExtType) {
        default: break;
        case ISD::SEXTLOAD:    // '17' bits known
          Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
          return VTBits-Tmp+1;
        case ISD::ZEXTLOAD:    // '16' bits known
          Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
          return VTBits-Tmp;
      }
    }
  }

  // Allow the target to implement this method for its nodes.
  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
      Op.getOpcode() == ISD::INTRINSIC_VOID) {
    unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
  }

  // Finally, if we can prove that the top bits of the result are 0's or 1's,
  // use this information.
  APInt KnownZero, KnownOne;
  computeKnownBits(Op, KnownZero, KnownOne, Depth);

  APInt Mask;
  if (KnownZero.isNegative()) {        // sign bit is 0
    Mask = KnownZero;
  } else if (KnownOne.isNegative()) {  // sign bit is 1;
    Mask = KnownOne;
  } else {
    // Nothing known.
    return FirstAnswer;
  }

  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
  // the number of identical bits in the top of the input value.
  Mask = ~Mask;
  Mask <<= Mask.getBitWidth()-VTBits;
  // Return # leading zeros.  We use 'min' here in case Val was zero before
  // shifting.  We don't want to return '64' as for an i32 "0".
  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
}

/// isBaseWithConstantOffset - Return true if the specified operand is an
/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
/// semantics as an ADD.  This handles the equivalence:
///     X|Cst == X+Cst iff X&Cst = 0.
bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
      !isa<ConstantSDNode>(Op.getOperand(1)))
    return false;

  if (Op.getOpcode() == ISD::OR &&
      !MaskedValueIsZero(Op.getOperand(0),
                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
    return false;

  return true;
}


bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
  // If we're told that NaNs won't happen, assume they won't.
  if (getTarget().Options.NoNaNsFPMath)
    return true;

  // If the value is a constant, we can obviously see if it is a NaN or not.
  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
    return !C->getValueAPF().isNaN();

  // TODO: Recognize more cases here.

  return false;
}

bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
  // If the value is a constant, we can obviously see if it is a zero or not.
  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
    return !C->isZero();

  // TODO: Recognize more cases here.
  switch (Op.getOpcode()) {
  default: break;
  case ISD::OR:
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
      return !C->isNullValue();
    break;
  }

  return false;
}

bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
  // Check the obvious case.
  if (A == B) return true;

  // For for negative and positive zero.
  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
      if (CA->isZero() && CB->isZero()) return true;

  // Otherwise they may not be equal.
  return false;
}

/// getNode - Gets or creates the specified node.
///
SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opcode, getVTList(VT), None);
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(),
                                         DL.getDebugLoc(), getVTList(VT));
  CSEMap.InsertNode(N, IP);

  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
                              EVT VT, SDValue Operand) {
  // Constant fold unary operations with an integer constant operand. Even
  // opaque constant will be folded, because the folding of unary operations
  // doesn't create new constants with different values. Nevertheless, the
  // opaque flag is preserved during folding to prevent future folding with
  // other constants.
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
    const APInt &Val = C->getAPIntValue();
    switch (Opcode) {
    default: break;
    case ISD::SIGN_EXTEND:
      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT,
                         C->isTargetOpcode(), C->isOpaque());
    case ISD::ANY_EXTEND:
    case ISD::ZERO_EXTEND:
    case ISD::TRUNCATE:
      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT,
                         C->isTargetOpcode(), C->isOpaque());
    case ISD::UINT_TO_FP:
    case ISD::SINT_TO_FP: {
      APFloat apf(EVTToAPFloatSemantics(VT),
                  APInt::getNullValue(VT.getSizeInBits()));
      (void)apf.convertFromAPInt(Val,
                                 Opcode==ISD::SINT_TO_FP,
                                 APFloat::rmNearestTiesToEven);
      return getConstantFP(apf, VT);
    }
    case ISD::BITCAST:
      if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
        return getConstantFP(APFloat(APFloat::IEEEhalf, Val), VT);
      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
        return getConstantFP(APFloat(APFloat::IEEEsingle, Val), VT);
      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
        return getConstantFP(APFloat(APFloat::IEEEdouble, Val), VT);
      break;
    case ISD::BSWAP:
      return getConstant(Val.byteSwap(), VT, C->isTargetOpcode(),
                         C->isOpaque());
    case ISD::CTPOP:
      return getConstant(Val.countPopulation(), VT, C->isTargetOpcode(),
                         C->isOpaque());
    case ISD::CTLZ:
    case ISD::CTLZ_ZERO_UNDEF:
      return getConstant(Val.countLeadingZeros(), VT, C->isTargetOpcode(),
                         C->isOpaque());
    case ISD::CTTZ:
    case ISD::CTTZ_ZERO_UNDEF:
      return getConstant(Val.countTrailingZeros(), VT, C->isTargetOpcode(),
                         C->isOpaque());
    }
  }

  // Constant fold unary operations with a floating point constant operand.
  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
    APFloat V = C->getValueAPF();    // make copy
    switch (Opcode) {
    case ISD::FNEG:
      V.changeSign();
      return getConstantFP(V, VT);
    case ISD::FABS:
      V.clearSign();
      return getConstantFP(V, VT);
    case ISD::FCEIL: {
      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
      if (fs == APFloat::opOK || fs == APFloat::opInexact)
        return getConstantFP(V, VT);
      break;
    }
    case ISD::FTRUNC: {
      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
      if (fs == APFloat::opOK || fs == APFloat::opInexact)
        return getConstantFP(V, VT);
      break;
    }
    case ISD::FFLOOR: {
      APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
      if (fs == APFloat::opOK || fs == APFloat::opInexact)
        return getConstantFP(V, VT);
      break;
    }
    case ISD::FP_EXTEND: {
      bool ignored;
      // This can return overflow, underflow, or inexact; we don't care.
      // FIXME need to be more flexible about rounding mode.
      (void)V.convert(EVTToAPFloatSemantics(VT),
                      APFloat::rmNearestTiesToEven, &ignored);
      return getConstantFP(V, VT);
    }
    case ISD::FP_TO_SINT:
    case ISD::FP_TO_UINT: {
      integerPart x[2];
      bool ignored;
      static_assert(integerPartWidth >= 64, "APFloat parts too small!");
      // FIXME need to be more flexible about rounding mode.
      APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
                            Opcode==ISD::FP_TO_SINT,
                            APFloat::rmTowardZero, &ignored);
      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
        break;
      APInt api(VT.getSizeInBits(), x);
      return getConstant(api, VT);
    }
    case ISD::BITCAST:
      if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
        return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), VT);
      else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
        return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
        return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
      break;
    }
  }

  // Constant fold unary operations with a vector integer or float operand.
  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand.getNode())) {
    if (BV->isConstant()) {
      switch (Opcode) {
      default:
        // FIXME: Entirely reasonable to perform folding of other unary
        // operations here as the need arises.
        break;
      case ISD::FNEG:
      case ISD::FABS:
      case ISD::FP_EXTEND:
      case ISD::TRUNCATE:
      case ISD::UINT_TO_FP:
      case ISD::SINT_TO_FP: {
        // Let the above scalar folding handle the folding of each element.
        SmallVector<SDValue, 8> Ops;
        for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
          SDValue OpN = BV->getOperand(i);
          OpN = getNode(Opcode, DL, VT.getVectorElementType(), OpN);
          if (OpN.getOpcode() != ISD::UNDEF &&
              OpN.getOpcode() != ISD::Constant &&
              OpN.getOpcode() != ISD::ConstantFP)
            break;
          Ops.push_back(OpN);
        }
        if (Ops.size() == VT.getVectorNumElements())
          return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
      }
      }
    }
  }

  unsigned OpOpcode = Operand.getNode()->getOpcode();
  switch (Opcode) {
  case ISD::TokenFactor:
  case ISD::MERGE_VALUES:
  case ISD::CONCAT_VECTORS:
    return Operand;         // Factor, merge or concat of one node?  No need.
  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
  case ISD::FP_EXTEND:
    assert(VT.isFloatingPoint() &&
           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
    assert((!VT.isVector() ||
            VT.getVectorNumElements() ==
            Operand.getValueType().getVectorNumElements()) &&
           "Vector element count mismatch!");
    if (Operand.getOpcode() == ISD::UNDEF)
      return getUNDEF(VT);
    break;
  case ISD::SIGN_EXTEND:
    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
           "Invalid SIGN_EXTEND!");
    if (Operand.getValueType() == VT) return Operand;   // noop extension
    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
           "Invalid sext node, dst < src!");
    assert((!VT.isVector() ||
            VT.getVectorNumElements() ==
            Operand.getValueType().getVectorNumElements()) &&
           "Vector element count mismatch!");
    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
    else if (OpOpcode == ISD::UNDEF)
      // sext(undef) = 0, because the top bits will all be the same.
      return getConstant(0, VT);
    break;
  case ISD::ZERO_EXTEND:
    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
           "Invalid ZERO_EXTEND!");
    if (Operand.getValueType() == VT) return Operand;   // noop extension
    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
           "Invalid zext node, dst < src!");
    assert((!VT.isVector() ||
            VT.getVectorNumElements() ==
            Operand.getValueType().getVectorNumElements()) &&
           "Vector element count mismatch!");
    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
      return getNode(ISD::ZERO_EXTEND, DL, VT,
                     Operand.getNode()->getOperand(0));
    else if (OpOpcode == ISD::UNDEF)
      // zext(undef) = 0, because the top bits will be zero.
      return getConstant(0, VT);
    break;
  case ISD::ANY_EXTEND:
    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
           "Invalid ANY_EXTEND!");
    if (Operand.getValueType() == VT) return Operand;   // noop extension
    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
           "Invalid anyext node, dst < src!");
    assert((!VT.isVector() ||
            VT.getVectorNumElements() ==
            Operand.getValueType().getVectorNumElements()) &&
           "Vector element count mismatch!");

    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
        OpOpcode == ISD::ANY_EXTEND)
      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
    else if (OpOpcode == ISD::UNDEF)
      return getUNDEF(VT);

    // (ext (trunx x)) -> x
    if (OpOpcode == ISD::TRUNCATE) {
      SDValue OpOp = Operand.getNode()->getOperand(0);
      if (OpOp.getValueType() == VT)
        return OpOp;
    }
    break;
  case ISD::TRUNCATE:
    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
           "Invalid TRUNCATE!");
    if (Operand.getValueType() == VT) return Operand;   // noop truncate
    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
           "Invalid truncate node, src < dst!");
    assert((!VT.isVector() ||
            VT.getVectorNumElements() ==
            Operand.getValueType().getVectorNumElements()) &&
           "Vector element count mismatch!");
    if (OpOpcode == ISD::TRUNCATE)
      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
        OpOpcode == ISD::ANY_EXTEND) {
      // If the source is smaller than the dest, we still need an extend.
      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
            .bitsLT(VT.getScalarType()))
        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
      if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
      return Operand.getNode()->getOperand(0);
    }
    if (OpOpcode == ISD::UNDEF)
      return getUNDEF(VT);
    break;
  case ISD::BITCAST:
    // Basic sanity checking.
    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
           && "Cannot BITCAST between types of different sizes!");
    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
    if (OpOpcode == ISD::UNDEF)
      return getUNDEF(VT);
    break;
  case ISD::SCALAR_TO_VECTOR:
    assert(VT.isVector() && !Operand.getValueType().isVector() &&
           (VT.getVectorElementType() == Operand.getValueType() ||
            (VT.getVectorElementType().isInteger() &&
             Operand.getValueType().isInteger() &&
             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
           "Illegal SCALAR_TO_VECTOR node!");
    if (OpOpcode == ISD::UNDEF)
      return getUNDEF(VT);
    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
        isa<ConstantSDNode>(Operand.getOperand(1)) &&
        Operand.getConstantOperandVal(1) == 0 &&
        Operand.getOperand(0).getValueType() == VT)
      return Operand.getOperand(0);
    break;
  case ISD::FNEG:
    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
    if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
                     Operand.getNode()->getOperand(0));
    if (OpOpcode == ISD::FNEG)  // --X -> X
      return Operand.getNode()->getOperand(0);
    break;
  case ISD::FABS:
    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
    break;
  }

  SDNode *N;
  SDVTList VTs = getVTList(VT);
  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
    FoldingSetNodeID ID;
    SDValue Ops[1] = { Operand };
    AddNodeIDNode(ID, Opcode, VTs, Ops);
    void *IP = nullptr;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDValue(E, 0);

    N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
                                        DL.getDebugLoc(), VTs, Operand);
    CSEMap.InsertNode(N, IP);
  } else {
    N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
                                        DL.getDebugLoc(), VTs, Operand);
  }

  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, EVT VT,
                                             SDNode *Cst1, SDNode *Cst2) {
  // If the opcode is a target-specific ISD node, there's nothing we can
  // do here and the operand rules may not line up with the below, so
  // bail early.
  if (Opcode >= ISD::BUILTIN_OP_END)
    return SDValue();

  SmallVector<std::pair<ConstantSDNode *, ConstantSDNode *>, 4> Inputs;
  SmallVector<SDValue, 4> Outputs;
  EVT SVT = VT.getScalarType();

  ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1);
  ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2);
  if (Scalar1 && Scalar2 && (Scalar1->isOpaque() || Scalar2->isOpaque()))
    return SDValue();

  if (Scalar1 && Scalar2)
    // Scalar instruction.
    Inputs.push_back(std::make_pair(Scalar1, Scalar2));
  else {
    // For vectors extract each constant element into Inputs so we can constant
    // fold them individually.
    BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
    BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
    if (!BV1 || !BV2)
      return SDValue();

    assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");

    for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
      ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
      ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
      if (!V1 || !V2) // Not a constant, bail.
        return SDValue();

      if (V1->isOpaque() || V2->isOpaque())
        return SDValue();

      // Avoid BUILD_VECTOR nodes that perform implicit truncation.
      // FIXME: This is valid and could be handled by truncating the APInts.
      if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
        return SDValue();

      Inputs.push_back(std::make_pair(V1, V2));
    }
  }

  // We have a number of constant values, constant fold them element by element.
  for (unsigned I = 0, E = Inputs.size(); I != E; ++I) {
    const APInt &C1 = Inputs[I].first->getAPIntValue();
    const APInt &C2 = Inputs[I].second->getAPIntValue();

    switch (Opcode) {
    case ISD::ADD:
      Outputs.push_back(getConstant(C1 + C2, SVT));
      break;
    case ISD::SUB:
      Outputs.push_back(getConstant(C1 - C2, SVT));
      break;
    case ISD::MUL:
      Outputs.push_back(getConstant(C1 * C2, SVT));
      break;
    case ISD::UDIV:
      if (!C2.getBoolValue())
        return SDValue();
      Outputs.push_back(getConstant(C1.udiv(C2), SVT));
      break;
    case ISD::UREM:
      if (!C2.getBoolValue())
        return SDValue();
      Outputs.push_back(getConstant(C1.urem(C2), SVT));
      break;
    case ISD::SDIV:
      if (!C2.getBoolValue())
        return SDValue();
      Outputs.push_back(getConstant(C1.sdiv(C2), SVT));
      break;
    case ISD::SREM:
      if (!C2.getBoolValue())
        return SDValue();
      Outputs.push_back(getConstant(C1.srem(C2), SVT));
      break;
    case ISD::AND:
      Outputs.push_back(getConstant(C1 & C2, SVT));
      break;
    case ISD::OR:
      Outputs.push_back(getConstant(C1 | C2, SVT));
      break;
    case ISD::XOR:
      Outputs.push_back(getConstant(C1 ^ C2, SVT));
      break;
    case ISD::SHL:
      Outputs.push_back(getConstant(C1 << C2, SVT));
      break;
    case ISD::SRL:
      Outputs.push_back(getConstant(C1.lshr(C2), SVT));
      break;
    case ISD::SRA:
      Outputs.push_back(getConstant(C1.ashr(C2), SVT));
      break;
    case ISD::ROTL:
      Outputs.push_back(getConstant(C1.rotl(C2), SVT));
      break;
    case ISD::ROTR:
      Outputs.push_back(getConstant(C1.rotr(C2), SVT));
      break;
    default:
      return SDValue();
    }
  }

  assert((Scalar1 && Scalar2) || (VT.getVectorNumElements() == Outputs.size() &&
                                  "Expected a scalar or vector!"));

  // Handle the scalar case first.
  if (!VT.isVector())
    return Outputs.back();

  // We may have a vector type but a scalar result. Create a splat.
  Outputs.resize(VT.getVectorNumElements(), Outputs.back());

  // Build a big vector out of the scalar elements we generated.
  return getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Outputs);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
                              SDValue N2, bool nuw, bool nsw, bool exact) {
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
  switch (Opcode) {
  default: break;
  case ISD::TokenFactor:
    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
           N2.getValueType() == MVT::Other && "Invalid token factor!");
    // Fold trivial token factors.
    if (N1.getOpcode() == ISD::EntryToken) return N2;
    if (N2.getOpcode() == ISD::EntryToken) return N1;
    if (N1 == N2) return N1;
    break;
  case ISD::CONCAT_VECTORS:
    // Concat of UNDEFs is UNDEF.
    if (N1.getOpcode() == ISD::UNDEF &&
        N2.getOpcode() == ISD::UNDEF)
      return getUNDEF(VT);

    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
    // one big BUILD_VECTOR.
    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
        N2.getOpcode() == ISD::BUILD_VECTOR) {
      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
                                    N1.getNode()->op_end());
      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
      return getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
    }
    break;
  case ISD::AND:
    assert(VT.isInteger() && "This operator does not apply to FP types!");
    assert(N1.getValueType() == N2.getValueType() &&
           N1.getValueType() == VT && "Binary operator types must match!");
    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
    // worth handling here.
    if (N2C && N2C->isNullValue())
      return N2;
    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
      return N1;
    break;
  case ISD::OR:
  case ISD::XOR:
  case ISD::ADD:
  case ISD::SUB:
    assert(VT.isInteger() && "This operator does not apply to FP types!");
    assert(N1.getValueType() == N2.getValueType() &&
           N1.getValueType() == VT && "Binary operator types must match!");
    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
    // it's worth handling here.
    if (N2C && N2C->isNullValue())
      return N1;
    break;
  case ISD::UDIV:
  case ISD::UREM:
  case ISD::MULHU:
  case ISD::MULHS:
  case ISD::MUL:
  case ISD::SDIV:
  case ISD::SREM:
    assert(VT.isInteger() && "This operator does not apply to FP types!");
    assert(N1.getValueType() == N2.getValueType() &&
           N1.getValueType() == VT && "Binary operator types must match!");
    break;
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FDIV:
  case ISD::FREM:
    if (getTarget().Options.UnsafeFPMath) {
      if (Opcode == ISD::FADD) {
        // 0+x --> x
        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
          if (CFP->getValueAPF().isZero())
            return N2;
        // x+0 --> x
        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
          if (CFP->getValueAPF().isZero())
            return N1;
      } else if (Opcode == ISD::FSUB) {
        // x-0 --> x
        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
          if (CFP->getValueAPF().isZero())
            return N1;
      } else if (Opcode == ISD::FMUL) {
        ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
        SDValue V = N2;

        // If the first operand isn't the constant, try the second
        if (!CFP) {
          CFP = dyn_cast<ConstantFPSDNode>(N2);
          V = N1;
        }

        if (CFP) {
          // 0*x --> 0
          if (CFP->isZero())
            return SDValue(CFP,0);
          // 1*x --> x
          if (CFP->isExactlyValue(1.0))
            return V;
        }
      }
    }
    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
    assert(N1.getValueType() == N2.getValueType() &&
           N1.getValueType() == VT && "Binary operator types must match!");
    break;
  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
    assert(N1.getValueType() == VT &&
           N1.getValueType().isFloatingPoint() &&
           N2.getValueType().isFloatingPoint() &&
           "Invalid FCOPYSIGN!");
    break;
  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
  case ISD::ROTL:
  case ISD::ROTR:
    assert(VT == N1.getValueType() &&
           "Shift operators return type must be the same as their first arg");
    assert(VT.isInteger() && N2.getValueType().isInteger() &&
           "Shifts only work on integers");
    assert((!VT.isVector() || VT == N2.getValueType()) &&
           "Vector shift amounts must be in the same as their first arg");
    // Verify that the shift amount VT is bit enough to hold valid shift
    // amounts.  This catches things like trying to shift an i1024 value by an
    // i8, which is easy to fall into in generic code that uses
    // TLI.getShiftAmount().
    assert(N2.getValueType().getSizeInBits() >=
                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
           "Invalid use of small shift amount with oversized value!");

    // Always fold shifts of i1 values so the code generator doesn't need to
    // handle them.  Since we know the size of the shift has to be less than the
    // size of the value, the shift/rotate count is guaranteed to be zero.
    if (VT == MVT::i1)
      return N1;
    if (N2C && N2C->isNullValue())
      return N1;
    break;
  case ISD::FP_ROUND_INREG: {
    EVT EVT = cast<VTSDNode>(N2)->getVT();
    assert(VT == N1.getValueType() && "Not an inreg round!");
    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
           "Cannot FP_ROUND_INREG integer types");
    assert(EVT.isVector() == VT.isVector() &&
           "FP_ROUND_INREG type should be vector iff the operand "
           "type is vector!");
    assert((!EVT.isVector() ||
            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
           "Vector element counts must match in FP_ROUND_INREG");
    assert(EVT.bitsLE(VT) && "Not rounding down!");
    (void)EVT;
    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
    break;
  }
  case ISD::FP_ROUND:
    assert(VT.isFloatingPoint() &&
           N1.getValueType().isFloatingPoint() &&
           VT.bitsLE(N1.getValueType()) &&
           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
    if (N1.getValueType() == VT) return N1;  // noop conversion.
    break;
  case ISD::AssertSext:
  case ISD::AssertZext: {
    EVT EVT = cast<VTSDNode>(N2)->getVT();
    assert(VT == N1.getValueType() && "Not an inreg extend!");
    assert(VT.isInteger() && EVT.isInteger() &&
           "Cannot *_EXTEND_INREG FP types");
    assert(!EVT.isVector() &&
           "AssertSExt/AssertZExt type should be the vector element type "
           "rather than the vector type!");
    assert(EVT.bitsLE(VT) && "Not extending!");
    if (VT == EVT) return N1; // noop assertion.
    break;
  }
  case ISD::SIGN_EXTEND_INREG: {
    EVT EVT = cast<VTSDNode>(N2)->getVT();
    assert(VT == N1.getValueType() && "Not an inreg extend!");
    assert(VT.isInteger() && EVT.isInteger() &&
           "Cannot *_EXTEND_INREG FP types");
    assert(EVT.isVector() == VT.isVector() &&
           "SIGN_EXTEND_INREG type should be vector iff the operand "
           "type is vector!");
    assert((!EVT.isVector() ||
            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
           "Vector element counts must match in SIGN_EXTEND_INREG");
    assert(EVT.bitsLE(VT) && "Not extending!");
    if (EVT == VT) return N1;  // Not actually extending

    if (N1C) {
      APInt Val = N1C->getAPIntValue();
      unsigned FromBits = EVT.getScalarType().getSizeInBits();
      Val <<= Val.getBitWidth()-FromBits;
      Val = Val.ashr(Val.getBitWidth()-FromBits);
      return getConstant(Val, VT);
    }
    break;
  }
  case ISD::EXTRACT_VECTOR_ELT:
    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
    if (N1.getOpcode() == ISD::UNDEF)
      return getUNDEF(VT);

    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
    // expanding copies of large vectors from registers.
    if (N2C &&
        N1.getOpcode() == ISD::CONCAT_VECTORS &&
        N1.getNumOperands() > 0) {
      unsigned Factor =
        N1.getOperand(0).getValueType().getVectorNumElements();
      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
                     N1.getOperand(N2C->getZExtValue() / Factor),
                     getConstant(N2C->getZExtValue() % Factor,
                                 N2.getValueType()));
    }

    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
    // expanding large vector constants.
    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
      SDValue Elt = N1.getOperand(N2C->getZExtValue());

      if (VT != Elt.getValueType())
        // If the vector element type is not legal, the BUILD_VECTOR operands
        // are promoted and implicitly truncated, and the result implicitly
        // extended. Make that explicit here.
        Elt = getAnyExtOrTrunc(Elt, DL, VT);

      return Elt;
    }

    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
    // operations are lowered to scalars.
    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
      // If the indices are the same, return the inserted element else
      // if the indices are known different, extract the element from
      // the original vector.
      SDValue N1Op2 = N1.getOperand(2);
      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());

      if (N1Op2C && N2C) {
        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
          if (VT == N1.getOperand(1).getValueType())
            return N1.getOperand(1);
          else
            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
        }

        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
      }
    }
    break;
  case ISD::EXTRACT_ELEMENT:
    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
    assert(!N1.getValueType().isVector() && !VT.isVector() &&
           (N1.getValueType().isInteger() == VT.isInteger()) &&
           N1.getValueType() != VT &&
           "Wrong types for EXTRACT_ELEMENT!");

    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
    // 64-bit integers into 32-bit parts.  Instead of building the extract of
    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
    if (N1.getOpcode() == ISD::BUILD_PAIR)
      return N1.getOperand(N2C->getZExtValue());

    // EXTRACT_ELEMENT of a constant int is also very common.
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
      unsigned ElementSize = VT.getSizeInBits();
      unsigned Shift = ElementSize * N2C->getZExtValue();
      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
      return getConstant(ShiftedVal.trunc(ElementSize), VT);
    }
    break;
  case ISD::EXTRACT_SUBVECTOR: {
    SDValue Index = N2;
    if (VT.isSimple() && N1.getValueType().isSimple()) {
      assert(VT.isVector() && N1.getValueType().isVector() &&
             "Extract subvector VTs must be a vectors!");
      assert(VT.getVectorElementType() ==
             N1.getValueType().getVectorElementType() &&
             "Extract subvector VTs must have the same element type!");
      assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
             "Extract subvector must be from larger vector to smaller vector!");

      if (isa<ConstantSDNode>(Index.getNode())) {
        assert((VT.getVectorNumElements() +
                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
                <= N1.getValueType().getVectorNumElements())
               && "Extract subvector overflow!");
      }

      // Trivial extraction.
      if (VT.getSimpleVT() == N1.getSimpleValueType())
        return N1;
    }
    break;
  }
  }

  // Perform trivial constant folding.
  if (SDValue SV =
          FoldConstantArithmetic(Opcode, VT, N1.getNode(), N2.getNode()))
    return SV;

  // Canonicalize constant to RHS if commutative.
  if (N1C && !N2C && isCommutativeBinOp(Opcode)) {
    std::swap(N1C, N2C);
    std::swap(N1, N2);
  }

  // Constant fold FP operations.
  bool HasFPExceptions = TLI->hasFloatingPointExceptions();
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
  if (N1CFP) {
    if (!N2CFP && isCommutativeBinOp(Opcode)) {
      // Canonicalize constant to RHS if commutative.
      std::swap(N1CFP, N2CFP);
      std::swap(N1, N2);
    } else if (N2CFP) {
      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
      APFloat::opStatus s;
      switch (Opcode) {
      case ISD::FADD:
        s = V1.add(V2, APFloat::rmNearestTiesToEven);
        if (!HasFPExceptions || s != APFloat::opInvalidOp)
          return getConstantFP(V1, VT);
        break;
      case ISD::FSUB:
        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
        if (!HasFPExceptions || s!=APFloat::opInvalidOp)
          return getConstantFP(V1, VT);
        break;
      case ISD::FMUL:
        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
        if (!HasFPExceptions || s!=APFloat::opInvalidOp)
          return getConstantFP(V1, VT);
        break;
      case ISD::FDIV:
        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
        if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
                                 s!=APFloat::opDivByZero)) {
          return getConstantFP(V1, VT);
        }
        break;
      case ISD::FREM :
        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
        if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
                                 s!=APFloat::opDivByZero)) {
          return getConstantFP(V1, VT);
        }
        break;
      case ISD::FCOPYSIGN:
        V1.copySign(V2);
        return getConstantFP(V1, VT);
      default: break;
      }
    }

    if (Opcode == ISD::FP_ROUND) {
      APFloat V = N1CFP->getValueAPF();    // make copy
      bool ignored;
      // This can return overflow, underflow, or inexact; we don't care.
      // FIXME need to be more flexible about rounding mode.
      (void)V.convert(EVTToAPFloatSemantics(VT),
                      APFloat::rmNearestTiesToEven, &ignored);
      return getConstantFP(V, VT);
    }
  }

  // Canonicalize an UNDEF to the RHS, even over a constant.
  if (N1.getOpcode() == ISD::UNDEF) {
    if (isCommutativeBinOp(Opcode)) {
      std::swap(N1, N2);
    } else {
      switch (Opcode) {
      case ISD::FP_ROUND_INREG:
      case ISD::SIGN_EXTEND_INREG:
      case ISD::SUB:
      case ISD::FSUB:
      case ISD::FDIV:
      case ISD::FREM:
      case ISD::SRA:
        return N1;     // fold op(undef, arg2) -> undef
      case ISD::UDIV:
      case ISD::SDIV:
      case ISD::UREM:
      case ISD::SREM:
      case ISD::SRL:
      case ISD::SHL:
        if (!VT.isVector())
          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
        // For vectors, we can't easily build an all zero vector, just return
        // the LHS.
        return N2;
      }
    }
  }

  // Fold a bunch of operators when the RHS is undef.
  if (N2.getOpcode() == ISD::UNDEF) {
    switch (Opcode) {
    case ISD::XOR:
      if (N1.getOpcode() == ISD::UNDEF)
        // Handle undef ^ undef -> 0 special case. This is a common
        // idiom (misuse).
        return getConstant(0, VT);
      // fallthrough
    case ISD::ADD:
    case ISD::ADDC:
    case ISD::ADDE:
    case ISD::SUB:
    case ISD::UDIV:
    case ISD::SDIV:
    case ISD::UREM:
    case ISD::SREM:
      return N2;       // fold op(arg1, undef) -> undef
    case ISD::FADD:
    case ISD::FSUB:
    case ISD::FMUL:
    case ISD::FDIV:
    case ISD::FREM:
      if (getTarget().Options.UnsafeFPMath)
        return N2;
      break;
    case ISD::MUL:
    case ISD::AND:
    case ISD::SRL:
    case ISD::SHL:
      if (!VT.isVector())
        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
      // For vectors, we can't easily build an all zero vector, just return
      // the LHS.
      return N1;
    case ISD::OR:
      if (!VT.isVector())
        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
      // For vectors, we can't easily build an all one vector, just return
      // the LHS.
      return N1;
    case ISD::SRA:
      return N1;
    }
  }

  // Memoize this node if possible.
  BinarySDNode *N;
  SDVTList VTs = getVTList(VT);
  const bool BinOpHasFlags = isBinOpWithFlags(Opcode);
  if (VT != MVT::Glue) {
    SDValue Ops[] = {N1, N2};
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTs, Ops);
    if (BinOpHasFlags)
      AddBinaryNodeIDCustom(ID, Opcode, nuw, nsw, exact);
    void *IP = nullptr;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDValue(E, 0);

    N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, nuw, nsw, exact);

    CSEMap.InsertNode(N, IP);
  } else {

    N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, nuw, nsw, exact);
  }

  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
                              SDValue N1, SDValue N2, SDValue N3) {
  // Perform various simplifications.
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
  switch (Opcode) {
  case ISD::FMA: {
    ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
    ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
    ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
    if (N1CFP && N2CFP && N3CFP) {
      APFloat  V1 = N1CFP->getValueAPF();
      const APFloat &V2 = N2CFP->getValueAPF();
      const APFloat &V3 = N3CFP->getValueAPF();
      APFloat::opStatus s =
        V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
      if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
        return getConstantFP(V1, VT);
    }
    break;
  }
  case ISD::CONCAT_VECTORS:
    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
    // one big BUILD_VECTOR.
    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
        N2.getOpcode() == ISD::BUILD_VECTOR &&
        N3.getOpcode() == ISD::BUILD_VECTOR) {
      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
                                    N1.getNode()->op_end());
      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
      return getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
    }
    break;
  case ISD::SETCC: {
    // Use FoldSetCC to simplify SETCC's.
    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
    if (Simp.getNode()) return Simp;
    break;
  }
  case ISD::SELECT:
    if (N1C) {
     if (N1C->getZExtValue())
       return N2;             // select true, X, Y -> X
     return N3;             // select false, X, Y -> Y
    }

    if (N2 == N3) return N2;   // select C, X, X -> X
    break;
  case ISD::VECTOR_SHUFFLE:
    llvm_unreachable("should use getVectorShuffle constructor!");
  case ISD::INSERT_SUBVECTOR: {
    SDValue Index = N3;
    if (VT.isSimple() && N1.getValueType().isSimple()
        && N2.getValueType().isSimple()) {
      assert(VT.isVector() && N1.getValueType().isVector() &&
             N2.getValueType().isVector() &&
             "Insert subvector VTs must be a vectors");
      assert(VT == N1.getValueType() &&
             "Dest and insert subvector source types must match!");
      assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
             "Insert subvector must be from smaller vector to larger vector!");
      if (isa<ConstantSDNode>(Index.getNode())) {
        assert((N2.getValueType().getVectorNumElements() +
                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
                <= VT.getVectorNumElements())
               && "Insert subvector overflow!");
      }

      // Trivial insertion.
      if (VT.getSimpleVT() == N2.getSimpleValueType())
        return N2;
    }
    break;
  }
  case ISD::BITCAST:
    // Fold bit_convert nodes from a type to themselves.
    if (N1.getValueType() == VT)
      return N1;
    break;
  }

  // Memoize node if it doesn't produce a flag.
  SDNode *N;
  SDVTList VTs = getVTList(VT);
  if (VT != MVT::Glue) {
    SDValue Ops[] = { N1, N2, N3 };
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTs, Ops);
    void *IP = nullptr;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDValue(E, 0);

    N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
                                          DL.getDebugLoc(), VTs, N1, N2, N3);
    CSEMap.InsertNode(N, IP);
  } else {
    N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
                                          DL.getDebugLoc(), VTs, N1, N2, N3);
  }

  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
                              SDValue N1, SDValue N2, SDValue N3,
                              SDValue N4) {
  SDValue Ops[] = { N1, N2, N3, N4 };
  return getNode(Opcode, DL, VT, Ops);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
                              SDValue N1, SDValue N2, SDValue N3,
                              SDValue N4, SDValue N5) {
  SDValue Ops[] = { N1, N2, N3, N4, N5 };
  return getNode(Opcode, DL, VT, Ops);
}

/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
/// the incoming stack arguments to be loaded from the stack.
SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
  SmallVector<SDValue, 8> ArgChains;

  // Include the original chain at the beginning of the list. When this is
  // used by target LowerCall hooks, this helps legalize find the
  // CALLSEQ_BEGIN node.
  ArgChains.push_back(Chain);

  // Add a chain value for each stack argument.
  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
        if (FI->getIndex() < 0)
          ArgChains.push_back(SDValue(L, 1));

  // Build a tokenfactor for all the chains.
  return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}

/// getMemsetValue - Vectorized representation of the memset value
/// operand.
static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
                              SDLoc dl) {
  assert(Value.getOpcode() != ISD::UNDEF);

  unsigned NumBits = VT.getScalarType().getSizeInBits();
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
    assert(C->getAPIntValue().getBitWidth() == 8);
    APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
    if (VT.isInteger())
      return DAG.getConstant(Val, VT);
    return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), VT);
  }

  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
  if (NumBits > 8) {
    // Use a multiplication with 0x010101... to extend the input to the
    // required length.
    APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
  }

  return Value;
}

/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDValue getMemsetStringVal(EVT VT, SDLoc dl, SelectionDAG &DAG,
                                  const TargetLowering &TLI, StringRef Str) {
  // Handle vector with all elements zero.
  if (Str.empty()) {
    if (VT.isInteger())
      return DAG.getConstant(0, VT);
    else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
      return DAG.getConstantFP(0.0, VT);
    else if (VT.isVector()) {
      unsigned NumElts = VT.getVectorNumElements();
      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
      return DAG.getNode(ISD::BITCAST, dl, VT,
                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
                                                             EltVT, NumElts)));
    } else
      llvm_unreachable("Expected type!");
  }

  assert(!VT.isVector() && "Can't handle vector type here!");
  unsigned NumVTBits = VT.getSizeInBits();
  unsigned NumVTBytes = NumVTBits / 8;
  unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));

  APInt Val(NumVTBits, 0);
  if (TLI.isLittleEndian()) {
    for (unsigned i = 0; i != NumBytes; ++i)
      Val |= (uint64_t)(unsigned char)Str[i] << i*8;
  } else {
    for (unsigned i = 0; i != NumBytes; ++i)
      Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
  }

  // If the "cost" of materializing the integer immediate is less than the cost
  // of a load, then it is cost effective to turn the load into the immediate.
  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
  if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
    return DAG.getConstant(Val, VT);
  return SDValue(nullptr, 0);
}

/// getMemBasePlusOffset - Returns base and offset node for the
///
static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, SDLoc dl,
                                      SelectionDAG &DAG) {
  EVT VT = Base.getValueType();
  return DAG.getNode(ISD::ADD, dl,
                     VT, Base, DAG.getConstant(Offset, VT));
}

/// isMemSrcFromString - Returns true if memcpy source is a string constant.
///
static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
  unsigned SrcDelta = 0;
  GlobalAddressSDNode *G = nullptr;
  if (Src.getOpcode() == ISD::GlobalAddress)
    G = cast<GlobalAddressSDNode>(Src);
  else if (Src.getOpcode() == ISD::ADD &&
           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
           Src.getOperand(1).getOpcode() == ISD::Constant) {
    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
  }
  if (!G)
    return false;

  return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
}

/// FindOptimalMemOpLowering - Determines the optimial series memory ops
/// to replace the memset / memcpy. Return true if the number of memory ops
/// is below the threshold. It returns the types of the sequence of
/// memory ops to perform memset / memcpy by reference.
static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
                                     unsigned Limit, uint64_t Size,
                                     unsigned DstAlign, unsigned SrcAlign,
                                     bool IsMemset,
                                     bool ZeroMemset,
                                     bool MemcpyStrSrc,
                                     bool AllowOverlap,
                                     SelectionDAG &DAG,
                                     const TargetLowering &TLI) {
  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
         "Expecting memcpy / memset source to meet alignment requirement!");
  // If 'SrcAlign' is zero, that means the memory operation does not need to
  // load the value, i.e. memset or memcpy from constant string. Otherwise,
  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
  // is the specified alignment of the memory operation. If it is zero, that
  // means it's possible to change the alignment of the destination.
  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
  // not need to be loaded.
  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
                                   IsMemset, ZeroMemset, MemcpyStrSrc,
                                   DAG.getMachineFunction());

  if (VT == MVT::Other) {
    unsigned AS = 0;
    if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment(AS) ||
        TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign)) {
      VT = TLI.getPointerTy();
    } else {
      switch (DstAlign & 7) {
      case 0:  VT = MVT::i64; break;
      case 4:  VT = MVT::i32; break;
      case 2:  VT = MVT::i16; break;
      default: VT = MVT::i8;  break;
      }
    }

    MVT LVT = MVT::i64;
    while (!TLI.isTypeLegal(LVT))
      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
    assert(LVT.isInteger());

    if (VT.bitsGT(LVT))
      VT = LVT;
  }

  unsigned NumMemOps = 0;
  while (Size != 0) {
    unsigned VTSize = VT.getSizeInBits() / 8;
    while (VTSize > Size) {
      // For now, only use non-vector load / store's for the left-over pieces.
      EVT NewVT = VT;
      unsigned NewVTSize;

      bool Found = false;
      if (VT.isVector() || VT.isFloatingPoint()) {
        NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
        if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
            TLI.isSafeMemOpType(NewVT.getSimpleVT()))
          Found = true;
        else if (NewVT == MVT::i64 &&
                 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
                 TLI.isSafeMemOpType(MVT::f64)) {
          // i64 is usually not legal on 32-bit targets, but f64 may be.
          NewVT = MVT::f64;
          Found = true;
        }
      }

      if (!Found) {
        do {
          NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
          if (NewVT == MVT::i8)
            break;
        } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
      }
      NewVTSize = NewVT.getSizeInBits() / 8;

      // If the new VT cannot cover all of the remaining bits, then consider
      // issuing a (or a pair of) unaligned and overlapping load / store.
      // FIXME: Only does this for 64-bit or more since we don't have proper
      // cost model for unaligned load / store.
      bool Fast;
      unsigned AS = 0;
      if (NumMemOps && AllowOverlap &&
          VTSize >= 8 && NewVTSize < Size &&
          TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign, &Fast) && Fast)
        VTSize = Size;
      else {
        VT = NewVT;
        VTSize = NewVTSize;
      }
    }

    if (++NumMemOps > Limit)
      return false;

    MemOps.push_back(VT);
    Size -= VTSize;
  }

  return true;
}

static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
                                       SDValue Chain, SDValue Dst,
                                       SDValue Src, uint64_t Size,
                                       unsigned Align, bool isVol,
                                       bool AlwaysInline,
                                       MachinePointerInfo DstPtrInfo,
                                       MachinePointerInfo SrcPtrInfo) {
  // Turn a memcpy of undef to nop.
  if (Src.getOpcode() == ISD::UNDEF)
    return Chain;

  // Expand memcpy to a series of load and store ops if the size operand falls
  // below a certain threshold.
  // TODO: In the AlwaysInline case, if the size is big then generate a loop
  // rather than maybe a humongous number of loads and stores.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  std::vector<EVT> MemOps;
  bool DstAlignCanChange = false;
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
    DstAlignCanChange = true;
  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
  if (Align > SrcAlign)
    SrcAlign = Align;
  StringRef Str;
  bool CopyFromStr = isMemSrcFromString(Src, Str);
  bool isZeroStr = CopyFromStr && Str.empty();
  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);

  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
                                (DstAlignCanChange ? 0 : Align),
                                (isZeroStr ? 0 : SrcAlign),
                                false, false, CopyFromStr, true, DAG, TLI))
    return SDValue();

  if (DstAlignCanChange) {
    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);

    // Don't promote to an alignment that would require dynamic stack
    // realignment.
    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    if (!TRI->needsStackRealignment(MF))
       while (NewAlign > Align &&
             TLI.getDataLayout()->exceedsNaturalStackAlignment(NewAlign))
          NewAlign /= 2;

    if (NewAlign > Align) {
      // Give the stack frame object a larger alignment if needed.
      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
      Align = NewAlign;
    }
  }

  SmallVector<SDValue, 8> OutChains;
  unsigned NumMemOps = MemOps.size();
  uint64_t SrcOff = 0, DstOff = 0;
  for (unsigned i = 0; i != NumMemOps; ++i) {
    EVT VT = MemOps[i];
    unsigned VTSize = VT.getSizeInBits() / 8;
    SDValue Value, Store;

    if (VTSize > Size) {
      // Issuing an unaligned load / store pair  that overlaps with the previous
      // pair. Adjust the offset accordingly.
      assert(i == NumMemOps-1 && i != 0);
      SrcOff -= VTSize - Size;
      DstOff -= VTSize - Size;
    }

    if (CopyFromStr &&
        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
      // It's unlikely a store of a vector immediate can be done in a single
      // instruction. It would require a load from a constantpool first.
      // We only handle zero vectors here.
      // FIXME: Handle other cases where store of vector immediate is done in
      // a single instruction.
      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
      if (Value.getNode())
        Store = DAG.getStore(Chain, dl, Value,
                             getMemBasePlusOffset(Dst, DstOff, dl, DAG),
                             DstPtrInfo.getWithOffset(DstOff), isVol,
                             false, Align);
    }

    if (!Store.getNode()) {
      // The type might not be legal for the target.  This should only happen
      // if the type is smaller than a legal type, as on PPC, so the right
      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
      // to Load/Store if NVT==VT.
      // FIXME does the case above also need this?
      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
      assert(NVT.bitsGE(VT));
      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
                             getMemBasePlusOffset(Src, SrcOff, dl, DAG),
                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
                             false, MinAlign(SrcAlign, SrcOff));
      Store = DAG.getTruncStore(Chain, dl, Value,
                                getMemBasePlusOffset(Dst, DstOff, dl, DAG),
                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
                                false, Align);
    }
    OutChains.push_back(Store);
    SrcOff += VTSize;
    DstOff += VTSize;
    Size -= VTSize;
  }

  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}

static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
                                        SDValue Chain, SDValue Dst,
                                        SDValue Src, uint64_t Size,
                                        unsigned Align,  bool isVol,
                                        bool AlwaysInline,
                                        MachinePointerInfo DstPtrInfo,
                                        MachinePointerInfo SrcPtrInfo) {
  // Turn a memmove of undef to nop.
  if (Src.getOpcode() == ISD::UNDEF)
    return Chain;

  // Expand memmove to a series of load and store ops if the size operand falls
  // below a certain threshold.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  std::vector<EVT> MemOps;
  bool DstAlignCanChange = false;
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
    DstAlignCanChange = true;
  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
  if (Align > SrcAlign)
    SrcAlign = Align;
  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);

  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
                                (DstAlignCanChange ? 0 : Align), SrcAlign,
                                false, false, false, false, DAG, TLI))
    return SDValue();

  if (DstAlignCanChange) {
    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
    if (NewAlign > Align) {
      // Give the stack frame object a larger alignment if needed.
      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
      Align = NewAlign;
    }
  }

  uint64_t SrcOff = 0, DstOff = 0;
  SmallVector<SDValue, 8> LoadValues;
  SmallVector<SDValue, 8> LoadChains;
  SmallVector<SDValue, 8> OutChains;
  unsigned NumMemOps = MemOps.size();
  for (unsigned i = 0; i < NumMemOps; i++) {
    EVT VT = MemOps[i];
    unsigned VTSize = VT.getSizeInBits() / 8;
    SDValue Value;

    Value = DAG.getLoad(VT, dl, Chain,
                        getMemBasePlusOffset(Src, SrcOff, dl, DAG),
                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
                        false, false, SrcAlign);
    LoadValues.push_back(Value);
    LoadChains.push_back(Value.getValue(1));
    SrcOff += VTSize;
  }
  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
  OutChains.clear();
  for (unsigned i = 0; i < NumMemOps; i++) {
    EVT VT = MemOps[i];
    unsigned VTSize = VT.getSizeInBits() / 8;
    SDValue Store;

    Store = DAG.getStore(Chain, dl, LoadValues[i],
                         getMemBasePlusOffset(Dst, DstOff, dl, DAG),
                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
    OutChains.push_back(Store);
    DstOff += VTSize;
  }

  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}

/// \brief Lower the call to 'memset' intrinsic function into a series of store
/// operations.
///
/// \param DAG Selection DAG where lowered code is placed.
/// \param dl Link to corresponding IR location.
/// \param Chain Control flow dependency.
/// \param Dst Pointer to destination memory location.
/// \param Src Value of byte to write into the memory.
/// \param Size Number of bytes to write.
/// \param Align Alignment of the destination in bytes.
/// \param isVol True if destination is volatile.
/// \param DstPtrInfo IR information on the memory pointer.
/// \returns New head in the control flow, if lowering was successful, empty
/// SDValue otherwise.
///
/// The function tries to replace 'llvm.memset' intrinsic with several store
/// operations and value calculation code. This is usually profitable for small
/// memory size.
static SDValue getMemsetStores(SelectionDAG &DAG, SDLoc dl,
                               SDValue Chain, SDValue Dst,
                               SDValue Src, uint64_t Size,
                               unsigned Align, bool isVol,
                               MachinePointerInfo DstPtrInfo) {
  // Turn a memset of undef to nop.
  if (Src.getOpcode() == ISD::UNDEF)
    return Chain;

  // Expand memset to a series of load/store ops if the size operand
  // falls below a certain threshold.
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
  std::vector<EVT> MemOps;
  bool DstAlignCanChange = false;
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
    DstAlignCanChange = true;
  bool IsZeroVal =
    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
                                Size, (DstAlignCanChange ? 0 : Align), 0,
                                true, IsZeroVal, false, true, DAG, TLI))
    return SDValue();

  if (DstAlignCanChange) {
    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
    if (NewAlign > Align) {
      // Give the stack frame object a larger alignment if needed.
      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
      Align = NewAlign;
    }
  }

  SmallVector<SDValue, 8> OutChains;
  uint64_t DstOff = 0;
  unsigned NumMemOps = MemOps.size();

  // Find the largest store and generate the bit pattern for it.
  EVT LargestVT = MemOps[0];
  for (unsigned i = 1; i < NumMemOps; i++)
    if (MemOps[i].bitsGT(LargestVT))
      LargestVT = MemOps[i];
  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);

  for (unsigned i = 0; i < NumMemOps; i++) {
    EVT VT = MemOps[i];
    unsigned VTSize = VT.getSizeInBits() / 8;
    if (VTSize > Size) {
      // Issuing an unaligned load / store pair  that overlaps with the previous
      // pair. Adjust the offset accordingly.
      assert(i == NumMemOps-1 && i != 0);
      DstOff -= VTSize - Size;
    }

    // If this store is smaller than the largest store see whether we can get
    // the smaller value for free with a truncate.
    SDValue Value = MemSetValue;
    if (VT.bitsLT(LargestVT)) {
      if (!LargestVT.isVector() && !VT.isVector() &&
          TLI.isTruncateFree(LargestVT, VT))
        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
      else
        Value = getMemsetValue(Src, VT, DAG, dl);
    }
    assert(Value.getValueType() == VT && "Value with wrong type.");
    SDValue Store = DAG.getStore(Chain, dl, Value,
                                 getMemBasePlusOffset(Dst, DstOff, dl, DAG),
                                 DstPtrInfo.getWithOffset(DstOff),
                                 isVol, false, Align);
    OutChains.push_back(Store);
    DstOff += VT.getSizeInBits() / 8;
    Size -= VTSize;
  }

  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}

SDValue SelectionDAG::getMemcpy(SDValue Chain, SDLoc dl, SDValue Dst,
                                SDValue Src, SDValue Size,
                                unsigned Align, bool isVol, bool AlwaysInline,
                                MachinePointerInfo DstPtrInfo,
                                MachinePointerInfo SrcPtrInfo) {
  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");

  // Check to see if we should lower the memcpy to loads and stores first.
  // For cases within the target-specified limits, this is the best choice.
  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
  if (ConstantSize) {
    // Memcpy with size zero? Just return the original chain.
    if (ConstantSize->isNullValue())
      return Chain;

    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
                                             ConstantSize->getZExtValue(),Align,
                                isVol, false, DstPtrInfo, SrcPtrInfo);
    if (Result.getNode())
      return Result;
  }

  // Then check to see if we should lower the memcpy with target-specific
  // code. If the target chooses to do this, this is the next best.
  if (TSI) {
    SDValue Result = TSI->EmitTargetCodeForMemcpy(
        *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
        DstPtrInfo, SrcPtrInfo);
    if (Result.getNode())
      return Result;
  }

  // If we really need inline code and the target declined to provide it,
  // use a (potentially long) sequence of loads and stores.
  if (AlwaysInline) {
    assert(ConstantSize && "AlwaysInline requires a constant size!");
    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
                                   ConstantSize->getZExtValue(), Align, isVol,
                                   true, DstPtrInfo, SrcPtrInfo);
  }

  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
  // respect volatile, so they may do things like read or write memory
  // beyond the given memory regions. But fixing this isn't easy, and most
  // people don't care.

  // Emit a library call.
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.Ty = TLI->getDataLayout()->getIntPtrType(*getContext());
  Entry.Node = Dst; Args.push_back(Entry);
  Entry.Node = Src; Args.push_back(Entry);
  Entry.Node = Size; Args.push_back(Entry);
  // FIXME: pass in SDLoc
  TargetLowering::CallLoweringInfo CLI(*this);
  CLI.setDebugLoc(dl).setChain(Chain)
    .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
               Type::getVoidTy(*getContext()),
               getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
                                 TLI->getPointerTy()), std::move(Args), 0)
    .setDiscardResult();
  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);

  return CallResult.second;
}

SDValue SelectionDAG::getMemmove(SDValue Chain, SDLoc dl, SDValue Dst,
                                 SDValue Src, SDValue Size,
                                 unsigned Align, bool isVol,
                                 MachinePointerInfo DstPtrInfo,
                                 MachinePointerInfo SrcPtrInfo) {
  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");

  // Check to see if we should lower the memmove to loads and stores first.
  // For cases within the target-specified limits, this is the best choice.
  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
  if (ConstantSize) {
    // Memmove with size zero? Just return the original chain.
    if (ConstantSize->isNullValue())
      return Chain;

    SDValue Result =
      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
                               ConstantSize->getZExtValue(), Align, isVol,
                               false, DstPtrInfo, SrcPtrInfo);
    if (Result.getNode())
      return Result;
  }

  // Then check to see if we should lower the memmove with target-specific
  // code. If the target chooses to do this, this is the next best.
  if (TSI) {
    SDValue Result = TSI->EmitTargetCodeForMemmove(
        *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
    if (Result.getNode())
      return Result;
  }

  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
  // not be safe.  See memcpy above for more details.

  // Emit a library call.
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.Ty = TLI->getDataLayout()->getIntPtrType(*getContext());
  Entry.Node = Dst; Args.push_back(Entry);
  Entry.Node = Src; Args.push_back(Entry);
  Entry.Node = Size; Args.push_back(Entry);
  // FIXME:  pass in SDLoc
  TargetLowering::CallLoweringInfo CLI(*this);
  CLI.setDebugLoc(dl).setChain(Chain)
    .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
               Type::getVoidTy(*getContext()),
               getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
                                 TLI->getPointerTy()), std::move(Args), 0)
    .setDiscardResult();
  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);

  return CallResult.second;
}

SDValue SelectionDAG::getMemset(SDValue Chain, SDLoc dl, SDValue Dst,
                                SDValue Src, SDValue Size,
                                unsigned Align, bool isVol,
                                MachinePointerInfo DstPtrInfo) {
  assert(Align && "The SDAG layer expects explicit alignment and reserves 0");

  // Check to see if we should lower the memset to stores first.
  // For cases within the target-specified limits, this is the best choice.
  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
  if (ConstantSize) {
    // Memset with size zero? Just return the original chain.
    if (ConstantSize->isNullValue())
      return Chain;

    SDValue Result =
      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
                      Align, isVol, DstPtrInfo);

    if (Result.getNode())
      return Result;
  }

  // Then check to see if we should lower the memset with target-specific
  // code. If the target chooses to do this, this is the next best.
  if (TSI) {
    SDValue Result = TSI->EmitTargetCodeForMemset(
        *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
    if (Result.getNode())
      return Result;
  }

  // Emit a library call.
  Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(*getContext());
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.Node = Dst; Entry.Ty = IntPtrTy;
  Args.push_back(Entry);
  Entry.Node = Src;
  Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
  Args.push_back(Entry);
  Entry.Node = Size;
  Entry.Ty = IntPtrTy;
  Args.push_back(Entry);

  // FIXME: pass in SDLoc
  TargetLowering::CallLoweringInfo CLI(*this);
  CLI.setDebugLoc(dl).setChain(Chain)
    .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
               Type::getVoidTy(*getContext()),
               getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
                                 TLI->getPointerTy()), std::move(Args), 0)
    .setDiscardResult();

  std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
  return CallResult.second;
}

SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
                                SDVTList VTList, ArrayRef<SDValue> Ops,
                                MachineMemOperand *MMO,
                                AtomicOrdering SuccessOrdering,
                                AtomicOrdering FailureOrdering,
                                SynchronizationScope SynchScope) {
  FoldingSetNodeID ID;
  ID.AddInteger(MemVT.getRawBits());
  AddNodeIDNode(ID, Opcode, VTList, Ops);
  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
  void* IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
    cast<AtomicSDNode>(E)->refineAlignment(MMO);
    return SDValue(E, 0);
  }

  // Allocate the operands array for the node out of the BumpPtrAllocator, since
  // SDNode doesn't have access to it.  This memory will be "leaked" when
  // the node is deallocated, but recovered when the allocator is released.
  // If the number of operands is less than 5 we use AtomicSDNode's internal
  // storage.
  unsigned NumOps = Ops.size();
  SDUse *DynOps = NumOps > 4 ? OperandAllocator.Allocate<SDUse>(NumOps)
                             : nullptr;

  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(),
                                               dl.getDebugLoc(), VTList, MemVT,
                                               Ops.data(), DynOps, NumOps, MMO,
                                               SuccessOrdering, FailureOrdering,
                                               SynchScope);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
                                SDVTList VTList, ArrayRef<SDValue> Ops,
                                MachineMemOperand *MMO,
                                AtomicOrdering Ordering,
                                SynchronizationScope SynchScope) {
  return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering,
                   Ordering, SynchScope);
}

SDValue SelectionDAG::getAtomicCmpSwap(
    unsigned Opcode, SDLoc dl, EVT MemVT, SDVTList VTs, SDValue Chain,
    SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
    unsigned Alignment, AtomicOrdering SuccessOrdering,
    AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
  assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
         Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");

  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
    Alignment = getEVTAlignment(MemVT);

  MachineFunction &MF = getMachineFunction();

  // FIXME: Volatile isn't really correct; we should keep track of atomic
  // orderings in the memoperand.
  unsigned Flags = MachineMemOperand::MOVolatile;
  Flags |= MachineMemOperand::MOLoad;
  Flags |= MachineMemOperand::MOStore;

  MachineMemOperand *MMO =
    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);

  return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO,
                          SuccessOrdering, FailureOrdering, SynchScope);
}

SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, SDLoc dl, EVT MemVT,
                                       SDVTList VTs, SDValue Chain, SDValue Ptr,
                                       SDValue Cmp, SDValue Swp,
                                       MachineMemOperand *MMO,
                                       AtomicOrdering SuccessOrdering,
                                       AtomicOrdering FailureOrdering,
                                       SynchronizationScope SynchScope) {
  assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
         Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");

  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
  return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO,
                   SuccessOrdering, FailureOrdering, SynchScope);
}

SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
                                SDValue Chain,
                                SDValue Ptr, SDValue Val,
                                const Value* PtrVal,
                                unsigned Alignment,
                                AtomicOrdering Ordering,
                                SynchronizationScope SynchScope) {
  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
    Alignment = getEVTAlignment(MemVT);

  MachineFunction &MF = getMachineFunction();
  // An atomic store does not load. An atomic load does not store.
  // (An atomicrmw obviously both loads and stores.)
  // For now, atomics are considered to be volatile always, and they are
  // chained as such.
  // FIXME: Volatile isn't really correct; we should keep track of atomic
  // orderings in the memoperand.
  unsigned Flags = MachineMemOperand::MOVolatile;
  if (Opcode != ISD::ATOMIC_STORE)
    Flags |= MachineMemOperand::MOLoad;
  if (Opcode != ISD::ATOMIC_LOAD)
    Flags |= MachineMemOperand::MOStore;

  MachineMemOperand *MMO =
    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
                            MemVT.getStoreSize(), Alignment);

  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
                   Ordering, SynchScope);
}

SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
                                SDValue Chain,
                                SDValue Ptr, SDValue Val,
                                MachineMemOperand *MMO,
                                AtomicOrdering Ordering,
                                SynchronizationScope SynchScope) {
  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
          Opcode == ISD::ATOMIC_LOAD_SUB ||
          Opcode == ISD::ATOMIC_LOAD_AND ||
          Opcode == ISD::ATOMIC_LOAD_OR ||
          Opcode == ISD::ATOMIC_LOAD_XOR ||
          Opcode == ISD::ATOMIC_LOAD_NAND ||
          Opcode == ISD::ATOMIC_LOAD_MIN ||
          Opcode == ISD::ATOMIC_LOAD_MAX ||
          Opcode == ISD::ATOMIC_LOAD_UMIN ||
          Opcode == ISD::ATOMIC_LOAD_UMAX ||
          Opcode == ISD::ATOMIC_SWAP ||
          Opcode == ISD::ATOMIC_STORE) &&
         "Invalid Atomic Op");

  EVT VT = Val.getValueType();

  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
                                               getVTList(VT, MVT::Other);
  SDValue Ops[] = {Chain, Ptr, Val};
  return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
}

SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
                                EVT VT, SDValue Chain,
                                SDValue Ptr,
                                MachineMemOperand *MMO,
                                AtomicOrdering Ordering,
                                SynchronizationScope SynchScope) {
  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");

  SDVTList VTs = getVTList(VT, MVT::Other);
  SDValue Ops[] = {Chain, Ptr};
  return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
}

/// getMergeValues - Create a MERGE_VALUES node from the given operands.
SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, SDLoc dl) {
  if (Ops.size() == 1)
    return Ops[0];

  SmallVector<EVT, 4> VTs;
  VTs.reserve(Ops.size());
  for (unsigned i = 0; i < Ops.size(); ++i)
    VTs.push_back(Ops[i].getValueType());
  return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
}

SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
                                  ArrayRef<SDValue> Ops,
                                  EVT MemVT, MachinePointerInfo PtrInfo,
                                  unsigned Align, bool Vol,
                                  bool ReadMem, bool WriteMem, unsigned Size) {
  if (Align == 0)  // Ensure that codegen never sees alignment 0
    Align = getEVTAlignment(MemVT);

  MachineFunction &MF = getMachineFunction();
  unsigned Flags = 0;
  if (WriteMem)
    Flags |= MachineMemOperand::MOStore;
  if (ReadMem)
    Flags |= MachineMemOperand::MOLoad;
  if (Vol)
    Flags |= MachineMemOperand::MOVolatile;
  if (!Size)
    Size = MemVT.getStoreSize();
  MachineMemOperand *MMO =
    MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);

  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
}

SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
                                  ArrayRef<SDValue> Ops, EVT MemVT,
                                  MachineMemOperand *MMO) {
  assert((Opcode == ISD::INTRINSIC_VOID ||
          Opcode == ISD::INTRINSIC_W_CHAIN ||
          Opcode == ISD::PREFETCH ||
          Opcode == ISD::LIFETIME_START ||
          Opcode == ISD::LIFETIME_END ||
          (Opcode <= INT_MAX &&
           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
         "Opcode is not a memory-accessing opcode!");

  // Memoize the node unless it returns a flag.
  MemIntrinsicSDNode *N;
  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTList, Ops);
    ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
    void *IP = nullptr;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
      return SDValue(E, 0);
    }

    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
                                               dl.getDebugLoc(), VTList, Ops,
                                               MemVT, MMO);
    CSEMap.InsertNode(N, IP);
  } else {
    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
                                               dl.getDebugLoc(), VTList, Ops,
                                               MemVT, MMO);
  }
  InsertNode(N);
  return SDValue(N, 0);
}

/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
/// MachinePointerInfo record from it.  This is particularly useful because the
/// code generator has many cases where it doesn't bother passing in a
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
  // If this is FI+Offset, we can model it.
  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);

  // If this is (FI+Offset1)+Offset2, we can model it.
  if (Ptr.getOpcode() != ISD::ADD ||
      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
    return MachinePointerInfo();

  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
  return MachinePointerInfo::getFixedStack(FI, Offset+
                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
}

/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
/// MachinePointerInfo record from it.  This is particularly useful because the
/// code generator has many cases where it doesn't bother passing in a
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
  // If the 'Offset' value isn't a constant, we can't handle this.
  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
  if (OffsetOp.getOpcode() == ISD::UNDEF)
    return InferPointerInfo(Ptr);
  return MachinePointerInfo();
}


SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
                      EVT VT, SDLoc dl, SDValue Chain,
                      SDValue Ptr, SDValue Offset,
                      MachinePointerInfo PtrInfo, EVT MemVT,
                      bool isVolatile, bool isNonTemporal, bool isInvariant,
                      unsigned Alignment, const AAMDNodes &AAInfo,
                      const MDNode *Ranges) {
  assert(Chain.getValueType() == MVT::Other &&
        "Invalid chain type");
  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
    Alignment = getEVTAlignment(VT);

  unsigned Flags = MachineMemOperand::MOLoad;
  if (isVolatile)
    Flags |= MachineMemOperand::MOVolatile;
  if (isNonTemporal)
    Flags |= MachineMemOperand::MONonTemporal;
  if (isInvariant)
    Flags |= MachineMemOperand::MOInvariant;

  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
  // clients.
  if (PtrInfo.V.isNull())
    PtrInfo = InferPointerInfo(Ptr, Offset);

  MachineFunction &MF = getMachineFunction();
  MachineMemOperand *MMO =
    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
                            AAInfo, Ranges);
  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
}

SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
                      EVT VT, SDLoc dl, SDValue Chain,
                      SDValue Ptr, SDValue Offset, EVT MemVT,
                      MachineMemOperand *MMO) {
  if (VT == MemVT) {
    ExtType = ISD::NON_EXTLOAD;
  } else if (ExtType == ISD::NON_EXTLOAD) {
    assert(VT == MemVT && "Non-extending load from different memory type!");
  } else {
    // Extending load.
    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
           "Should only be an extending load, not truncating!");
    assert(VT.isInteger() == MemVT.isInteger() &&
           "Cannot convert from FP to Int or Int -> FP!");
    assert(VT.isVector() == MemVT.isVector() &&
           "Cannot use an ext load to convert to or from a vector!");
    assert((!VT.isVector() ||
            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
           "Cannot use an ext load to change the number of vector elements!");
  }

  bool Indexed = AM != ISD::UNINDEXED;
  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
         "Unindexed load with an offset!");

  SDVTList VTs = Indexed ?
    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
  SDValue Ops[] = { Chain, Ptr, Offset };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
  ID.AddInteger(MemVT.getRawBits());
  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
                                     MMO->isNonTemporal(),
                                     MMO->isInvariant()));
  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
    cast<LoadSDNode>(E)->refineAlignment(MMO);
    return SDValue(E, 0);
  }
  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl.getIROrder(),
                                             dl.getDebugLoc(), VTs, AM, ExtType,
                                             MemVT, MMO);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
                              SDValue Chain, SDValue Ptr,
                              MachinePointerInfo PtrInfo,
                              bool isVolatile, bool isNonTemporal,
                              bool isInvariant, unsigned Alignment,
                              const AAMDNodes &AAInfo,
                              const MDNode *Ranges) {
  SDValue Undef = getUNDEF(Ptr.getValueType());
  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
                 PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
                 AAInfo, Ranges);
}

SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
                              SDValue Chain, SDValue Ptr,
                              MachineMemOperand *MMO) {
  SDValue Undef = getUNDEF(Ptr.getValueType());
  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
                 VT, MMO);
}

SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
                                 SDValue Chain, SDValue Ptr,
                                 MachinePointerInfo PtrInfo, EVT MemVT,
                                 bool isVolatile, bool isNonTemporal,
                                 bool isInvariant, unsigned Alignment,
                                 const AAMDNodes &AAInfo) {
  SDValue Undef = getUNDEF(Ptr.getValueType());
  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
                 PtrInfo, MemVT, isVolatile, isNonTemporal, isInvariant,
                 Alignment, AAInfo);
}


SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
                                 SDValue Chain, SDValue Ptr, EVT MemVT,
                                 MachineMemOperand *MMO) {
  SDValue Undef = getUNDEF(Ptr.getValueType());
  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
                 MemVT, MMO);
}

SDValue
SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDLoc dl, SDValue Base,
                             SDValue Offset, ISD::MemIndexedMode AM) {
  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
         "Load is already a indexed load!");
  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
                 LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
                 false, LD->getAlignment());
}

SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
                               SDValue Ptr, MachinePointerInfo PtrInfo,
                               bool isVolatile, bool isNonTemporal,
                               unsigned Alignment, const AAMDNodes &AAInfo) {
  assert(Chain.getValueType() == MVT::Other &&
        "Invalid chain type");
  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
    Alignment = getEVTAlignment(Val.getValueType());

  unsigned Flags = MachineMemOperand::MOStore;
  if (isVolatile)
    Flags |= MachineMemOperand::MOVolatile;
  if (isNonTemporal)
    Flags |= MachineMemOperand::MONonTemporal;

  if (PtrInfo.V.isNull())
    PtrInfo = InferPointerInfo(Ptr);

  MachineFunction &MF = getMachineFunction();
  MachineMemOperand *MMO =
    MF.getMachineMemOperand(PtrInfo, Flags,
                            Val.getValueType().getStoreSize(), Alignment,
                            AAInfo);

  return getStore(Chain, dl, Val, Ptr, MMO);
}

SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
                               SDValue Ptr, MachineMemOperand *MMO) {
  assert(Chain.getValueType() == MVT::Other &&
        "Invalid chain type");
  EVT VT = Val.getValueType();
  SDVTList VTs = getVTList(MVT::Other);
  SDValue Undef = getUNDEF(Ptr.getValueType());
  SDValue Ops[] = { Chain, Val, Ptr, Undef };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
  ID.AddInteger(VT.getRawBits());
  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
                                     MMO->isNonTemporal(), MMO->isInvariant()));
  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
    cast<StoreSDNode>(E)->refineAlignment(MMO);
    return SDValue(E, 0);
  }
  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
                                              dl.getDebugLoc(), VTs,
                                              ISD::UNINDEXED, false, VT, MMO);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
                                    SDValue Ptr, MachinePointerInfo PtrInfo,
                                    EVT SVT,bool isVolatile, bool isNonTemporal,
                                    unsigned Alignment,
                                    const AAMDNodes &AAInfo) {
  assert(Chain.getValueType() == MVT::Other &&
        "Invalid chain type");
  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
    Alignment = getEVTAlignment(SVT);

  unsigned Flags = MachineMemOperand::MOStore;
  if (isVolatile)
    Flags |= MachineMemOperand::MOVolatile;
  if (isNonTemporal)
    Flags |= MachineMemOperand::MONonTemporal;

  if (PtrInfo.V.isNull())
    PtrInfo = InferPointerInfo(Ptr);

  MachineFunction &MF = getMachineFunction();
  MachineMemOperand *MMO =
    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
                            AAInfo);

  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
}

SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
                                    SDValue Ptr, EVT SVT,
                                    MachineMemOperand *MMO) {
  EVT VT = Val.getValueType();

  assert(Chain.getValueType() == MVT::Other &&
        "Invalid chain type");
  if (VT == SVT)
    return getStore(Chain, dl, Val, Ptr, MMO);

  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
         "Should only be a truncating store, not extending!");
  assert(VT.isInteger() == SVT.isInteger() &&
         "Can't do FP-INT conversion!");
  assert(VT.isVector() == SVT.isVector() &&
         "Cannot use trunc store to convert to or from a vector!");
  assert((!VT.isVector() ||
          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
         "Cannot use trunc store to change the number of vector elements!");

  SDVTList VTs = getVTList(MVT::Other);
  SDValue Undef = getUNDEF(Ptr.getValueType());
  SDValue Ops[] = { Chain, Val, Ptr, Undef };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
  ID.AddInteger(SVT.getRawBits());
  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
                                     MMO->isNonTemporal(), MMO->isInvariant()));
  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
    cast<StoreSDNode>(E)->refineAlignment(MMO);
    return SDValue(E, 0);
  }
  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
                                              dl.getDebugLoc(), VTs,
                                              ISD::UNINDEXED, true, SVT, MMO);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue
SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base,
                              SDValue Offset, ISD::MemIndexedMode AM) {
  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
         "Store is already a indexed store!");
  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
  ID.AddInteger(ST->getMemoryVT().getRawBits());
  ID.AddInteger(ST->getRawSubclassData());
  ID.AddInteger(ST->getPointerInfo().getAddrSpace());
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDValue(E, 0);

  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
                                              dl.getDebugLoc(), VTs, AM,
                                              ST->isTruncatingStore(),
                                              ST->getMemoryVT(),
                                              ST->getMemOperand());
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue
SelectionDAG::getMaskedLoad(EVT VT, SDLoc dl, SDValue Chain,
                            SDValue Ptr, SDValue Mask, SDValue Src0, EVT MemVT,
                            MachineMemOperand *MMO, ISD::LoadExtType ExtTy) {

  SDVTList VTs = getVTList(VT, MVT::Other);
  SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
  ID.AddInteger(VT.getRawBits());
  ID.AddInteger(encodeMemSDNodeFlags(ExtTy, ISD::UNINDEXED,
                                     MMO->isVolatile(),
                                     MMO->isNonTemporal(),
                                     MMO->isInvariant()));
  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
    cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
    return SDValue(E, 0);
  }
  SDNode *N = new (NodeAllocator) MaskedLoadSDNode(dl.getIROrder(),
                                             dl.getDebugLoc(), Ops, 4, VTs,
                                             ExtTy, MemVT, MMO);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getMaskedStore(SDValue Chain, SDLoc dl, SDValue Val,
                                     SDValue Ptr, SDValue Mask, EVT MemVT,
                                     MachineMemOperand *MMO, bool isTrunc) {
  assert(Chain.getValueType() == MVT::Other &&
        "Invalid chain type");
  EVT VT = Val.getValueType();
  SDVTList VTs = getVTList(MVT::Other);
  SDValue Ops[] = { Chain, Ptr, Mask, Val };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
  ID.AddInteger(VT.getRawBits());
  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
                                     MMO->isNonTemporal(), MMO->isInvariant()));
  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
  void *IP = nullptr;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
    cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
    return SDValue(E, 0);
  }
  SDNode *N = new (NodeAllocator) MaskedStoreSDNode(dl.getIROrder(),
                                                    dl.getDebugLoc(), Ops, 4,
                                                    VTs, isTrunc, MemVT, MMO);
  CSEMap.InsertNode(N, IP);
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getVAArg(EVT VT, SDLoc dl,
                               SDValue Chain, SDValue Ptr,
                               SDValue SV,
                               unsigned Align) {
  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
                              ArrayRef<SDUse> Ops) {
  switch (Ops.size()) {
  case 0: return getNode(Opcode, DL, VT);
  case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
  default: break;
  }

  // Copy from an SDUse array into an SDValue array for use with
  // the regular getNode logic.
  SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
  return getNode(Opcode, DL, VT, NewOps);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
                              ArrayRef<SDValue> Ops) {
  unsigned NumOps = Ops.size();
  switch (NumOps) {
  case 0: return getNode(Opcode, DL, VT);
  case 1: return getNode(Opcode, DL, VT, Ops[0]);
  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
  default: break;
  }

  switch (Opcode) {
  default: break;
  case ISD::SELECT_CC: {
    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
           "LHS and RHS of condition must have same type!");
    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
           "True and False arms of SelectCC must have same type!");
    assert(Ops[2].getValueType() == VT &&
           "select_cc node must be of same type as true and false value!");
    break;
  }
  case ISD::BR_CC: {
    assert(NumOps == 5 && "BR_CC takes 5 operands!");
    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
           "LHS/RHS of comparison should match types!");
    break;
  }
  }

  // Memoize nodes.
  SDNode *N;
  SDVTList VTs = getVTList(VT);

  if (VT != MVT::Glue) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTs, Ops);
    void *IP = nullptr;

    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDValue(E, 0);

    N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
                                   VTs, Ops);
    CSEMap.InsertNode(N, IP);
  } else {
    N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
                                   VTs, Ops);
  }

  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
                              ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
  return getNode(Opcode, DL, getVTList(ResultTys), Ops);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
                              ArrayRef<SDValue> Ops) {
  if (VTList.NumVTs == 1)
    return getNode(Opcode, DL, VTList.VTs[0], Ops);

#if 0
  switch (Opcode) {
  // FIXME: figure out how to safely handle things like
  // int foo(int x) { return 1 << (x & 255); }
  // int bar() { return foo(256); }
  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS:
  case ISD::SHL_PARTS:
    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
    else if (N3.getOpcode() == ISD::AND)
      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
        // If the and is only masking out bits that cannot effect the shift,
        // eliminate the and.
        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
      }
    break;
  }
#endif

  // Memoize the node unless it returns a flag.
  SDNode *N;
  unsigned NumOps = Ops.size();
  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTList, Ops);
    void *IP = nullptr;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDValue(E, 0);

    if (NumOps == 1) {
      N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
                                          DL.getDebugLoc(), VTList, Ops[0]);
    } else if (NumOps == 2) {
      N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
                                           DL.getDebugLoc(), VTList, Ops[0],
                                           Ops[1]);
    } else if (NumOps == 3) {
      N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
                                            DL.getDebugLoc(), VTList, Ops[0],
                                            Ops[1], Ops[2]);
    } else {
      N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
                                     VTList, Ops);
    }
    CSEMap.InsertNode(N, IP);
  } else {
    if (NumOps == 1) {
      N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
                                          DL.getDebugLoc(), VTList, Ops[0]);
    } else if (NumOps == 2) {
      N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
                                           DL.getDebugLoc(), VTList, Ops[0],
                                           Ops[1]);
    } else if (NumOps == 3) {
      N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
                                            DL.getDebugLoc(), VTList, Ops[0],
                                            Ops[1], Ops[2]);
    } else {
      N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
                                     VTList, Ops);
    }
  }
  InsertNode(N);
  return SDValue(N, 0);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList) {
  return getNode(Opcode, DL, VTList, None);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
                              SDValue N1) {
  SDValue Ops[] = { N1 };
  return getNode(Opcode, DL, VTList, Ops);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
                              SDValue N1, SDValue N2) {
  SDValue Ops[] = { N1, N2 };
  return getNode(Opcode, DL, VTList, Ops);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
                              SDValue N1, SDValue N2, SDValue N3) {
  SDValue Ops[] = { N1, N2, N3 };
  return getNode(Opcode, DL, VTList, Ops);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
                              SDValue N1, SDValue N2, SDValue N3,
                              SDValue N4) {
  SDValue Ops[] = { N1, N2, N3, N4 };
  return getNode(Opcode, DL, VTList, Ops);
}

SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
                              SDValue N1, SDValue N2, SDValue N3,
                              SDValue N4, SDValue N5) {
  SDValue Ops[] = { N1, N2, N3, N4, N5 };
  return getNode(Opcode, DL, VTList, Ops);
}

SDVTList SelectionDAG::getVTList(EVT VT) {
  return makeVTList(SDNode::getValueTypeList(VT), 1);
}

SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
  FoldingSetNodeID ID;
  ID.AddInteger(2U);
  ID.AddInteger(VT1.getRawBits());
  ID.AddInteger(VT2.getRawBits());

  void *IP = nullptr;
  SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
  if (!Result) {
    EVT *Array = Allocator.Allocate<EVT>(2);
    Array[0] = VT1;
    Array[1] = VT2;
    Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
    VTListMap.InsertNode(Result, IP);
  }
  return Result->getSDVTList();
}

SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
  FoldingSetNodeID ID;
  ID.AddInteger(3U);
  ID.AddInteger(VT1.getRawBits());
  ID.AddInteger(VT2.getRawBits());
  ID.AddInteger(VT3.getRawBits());

  void *IP = nullptr;
  SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
  if (!Result) {
    EVT *Array = Allocator.Allocate<EVT>(3);
    Array[0] = VT1;
    Array[1] = VT2;
    Array[2] = VT3;
    Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
    VTListMap.InsertNode(Result, IP);
  }
  return Result->getSDVTList();
}

SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
  FoldingSetNodeID ID;
  ID.AddInteger(4U);
  ID.AddInteger(VT1.getRawBits());
  ID.AddInteger(VT2.getRawBits());
  ID.AddInteger(VT3.getRawBits());
  ID.AddInteger(VT4.getRawBits());

  void *IP = nullptr;
  SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
  if (!Result) {
    EVT *Array = Allocator.Allocate<EVT>(4);
    Array[0] = VT1;
    Array[1] = VT2;
    Array[2] = VT3;
    Array[3] = VT4;
    Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
    VTListMap.InsertNode(Result, IP);
  }
  return Result->getSDVTList();
}

SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
  unsigned NumVTs = VTs.size();
  FoldingSetNodeID ID;
  ID.AddInteger(NumVTs);
  for (unsigned index = 0; index < NumVTs; index++) {
    ID.AddInteger(VTs[index].getRawBits());
  }

  void *IP = nullptr;
  SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
  if (!Result) {
    EVT *Array = Allocator.Allocate<EVT>(NumVTs);
    std::copy(VTs.begin(), VTs.end(), Array);
    Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
    VTListMap.InsertNode(Result, IP);
  }
  return Result->getSDVTList();
}


/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands.  If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists.  If the resultant node does not exist in the DAG, the
/// input node is returned.  As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");

  // Check to see if there is no change.
  if (Op == N->getOperand(0)) return N;

  // See if the modified node already exists.
  void *InsertPos = nullptr;
  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
    return Existing;

  // Nope it doesn't.  Remove the node from its current place in the maps.
  if (InsertPos)
    if (!RemoveNodeFromCSEMaps(N))
      InsertPos = nullptr;

  // Now we update the operands.
  N->OperandList[0].set(Op);

  // If this gets put into a CSE map, add it.
  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
  return N;
}

SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");

  // Check to see if there is no change.
  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
    return N;   // No operands changed, just return the input node.

  // See if the modified node already exists.
  void *InsertPos = nullptr;
  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
    return Existing;

  // Nope it doesn't.  Remove the node from its current place in the maps.
  if (InsertPos)
    if (!RemoveNodeFromCSEMaps(N))
      InsertPos = nullptr;

  // Now we update the operands.
  if (N->OperandList[0] != Op1)
    N->OperandList[0].set(Op1);
  if (N->OperandList[1] != Op2)
    N->OperandList[1].set(Op2);

  // If this gets put into a CSE map, add it.
  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
  return N;
}

SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
  SDValue Ops[] = { Op1, Op2, Op3 };
  return UpdateNodeOperands(N, Ops);
}

SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
                   SDValue Op3, SDValue Op4) {
  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
  return UpdateNodeOperands(N, Ops);
}

SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
                   SDValue Op3, SDValue Op4, SDValue Op5) {
  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
  return UpdateNodeOperands(N, Ops);
}

SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
  unsigned NumOps = Ops.size();
  assert(N->getNumOperands() == NumOps &&
         "Update with wrong number of operands");

  // If no operands changed just return the input node.
  if (Ops.empty() || std::equal(Ops.begin(), Ops.end(), N->op_begin()))
    return N;

  // See if the modified node already exists.
  void *InsertPos = nullptr;
  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
    return Existing;

  // Nope it doesn't.  Remove the node from its current place in the maps.
  if (InsertPos)
    if (!RemoveNodeFromCSEMaps(N))
      InsertPos = nullptr;

  // Now we update the operands.
  for (unsigned i = 0; i != NumOps; ++i)
    if (N->OperandList[i] != Ops[i])
      N->OperandList[i].set(Ops[i]);

  // If this gets put into a CSE map, add it.
  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
  return N;
}

/// DropOperands - Release the operands and set this node to have
/// zero operands.
void SDNode::DropOperands() {
  // Unlike the code in MorphNodeTo that does this, we don't need to
  // watch for dead nodes here.
  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
    SDUse &Use = *I++;
    Use.set(SDValue());
  }
}

/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
/// machine opcode.
///
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT) {
  SDVTList VTs = getVTList(VT);
  return SelectNodeTo(N, MachineOpc, VTs, None);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT, SDValue Op1) {
  SDVTList VTs = getVTList(VT);
  SDValue Ops[] = { Op1 };
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT, SDValue Op1,
                                   SDValue Op2) {
  SDVTList VTs = getVTList(VT);
  SDValue Ops[] = { Op1, Op2 };
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT, SDValue Op1,
                                   SDValue Op2, SDValue Op3) {
  SDVTList VTs = getVTList(VT);
  SDValue Ops[] = { Op1, Op2, Op3 };
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT, ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(VT);
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(VT1, VT2);
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT1, EVT VT2) {
  SDVTList VTs = getVTList(VT1, VT2);
  return SelectNodeTo(N, MachineOpc, VTs, None);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT1, EVT VT2, EVT VT3,
                                   ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(VT1, VT2, VT3);
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
                                   ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT1, EVT VT2,
                                   SDValue Op1) {
  SDVTList VTs = getVTList(VT1, VT2);
  SDValue Ops[] = { Op1 };
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT1, EVT VT2,
                                   SDValue Op1, SDValue Op2) {
  SDVTList VTs = getVTList(VT1, VT2);
  SDValue Ops[] = { Op1, Op2 };
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT1, EVT VT2,
                                   SDValue Op1, SDValue Op2,
                                   SDValue Op3) {
  SDVTList VTs = getVTList(VT1, VT2);
  SDValue Ops[] = { Op1, Op2, Op3 };
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   EVT VT1, EVT VT2, EVT VT3,
                                   SDValue Op1, SDValue Op2,
                                   SDValue Op3) {
  SDVTList VTs = getVTList(VT1, VT2, VT3);
  SDValue Ops[] = { Op1, Op2, Op3 };
  return SelectNodeTo(N, MachineOpc, VTs, Ops);
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
                                   SDVTList VTs,ArrayRef<SDValue> Ops) {
  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
  // Reset the NodeID to -1.
  N->setNodeId(-1);
  return N;
}

/// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away
/// the line number information on the merged node since it is not possible to
/// preserve the information that operation is associated with multiple lines.
/// This will make the debugger working better at -O0, were there is a higher
/// probability having other instructions associated with that line.
///
/// For IROrder, we keep the smaller of the two
SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, SDLoc OLoc) {
  DebugLoc NLoc = N->getDebugLoc();
  if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) &&
    (OLoc.getDebugLoc() != NLoc)) {
    N->setDebugLoc(DebugLoc());
  }
  unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
  N->setIROrder(Order);
  return N;
}

/// MorphNodeTo - This *mutates* the specified node to have the specified
/// return type, opcode, and operands.
///
/// Note that MorphNodeTo returns the resultant node.  If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.  Note that the SDLoc need not be the same.
///
/// Using MorphNodeTo is faster than creating a new node and swapping it in
/// with ReplaceAllUsesWith both because it often avoids allocating a new
/// node, and because it doesn't require CSE recalculation for any of
/// the node's users.
///
/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
/// As a consequence it isn't appropriate to use from within the DAG combiner or
/// the legalizer which maintain worklists that would need to be updated when
/// deleting things.
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
                                  SDVTList VTs, ArrayRef<SDValue> Ops) {
  unsigned NumOps = Ops.size();
  // If an identical node already exists, use it.
  void *IP = nullptr;
  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opc, VTs, Ops);
    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
      return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N));
  }

  if (!RemoveNodeFromCSEMaps(N))
    IP = nullptr;

  // Start the morphing.
  N->NodeType = Opc;
  N->ValueList = VTs.VTs;
  N->NumValues = VTs.NumVTs;

  // Clear the operands list, updating used nodes to remove this from their
  // use list.  Keep track of any operands that become dead as a result.
  SmallPtrSet<SDNode*, 16> DeadNodeSet;
  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
    SDUse &Use = *I++;
    SDNode *Used = Use.getNode();
    Use.set(SDValue());
    if (Used->use_empty())
      DeadNodeSet.insert(Used);
  }

  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
    // Initialize the memory references information.
    MN->setMemRefs(nullptr, nullptr);
    // If NumOps is larger than the # of operands we can have in a
    // MachineSDNode, reallocate the operand list.
    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
      if (MN->OperandsNeedDelete)
        delete[] MN->OperandList;
      if (NumOps > array_lengthof(MN->LocalOperands))
        // We're creating a final node that will live unmorphed for the
        // remainder of the current SelectionDAG iteration, so we can allocate
        // the operands directly out of a pool with no recycling metadata.
        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
                         Ops.data(), NumOps);
      else
        MN->InitOperands(MN->LocalOperands, Ops.data(), NumOps);
      MN->OperandsNeedDelete = false;
    } else
      MN->InitOperands(MN->OperandList, Ops.data(), NumOps);
  } else {
    // If NumOps is larger than the # of operands we currently have, reallocate
    // the operand list.
    if (NumOps > N->NumOperands) {
      if (N->OperandsNeedDelete)
        delete[] N->OperandList;
      N->InitOperands(new SDUse[NumOps], Ops.data(), NumOps);
      N->OperandsNeedDelete = true;
    } else
      N->InitOperands(N->OperandList, Ops.data(), NumOps);
  }

  // Delete any nodes that are still dead after adding the uses for the
  // new operands.
  if (!DeadNodeSet.empty()) {
    SmallVector<SDNode *, 16> DeadNodes;
    for (SDNode *N : DeadNodeSet)
      if (N->use_empty())
        DeadNodes.push_back(N);
    RemoveDeadNodes(DeadNodes);
  }

  if (IP)
    CSEMap.InsertNode(N, IP);   // Memoize the new node.
  return N;
}


/// getMachineNode - These are used for target selectors to create a new node
/// with specified return type(s), MachineInstr opcode, and operands.
///
/// Note that getMachineNode returns the resultant node.  If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT) {
  SDVTList VTs = getVTList(VT);
  return getMachineNode(Opcode, dl, VTs, None);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, SDValue Op1) {
  SDVTList VTs = getVTList(VT);
  SDValue Ops[] = { Op1 };
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
                             SDValue Op1, SDValue Op2) {
  SDVTList VTs = getVTList(VT);
  SDValue Ops[] = { Op1, Op2 };
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
                             SDValue Op1, SDValue Op2, SDValue Op3) {
  SDVTList VTs = getVTList(VT);
  SDValue Ops[] = { Op1, Op2, Op3 };
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
                             ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(VT);
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2) {
  SDVTList VTs = getVTList(VT1, VT2);
  return getMachineNode(Opcode, dl, VTs, None);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
                             EVT VT1, EVT VT2, SDValue Op1) {
  SDVTList VTs = getVTList(VT1, VT2);
  SDValue Ops[] = { Op1 };
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
  SDVTList VTs = getVTList(VT1, VT2);
  SDValue Ops[] = { Op1, Op2 };
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
                             EVT VT1, EVT VT2, SDValue Op1,
                             SDValue Op2, SDValue Op3) {
  SDVTList VTs = getVTList(VT1, VT2);
  SDValue Ops[] = { Op1, Op2, Op3 };
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
                             EVT VT1, EVT VT2,
                             ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(VT1, VT2);
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
                             EVT VT1, EVT VT2, EVT VT3,
                             SDValue Op1, SDValue Op2) {
  SDVTList VTs = getVTList(VT1, VT2, VT3);
  SDValue Ops[] = { Op1, Op2 };
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
                             EVT VT1, EVT VT2, EVT VT3,
                             SDValue Op1, SDValue Op2, SDValue Op3) {
  SDVTList VTs = getVTList(VT1, VT2, VT3);
  SDValue Ops[] = { Op1, Op2, Op3 };
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
                             EVT VT1, EVT VT2, EVT VT3,
                             ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(VT1, VT2, VT3);
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1,
                             EVT VT2, EVT VT3, EVT VT4,
                             ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
                             ArrayRef<EVT> ResultTys,
                             ArrayRef<SDValue> Ops) {
  SDVTList VTs = getVTList(ResultTys);
  return getMachineNode(Opcode, dl, VTs, Ops);
}

MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, SDLoc DL, SDVTList VTs,
                             ArrayRef<SDValue> OpsArray) {
  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
  MachineSDNode *N;
  void *IP = nullptr;
  const SDValue *Ops = OpsArray.data();
  unsigned NumOps = OpsArray.size();

  if (DoCSE) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, ~Opcode, VTs, OpsArray);
    IP = nullptr;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
      return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL));
    }
  }

  // Allocate a new MachineSDNode.
  N = new (NodeAllocator) MachineSDNode(~Opcode, DL.getIROrder(),
                                        DL.getDebugLoc(), VTs);

  // Initialize the operands list.
  if (NumOps > array_lengthof(N->LocalOperands))
    // We're creating a final node that will live unmorphed for the
    // remainder of the current SelectionDAG iteration, so we can allocate
    // the operands directly out of a pool with no recycling metadata.
    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
                    Ops, NumOps);
  else
    N->InitOperands(N->LocalOperands, Ops, NumOps);
  N->OperandsNeedDelete = false;

  if (DoCSE)
    CSEMap.InsertNode(N, IP);

  InsertNode(N);
  return N;
}

/// getTargetExtractSubreg - A convenience function for creating
/// TargetOpcode::EXTRACT_SUBREG nodes.
SDValue
SelectionDAG::getTargetExtractSubreg(int SRIdx, SDLoc DL, EVT VT,
                                     SDValue Operand) {
  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
                                  VT, Operand, SRIdxVal);
  return SDValue(Subreg, 0);
}

/// getTargetInsertSubreg - A convenience function for creating
/// TargetOpcode::INSERT_SUBREG nodes.
SDValue
SelectionDAG::getTargetInsertSubreg(int SRIdx, SDLoc DL, EVT VT,
                                    SDValue Operand, SDValue Subreg) {
  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
                                  VT, Operand, Subreg, SRIdxVal);
  return SDValue(Result, 0);
}

/// getNodeIfExists - Get the specified node if it's already available, or
/// else return NULL.
SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
                                      ArrayRef<SDValue> Ops, bool nuw, bool nsw,
                                      bool exact) {
  if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTList, Ops);
    if (isBinOpWithFlags(Opcode))
      AddBinaryNodeIDCustom(ID, nuw, nsw, exact);
    void *IP = nullptr;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return E;
  }
  return nullptr;
}

/// getDbgValue - Creates a SDDbgValue node.
///
/// SDNode
SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
                                      unsigned R, bool IsIndirect, uint64_t Off,
                                      DebugLoc DL, unsigned O) {
  return new (Allocator) SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
}

/// Constant
SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
                                              const Value *C, uint64_t Off,
                                              DebugLoc DL, unsigned O) {
  return new (Allocator) SDDbgValue(Var, Expr, C, Off, DL, O);
}

/// FrameIndex
SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
                                                unsigned FI, uint64_t Off,
                                                DebugLoc DL, unsigned O) {
  return new (Allocator) SDDbgValue(Var, Expr, FI, Off, DL, O);
}

namespace {

/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
/// pointed to by a use iterator is deleted, increment the use iterator
/// so that it doesn't dangle.
///
class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
  SDNode::use_iterator &UI;
  SDNode::use_iterator &UE;

  void NodeDeleted(SDNode *N, SDNode *E) override {
    // Increment the iterator as needed.
    while (UI != UE && N == *UI)
      ++UI;
  }

public:
  RAUWUpdateListener(SelectionDAG &d,
                     SDNode::use_iterator &ui,
                     SDNode::use_iterator &ue)
    : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
};

}

/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From has a single result value.
///
void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
  SDNode *From = FromN.getNode();
  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
         "Cannot replace with this method!");
  assert(From != To.getNode() && "Cannot replace uses of with self");

  // Iterate over all the existing uses of From. New uses will be added
  // to the beginning of the use list, which we avoid visiting.
  // This specifically avoids visiting uses of From that arise while the
  // replacement is happening, because any such uses would be the result
  // of CSE: If an existing node looks like From after one of its operands
  // is replaced by To, we don't want to replace of all its users with To
  // too. See PR3018 for more info.
  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
  RAUWUpdateListener Listener(*this, UI, UE);
  while (UI != UE) {
    SDNode *User = *UI;

    // This node is about to morph, remove its old self from the CSE maps.
    RemoveNodeFromCSEMaps(User);

    // A user can appear in a use list multiple times, and when this
    // happens the uses are usually next to each other in the list.
    // To help reduce the number of CSE recomputations, process all
    // the uses of this user that we can find this way.
    do {
      SDUse &Use = UI.getUse();
      ++UI;
      Use.set(To);
    } while (UI != UE && *UI == User);

    // Now that we have modified User, add it back to the CSE maps.  If it
    // already exists there, recursively merge the results together.
    AddModifiedNodeToCSEMaps(User);
  }

  // If we just RAUW'd the root, take note.
  if (FromN == getRoot())
    setRoot(To);
}

/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes that for each value of From, there is a
/// corresponding value in To in the same position with the same type.
///
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
#ifndef NDEBUG
  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
    assert((!From->hasAnyUseOfValue(i) ||
            From->getValueType(i) == To->getValueType(i)) &&
           "Cannot use this version of ReplaceAllUsesWith!");
#endif

  // Handle the trivial case.
  if (From == To)
    return;

  // Iterate over just the existing users of From. See the comments in
  // the ReplaceAllUsesWith above.
  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
  RAUWUpdateListener Listener(*this, UI, UE);
  while (UI != UE) {
    SDNode *User = *UI;

    // This node is about to morph, remove its old self from the CSE maps.
    RemoveNodeFromCSEMaps(User);

    // A user can appear in a use list multiple times, and when this
    // happens the uses are usually next to each other in the list.
    // To help reduce the number of CSE recomputations, process all
    // the uses of this user that we can find this way.
    do {
      SDUse &Use = UI.getUse();
      ++UI;
      Use.setNode(To);
    } while (UI != UE && *UI == User);

    // Now that we have modified User, add it back to the CSE maps.  If it
    // already exists there, recursively merge the results together.
    AddModifiedNodeToCSEMaps(User);
  }

  // If we just RAUW'd the root, take note.
  if (From == getRoot().getNode())
    setRoot(SDValue(To, getRoot().getResNo()));
}

/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version can replace From with any result values.  To must match the
/// number and types of values returned by From.
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
    return ReplaceAllUsesWith(SDValue(From, 0), To[0]);

  // Iterate over just the existing users of From. See the comments in
  // the ReplaceAllUsesWith above.
  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
  RAUWUpdateListener Listener(*this, UI, UE);
  while (UI != UE) {
    SDNode *User = *UI;

    // This node is about to morph, remove its old self from the CSE maps.
    RemoveNodeFromCSEMaps(User);

    // A user can appear in a use list multiple times, and when this
    // happens the uses are usually next to each other in the list.
    // To help reduce the number of CSE recomputations, process all
    // the uses of this user that we can find this way.
    do {
      SDUse &Use = UI.getUse();
      const SDValue &ToOp = To[Use.getResNo()];
      ++UI;
      Use.set(ToOp);
    } while (UI != UE && *UI == User);

    // Now that we have modified User, add it back to the CSE maps.  If it
    // already exists there, recursively merge the results together.
    AddModifiedNodeToCSEMaps(User);
  }

  // If we just RAUW'd the root, take note.
  if (From == getRoot().getNode())
    setRoot(SDValue(To[getRoot().getResNo()]));
}

/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone.  The Deleted
/// vector is handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
  // Handle the really simple, really trivial case efficiently.
  if (From == To) return;

  // Handle the simple, trivial, case efficiently.
  if (From.getNode()->getNumValues() == 1) {
    ReplaceAllUsesWith(From, To);
    return;
  }

  // Iterate over just the existing users of From. See the comments in
  // the ReplaceAllUsesWith above.
  SDNode::use_iterator UI = From.getNode()->use_begin(),
                       UE = From.getNode()->use_end();
  RAUWUpdateListener Listener(*this, UI, UE);
  while (UI != UE) {
    SDNode *User = *UI;
    bool UserRemovedFromCSEMaps = false;

    // A user can appear in a use list multiple times, and when this
    // happens the uses are usually next to each other in the list.
    // To help reduce the number of CSE recomputations, process all
    // the uses of this user that we can find this way.
    do {
      SDUse &Use = UI.getUse();

      // Skip uses of different values from the same node.
      if (Use.getResNo() != From.getResNo()) {
        ++UI;
        continue;
      }

      // If this node hasn't been modified yet, it's still in the CSE maps,
      // so remove its old self from the CSE maps.
      if (!UserRemovedFromCSEMaps) {
        RemoveNodeFromCSEMaps(User);
        UserRemovedFromCSEMaps = true;
      }

      ++UI;
      Use.set(To);
    } while (UI != UE && *UI == User);

    // We are iterating over all uses of the From node, so if a use
    // doesn't use the specific value, no changes are made.
    if (!UserRemovedFromCSEMaps)
      continue;

    // Now that we have modified User, add it back to the CSE maps.  If it
    // already exists there, recursively merge the results together.
    AddModifiedNodeToCSEMaps(User);
  }

  // If we just RAUW'd the root, take note.
  if (From == getRoot())
    setRoot(To);
}

namespace {
  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
  /// to record information about a use.
  struct UseMemo {
    SDNode *User;
    unsigned Index;
    SDUse *Use;
  };

  /// operator< - Sort Memos by User.
  bool operator<(const UseMemo &L, const UseMemo &R) {
    return (intptr_t)L.User < (intptr_t)R.User;
  }
}

/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone.  The same value
/// may appear in both the From and To list.  The Deleted vector is
/// handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
                                              const SDValue *To,
                                              unsigned Num){
  // Handle the simple, trivial case efficiently.
  if (Num == 1)
    return ReplaceAllUsesOfValueWith(*From, *To);

  // Read up all the uses and make records of them. This helps
  // processing new uses that are introduced during the
  // replacement process.
  SmallVector<UseMemo, 4> Uses;
  for (unsigned i = 0; i != Num; ++i) {
    unsigned FromResNo = From[i].getResNo();
    SDNode *FromNode = From[i].getNode();
    for (SDNode::use_iterator UI = FromNode->use_begin(),
         E = FromNode->use_end(); UI != E; ++UI) {
      SDUse &Use = UI.getUse();
      if (Use.getResNo() == FromResNo) {
        UseMemo Memo = { *UI, i, &Use };
        Uses.push_back(Memo);
      }
    }
  }

  // Sort the uses, so that all the uses from a given User are together.
  std::sort(Uses.begin(), Uses.end());

  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
       UseIndex != UseIndexEnd; ) {
    // We know that this user uses some value of From.  If it is the right
    // value, update it.
    SDNode *User = Uses[UseIndex].User;

    // This node is about to morph, remove its old self from the CSE maps.
    RemoveNodeFromCSEMaps(User);

    // The Uses array is sorted, so all the uses for a given User
    // are next to each other in the list.
    // To help reduce the number of CSE recomputations, process all
    // the uses of this user that we can find this way.
    do {
      unsigned i = Uses[UseIndex].Index;
      SDUse &Use = *Uses[UseIndex].Use;
      ++UseIndex;

      Use.set(To[i]);
    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);

    // Now that we have modified User, add it back to the CSE maps.  If it
    // already exists there, recursively merge the results together.
    AddModifiedNodeToCSEMaps(User);
  }
}

/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
/// based on their topological order. It returns the maximum id and a vector
/// of the SDNodes* in assigned order by reference.
unsigned SelectionDAG::AssignTopologicalOrder() {

  unsigned DAGSize = 0;

  // SortedPos tracks the progress of the algorithm. Nodes before it are
  // sorted, nodes after it are unsorted. When the algorithm completes
  // it is at the end of the list.
  allnodes_iterator SortedPos = allnodes_begin();

  // Visit all the nodes. Move nodes with no operands to the front of
  // the list immediately. Annotate nodes that do have operands with their
  // operand count. Before we do this, the Node Id fields of the nodes
  // may contain arbitrary values. After, the Node Id fields for nodes
  // before SortedPos will contain the topological sort index, and the
  // Node Id fields for nodes At SortedPos and after will contain the
  // count of outstanding operands.
  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
    SDNode *N = I++;
    checkForCycles(N, this);
    unsigned Degree = N->getNumOperands();
    if (Degree == 0) {
      // A node with no uses, add it to the result array immediately.
      N->setNodeId(DAGSize++);
      allnodes_iterator Q = N;
      if (Q != SortedPos)
        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
      assert(SortedPos != AllNodes.end() && "Overran node list");
      ++SortedPos;
    } else {
      // Temporarily use the Node Id as scratch space for the degree count.
      N->setNodeId(Degree);
    }
  }

  // Visit all the nodes. As we iterate, move nodes into sorted order,
  // such that by the time the end is reached all nodes will be sorted.
  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
    SDNode *N = I;
    checkForCycles(N, this);
    // N is in sorted position, so all its uses have one less operand
    // that needs to be sorted.
    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
         UI != UE; ++UI) {
      SDNode *P = *UI;
      unsigned Degree = P->getNodeId();
      assert(Degree != 0 && "Invalid node degree");
      --Degree;
      if (Degree == 0) {
        // All of P's operands are sorted, so P may sorted now.
        P->setNodeId(DAGSize++);
        if (P != SortedPos)
          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
        assert(SortedPos != AllNodes.end() && "Overran node list");
        ++SortedPos;
      } else {
        // Update P's outstanding operand count.
        P->setNodeId(Degree);
      }
    }
    if (I == SortedPos) {
#ifndef NDEBUG
      SDNode *S = ++I;
      dbgs() << "Overran sorted position:\n";
      S->dumprFull(this); dbgs() << "\n";
      dbgs() << "Checking if this is due to cycles\n";
      checkForCycles(this, true);
#endif
      llvm_unreachable(nullptr);
    }
  }

  assert(SortedPos == AllNodes.end() &&
         "Topological sort incomplete!");
  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
         "First node in topological sort is not the entry token!");
  assert(AllNodes.front().getNodeId() == 0 &&
         "First node in topological sort has non-zero id!");
  assert(AllNodes.front().getNumOperands() == 0 &&
         "First node in topological sort has operands!");
  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
         "Last node in topologic sort has unexpected id!");
  assert(AllNodes.back().use_empty() &&
         "Last node in topologic sort has users!");
  assert(DAGSize == allnodes_size() && "Node count mismatch!");
  return DAGSize;
}

/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
/// value is produced by SD.
void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
  if (SD) {
    assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
    SD->setHasDebugValue(true);
  }
  DbgInfo->add(DB, SD, isParameter);
}

/// TransferDbgValues - Transfer SDDbgValues.
void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
  if (From == To || !From.getNode()->getHasDebugValue())
    return;
  SDNode *FromNode = From.getNode();
  SDNode *ToNode = To.getNode();
  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
  SmallVector<SDDbgValue *, 2> ClonedDVs;
  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
       I != E; ++I) {
    SDDbgValue *Dbg = *I;
    if (Dbg->getKind() == SDDbgValue::SDNODE) {
      SDDbgValue *Clone =
          getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
                      To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
                      Dbg->getDebugLoc(), Dbg->getOrder());
      ClonedDVs.push_back(Clone);
    }
  }
  for (SmallVectorImpl<SDDbgValue *>::iterator I = ClonedDVs.begin(),
         E = ClonedDVs.end(); I != E; ++I)
    AddDbgValue(*I, ToNode, false);
}

//===----------------------------------------------------------------------===//
//                              SDNode Class
//===----------------------------------------------------------------------===//

HandleSDNode::~HandleSDNode() {
  DropOperands();
}

GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
                                         DebugLoc DL, const GlobalValue *GA,
                                         EVT VT, int64_t o, unsigned char TF)
  : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
  TheGlobal = GA;
}

AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT,
                                         SDValue X, unsigned SrcAS,
                                         unsigned DestAS)
 : UnarySDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT), X),
   SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}

MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
                     EVT memvt, MachineMemOperand *mmo)
 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
                                      MMO->isNonTemporal(), MMO->isInvariant());
  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
  assert(isNonTemporal() == MMO->isNonTemporal() &&
         "Non-temporal encoding error!");
  // We check here that the size of the memory operand fits within the size of
  // the MMO. This is because the MMO might indicate only a possible address
  // range instead of specifying the affected memory addresses precisely.
  assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
}

MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
                     ArrayRef<SDValue> Ops, EVT memvt, MachineMemOperand *mmo)
   : SDNode(Opc, Order, dl, VTs, Ops),
     MemoryVT(memvt), MMO(mmo) {
  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
                                      MMO->isNonTemporal(), MMO->isInvariant());
  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
  assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
}

/// Profile - Gather unique data for the node.
///
void SDNode::Profile(FoldingSetNodeID &ID) const {
  AddNodeIDNode(ID, this);
}

namespace {
  struct EVTArray {
    std::vector<EVT> VTs;

    EVTArray() {
      VTs.reserve(MVT::LAST_VALUETYPE);
      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
        VTs.push_back(MVT((MVT::SimpleValueType)i));
    }
  };
}

static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
static ManagedStatic<EVTArray> SimpleVTArray;
static ManagedStatic<sys::SmartMutex<true> > VTMutex;

/// getValueTypeList - Return a pointer to the specified value type.
///
const EVT *SDNode::getValueTypeList(EVT VT) {
  if (VT.isExtended()) {
    sys::SmartScopedLock<true> Lock(*VTMutex);
    return &(*EVTs->insert(VT).first);
  } else {
    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
           "Value type out of range!");
    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
  }
}

/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value.  This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
  assert(Value < getNumValues() && "Bad value!");

  // TODO: Only iterate over uses of a given value of the node
  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    if (UI.getUse().getResNo() == Value) {
      if (NUses == 0)
        return false;
      --NUses;
    }
  }

  // Found exactly the right number of uses?
  return NUses == 0;
}


/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
  assert(Value < getNumValues() && "Bad value!");

  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
    if (UI.getUse().getResNo() == Value)
      return true;

  return false;
}


/// isOnlyUserOf - Return true if this node is the only use of N.
///
bool SDNode::isOnlyUserOf(SDNode *N) const {
  bool Seen = false;
  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
    SDNode *User = *I;
    if (User == this)
      Seen = true;
    else
      return false;
  }

  return Seen;
}

/// isOperand - Return true if this node is an operand of N.
///
bool SDValue::isOperandOf(SDNode *N) const {
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    if (*this == N->getOperand(i))
      return true;
  return false;
}

bool SDNode::isOperandOf(SDNode *N) const {
  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
    if (this == N->OperandList[i].getNode())
      return true;
  return false;
}

/// reachesChainWithoutSideEffects - Return true if this operand (which must
/// be a chain) reaches the specified operand without crossing any
/// side-effecting instructions on any chain path.  In practice, this looks
/// through token factors and non-volatile loads.  In order to remain efficient,
/// this only looks a couple of nodes in, it does not do an exhaustive search.
bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
                                               unsigned Depth) const {
  if (*this == Dest) return true;

  // Don't search too deeply, we just want to be able to see through
  // TokenFactor's etc.
  if (Depth == 0) return false;

  // If this is a token factor, all inputs to the TF happen in parallel.  If any
  // of the operands of the TF does not reach dest, then we cannot do the xform.
  if (getOpcode() == ISD::TokenFactor) {
    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
        return false;
    return true;
  }

  // Loads don't have side effects, look through them.
  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
    if (!Ld->isVolatile())
      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
  }
  return false;
}

/// hasPredecessor - Return true if N is a predecessor of this node.
/// N is either an operand of this node, or can be reached by recursively
/// traversing up the operands.
/// NOTE: This is an expensive method. Use it carefully.
bool SDNode::hasPredecessor(const SDNode *N) const {
  SmallPtrSet<const SDNode *, 32> Visited;
  SmallVector<const SDNode *, 16> Worklist;
  return hasPredecessorHelper(N, Visited, Worklist);
}

bool
SDNode::hasPredecessorHelper(const SDNode *N,
                             SmallPtrSetImpl<const SDNode *> &Visited,
                             SmallVectorImpl<const SDNode *> &Worklist) const {
  if (Visited.empty()) {
    Worklist.push_back(this);
  } else {
    // Take a look in the visited set. If we've already encountered this node
    // we needn't search further.
    if (Visited.count(N))
      return true;
  }

  // Haven't visited N yet. Continue the search.
  while (!Worklist.empty()) {
    const SDNode *M = Worklist.pop_back_val();
    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
      SDNode *Op = M->getOperand(i).getNode();
      if (Visited.insert(Op).second)
        Worklist.push_back(Op);
      if (Op == N)
        return true;
    }
  }

  return false;
}

uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
  assert(Num < NumOperands && "Invalid child # of SDNode!");
  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
}

SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
  assert(N->getNumValues() == 1 &&
         "Can't unroll a vector with multiple results!");

  EVT VT = N->getValueType(0);
  unsigned NE = VT.getVectorNumElements();
  EVT EltVT = VT.getVectorElementType();
  SDLoc dl(N);

  SmallVector<SDValue, 8> Scalars;
  SmallVector<SDValue, 4> Operands(N->getNumOperands());

  // If ResNE is 0, fully unroll the vector op.
  if (ResNE == 0)
    ResNE = NE;
  else if (NE > ResNE)
    NE = ResNE;

  unsigned i;
  for (i= 0; i != NE; ++i) {
    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
      SDValue Operand = N->getOperand(j);
      EVT OperandVT = Operand.getValueType();
      if (OperandVT.isVector()) {
        // A vector operand; extract a single element.
        EVT OperandEltVT = OperandVT.getVectorElementType();
        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
                              OperandEltVT,
                              Operand,
                              getConstant(i, TLI->getVectorIdxTy()));
      } else {
        // A scalar operand; just use it as is.
        Operands[j] = Operand;
      }
    }

    switch (N->getOpcode()) {
    default:
      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands));
      break;
    case ISD::VSELECT:
      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
      break;
    case ISD::SHL:
    case ISD::SRA:
    case ISD::SRL:
    case ISD::ROTL:
    case ISD::ROTR:
      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
                               getShiftAmountOperand(Operands[0].getValueType(),
                                                     Operands[1])));
      break;
    case ISD::SIGN_EXTEND_INREG:
    case ISD::FP_ROUND_INREG: {
      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
                                Operands[0],
                                getValueType(ExtVT)));
    }
    }
  }

  for (; i < ResNE; ++i)
    Scalars.push_back(getUNDEF(EltVT));

  return getNode(ISD::BUILD_VECTOR, dl,
                 EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars);
}


/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
/// location that is 'Dist' units away from the location that the 'Base' load
/// is loading from.
bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
                                     unsigned Bytes, int Dist) const {
  if (LD->getChain() != Base->getChain())
    return false;
  EVT VT = LD->getValueType(0);
  if (VT.getSizeInBits() / 8 != Bytes)
    return false;

  SDValue Loc = LD->getOperand(1);
  SDValue BaseLoc = Base->getOperand(1);
  if (Loc.getOpcode() == ISD::FrameIndex) {
    if (BaseLoc.getOpcode() != ISD::FrameIndex)
      return false;
    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
    int FS  = MFI->getObjectSize(FI);
    int BFS = MFI->getObjectSize(BFI);
    if (FS != BFS || FS != (int)Bytes) return false;
    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
  }

  // Handle X + C.
  if (isBaseWithConstantOffset(Loc)) {
    int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
    if (Loc.getOperand(0) == BaseLoc) {
      // If the base location is a simple address with no offset itself, then
      // the second load's first add operand should be the base address.
      if (LocOffset == Dist * (int)Bytes)
        return true;
    } else if (isBaseWithConstantOffset(BaseLoc)) {
      // The base location itself has an offset, so subtract that value from the
      // second load's offset before comparing to distance * size.
      int64_t BOffset =
        cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
      if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
        if ((LocOffset - BOffset) == Dist * (int)Bytes)
          return true;
      }
    }
  }
  const GlobalValue *GV1 = nullptr;
  const GlobalValue *GV2 = nullptr;
  int64_t Offset1 = 0;
  int64_t Offset2 = 0;
  bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
  bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
  if (isGA1 && isGA2 && GV1 == GV2)
    return Offset1 == (Offset2 + Dist*Bytes);
  return false;
}


/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
/// it cannot be inferred.
unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
  // If this is a GlobalAddress + cst, return the alignment.
  const GlobalValue *GV;
  int64_t GVOffset = 0;
  if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
    unsigned PtrWidth = TLI->getPointerTypeSizeInBits(GV->getType());
    APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
    llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne,
                           *TLI->getDataLayout());
    unsigned AlignBits = KnownZero.countTrailingOnes();
    unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
    if (Align)
      return MinAlign(Align, GVOffset);
  }

  // If this is a direct reference to a stack slot, use information about the
  // stack slot's alignment.
  int FrameIdx = 1 << 31;
  int64_t FrameOffset = 0;
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
    FrameIdx = FI->getIndex();
  } else if (isBaseWithConstantOffset(Ptr) &&
             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
    // Handle FI+Cst
    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
    FrameOffset = Ptr.getConstantOperandVal(1);
  }

  if (FrameIdx != (1 << 31)) {
    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
                                    FrameOffset);
    return FIInfoAlign;
  }

  return 0;
}

/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split (or expanded) into two not necessarily identical pieces.
std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
  // Currently all types are split in half.
  EVT LoVT, HiVT;
  if (!VT.isVector()) {
    LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
  } else {
    unsigned NumElements = VT.getVectorNumElements();
    assert(!(NumElements & 1) && "Splitting vector, but not in half!");
    LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
                                   NumElements/2);
  }
  return std::make_pair(LoVT, HiVT);
}

/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
/// low/high part.
std::pair<SDValue, SDValue>
SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
                          const EVT &HiVT) {
  assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
         N.getValueType().getVectorNumElements() &&
         "More vector elements requested than available!");
  SDValue Lo, Hi;
  Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
               getConstant(0, TLI->getVectorIdxTy()));
  Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
               getConstant(LoVT.getVectorNumElements(), TLI->getVectorIdxTy()));
  return std::make_pair(Lo, Hi);
}

void SelectionDAG::ExtractVectorElements(SDValue Op,
                                         SmallVectorImpl<SDValue> &Args,
                                         unsigned Start, unsigned Count) {
  EVT VT = Op.getValueType();
  if (Count == 0)
    Count = VT.getVectorNumElements();

  EVT EltVT = VT.getVectorElementType();
  EVT IdxTy = TLI->getVectorIdxTy();
  SDLoc SL(Op);
  for (unsigned i = Start, e = Start + Count; i != e; ++i) {
    Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
                           Op, getConstant(i, IdxTy)));
  }
}

// getAddressSpace - Return the address space this GlobalAddress belongs to.
unsigned GlobalAddressSDNode::getAddressSpace() const {
  return getGlobal()->getType()->getAddressSpace();
}


Type *ConstantPoolSDNode::getType() const {
  if (isMachineConstantPoolEntry())
    return Val.MachineCPVal->getType();
  return Val.ConstVal->getType();
}

bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
                                        APInt &SplatUndef,
                                        unsigned &SplatBitSize,
                                        bool &HasAnyUndefs,
                                        unsigned MinSplatBits,
                                        bool isBigEndian) const {
  EVT VT = getValueType(0);
  assert(VT.isVector() && "Expected a vector type");
  unsigned sz = VT.getSizeInBits();
  if (MinSplatBits > sz)
    return false;

  SplatValue = APInt(sz, 0);
  SplatUndef = APInt(sz, 0);

  // Get the bits.  Bits with undefined values (when the corresponding element
  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
  // in SplatValue.  If any of the values are not constant, give up and return
  // false.
  unsigned int nOps = getNumOperands();
  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();

  for (unsigned j = 0; j < nOps; ++j) {
    unsigned i = isBigEndian ? nOps-1-j : j;
    SDValue OpVal = getOperand(i);
    unsigned BitPos = j * EltBitSize;

    if (OpVal.getOpcode() == ISD::UNDEF)
      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
                    zextOrTrunc(sz) << BitPos;
    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
     else
      return false;
  }

  // The build_vector is all constants or undefs.  Find the smallest element
  // size that splats the vector.

  HasAnyUndefs = (SplatUndef != 0);
  while (sz > 8) {

    unsigned HalfSize = sz / 2;
    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
    APInt LowValue = SplatValue.trunc(HalfSize);
    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
    APInt LowUndef = SplatUndef.trunc(HalfSize);

    // If the two halves do not match (ignoring undef bits), stop here.
    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
        MinSplatBits > HalfSize)
      break;

    SplatValue = HighValue | LowValue;
    SplatUndef = HighUndef & LowUndef;

    sz = HalfSize;
  }

  SplatBitSize = sz;
  return true;
}

SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
  if (UndefElements) {
    UndefElements->clear();
    UndefElements->resize(getNumOperands());
  }
  SDValue Splatted;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    SDValue Op = getOperand(i);
    if (Op.getOpcode() == ISD::UNDEF) {
      if (UndefElements)
        (*UndefElements)[i] = true;
    } else if (!Splatted) {
      Splatted = Op;
    } else if (Splatted != Op) {
      return SDValue();
    }
  }

  if (!Splatted) {
    assert(getOperand(0).getOpcode() == ISD::UNDEF &&
           "Can only have a splat without a constant for all undefs.");
    return getOperand(0);
  }

  return Splatted;
}

ConstantSDNode *
BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
  return dyn_cast_or_null<ConstantSDNode>(
      getSplatValue(UndefElements).getNode());
}

ConstantFPSDNode *
BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
  return dyn_cast_or_null<ConstantFPSDNode>(
      getSplatValue(UndefElements).getNode());
}

bool BuildVectorSDNode::isConstant() const {
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    unsigned Opc = getOperand(i).getOpcode();
    if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
      return false;
  }
  return true;
}

bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
  // Find the first non-undef value in the shuffle mask.
  unsigned i, e;
  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
    /* search */;

  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");

  // Make sure all remaining elements are either undef or the same as the first
  // non-undef value.
  for (int Idx = Mask[i]; i != e; ++i)
    if (Mask[i] >= 0 && Mask[i] != Idx)
      return false;
  return true;
}

#ifndef NDEBUG
static void checkForCyclesHelper(const SDNode *N,
                                 SmallPtrSetImpl<const SDNode*> &Visited,
                                 SmallPtrSetImpl<const SDNode*> &Checked,
                                 const llvm::SelectionDAG *DAG) {
  // If this node has already been checked, don't check it again.
  if (Checked.count(N))
    return;

  // If a node has already been visited on this depth-first walk, reject it as
  // a cycle.
  if (!Visited.insert(N).second) {
    errs() << "Detected cycle in SelectionDAG\n";
    dbgs() << "Offending node:\n";
    N->dumprFull(DAG); dbgs() << "\n";
    abort();
  }

  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked, DAG);

  Checked.insert(N);
  Visited.erase(N);
}
#endif

void llvm::checkForCycles(const llvm::SDNode *N,
                          const llvm::SelectionDAG *DAG,
                          bool force) {
#ifndef NDEBUG
  bool check = force;
#ifdef XDEBUG
  check = true;
#endif  // XDEBUG
  if (check) {
    assert(N && "Checking nonexistent SDNode");
    SmallPtrSet<const SDNode*, 32> visited;
    SmallPtrSet<const SDNode*, 32> checked;
    checkForCyclesHelper(N, visited, checked, DAG);
  }
#endif  // !NDEBUG
}

void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
  checkForCycles(DAG->getRoot().getNode(), DAG, force);
}