1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
|
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAGISel class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "isel"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
using namespace llvm;
#ifndef NDEBUG
static cl::opt<bool>
ViewISelDAGs("view-isel-dags", cl::Hidden,
cl::desc("Pop up a window to show isel dags as they are selected"));
static cl::opt<bool>
ViewSchedDAGs("view-sched-dags", cl::Hidden,
cl::desc("Pop up a window to show sched dags as they are processed"));
#else
static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
#endif
//===---------------------------------------------------------------------===//
///
/// RegisterScheduler class - Track the registration of instruction schedulers.
///
//===---------------------------------------------------------------------===//
MachinePassRegistry RegisterScheduler::Registry;
//===---------------------------------------------------------------------===//
///
/// ISHeuristic command line option for instruction schedulers.
///
//===---------------------------------------------------------------------===//
namespace {
cl::opt<RegisterScheduler::FunctionPassCtor, false,
RegisterPassParser<RegisterScheduler> >
ISHeuristic("sched",
cl::init(&createDefaultScheduler),
cl::desc("Instruction schedulers available:"));
static RegisterScheduler
defaultListDAGScheduler("default", " Best scheduler for the target",
createDefaultScheduler);
} // namespace
namespace {
/// RegsForValue - This struct represents the physical registers that a
/// particular value is assigned and the type information about the value.
/// This is needed because values can be promoted into larger registers and
/// expanded into multiple smaller registers than the value.
struct VISIBILITY_HIDDEN RegsForValue {
/// Regs - This list hold the register (for legal and promoted values)
/// or register set (for expanded values) that the value should be assigned
/// to.
std::vector<unsigned> Regs;
/// RegVT - The value type of each register.
///
MVT::ValueType RegVT;
/// ValueVT - The value type of the LLVM value, which may be promoted from
/// RegVT or made from merging the two expanded parts.
MVT::ValueType ValueVT;
RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
: RegVT(regvt), ValueVT(valuevt) {
Regs.push_back(Reg);
}
RegsForValue(const std::vector<unsigned> ®s,
MVT::ValueType regvt, MVT::ValueType valuevt)
: Regs(regs), RegVT(regvt), ValueVT(valuevt) {
}
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
/// this value and returns the result as a ValueVT value. This uses
/// Chain/Flag as the input and updates them for the output Chain/Flag.
SDOperand getCopyFromRegs(SelectionDAG &DAG,
SDOperand &Chain, SDOperand &Flag) const;
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
/// specified value into the registers specified by this object. This uses
/// Chain/Flag as the input and updates them for the output Chain/Flag.
void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
SDOperand &Chain, SDOperand &Flag,
MVT::ValueType PtrVT) const;
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
/// operand list. This adds the code marker and includes the number of
/// values added into it.
void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
std::vector<SDOperand> &Ops) const;
};
}
namespace llvm {
//===--------------------------------------------------------------------===//
/// createDefaultScheduler - This creates an instruction scheduler appropriate
/// for the target.
ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
SelectionDAG *DAG,
MachineBasicBlock *BB) {
TargetLowering &TLI = IS->getTargetLowering();
if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
return createTDListDAGScheduler(IS, DAG, BB);
} else {
assert(TLI.getSchedulingPreference() ==
TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
return createBURRListDAGScheduler(IS, DAG, BB);
}
}
//===--------------------------------------------------------------------===//
/// FunctionLoweringInfo - This contains information that is global to a
/// function that is used when lowering a region of the function.
class FunctionLoweringInfo {
public:
TargetLowering &TLI;
Function &Fn;
MachineFunction &MF;
SSARegMap *RegMap;
FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
/// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
/// ValueMap - Since we emit code for the function a basic block at a time,
/// we must remember which virtual registers hold the values for
/// cross-basic-block values.
DenseMap<const Value*, unsigned> ValueMap;
/// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
/// the entry block. This allows the allocas to be efficiently referenced
/// anywhere in the function.
std::map<const AllocaInst*, int> StaticAllocaMap;
unsigned MakeReg(MVT::ValueType VT) {
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
}
/// isExportedInst - Return true if the specified value is an instruction
/// exported from its block.
bool isExportedInst(const Value *V) {
return ValueMap.count(V);
}
unsigned CreateRegForValue(const Value *V);
unsigned InitializeRegForValue(const Value *V) {
unsigned &R = ValueMap[V];
assert(R == 0 && "Already initialized this value register!");
return R = CreateRegForValue(V);
}
};
}
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch instruction, which may expand to multiple basic blocks.
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
if (isa<PHINode>(I)) return true;
BasicBlock *BB = I->getParent();
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
// FIXME: Remove switchinst special case.
isa<SwitchInst>(*UI))
return true;
return false;
}
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
/// entry block, return true. This includes arguments used by switches, since
/// the switch may expand into multiple basic blocks.
static bool isOnlyUsedInEntryBlock(Argument *A) {
BasicBlock *Entry = A->getParent()->begin();
for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
return false; // Use not in entry block.
return true;
}
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
Function &fn, MachineFunction &mf)
: TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
// Create a vreg for each argument register that is not dead and is used
// outside of the entry block for the function.
for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
AI != E; ++AI)
if (!isOnlyUsedInEntryBlock(AI))
InitializeRegForValue(AI);
// Initialize the mapping of values to registers. This is only set up for
// instruction values that are used outside of the block that defines
// them.
Function::iterator BB = Fn.begin(), EB = Fn.end();
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
const Type *Ty = AI->getAllocatedType();
uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
unsigned Align =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
AI->getAlignment());
TySize *= CUI->getZExtValue(); // Get total allocated size.
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
StaticAllocaMap[AI] =
MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
}
for (; BB != EB; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
if (!isa<AllocaInst>(I) ||
!StaticAllocaMap.count(cast<AllocaInst>(I)))
InitializeRegForValue(I);
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
// also creates the initial PHI MachineInstrs, though none of the input
// operands are populated.
for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
MachineBasicBlock *MBB = new MachineBasicBlock(BB);
MBBMap[BB] = MBB;
MF.getBasicBlockList().push_back(MBB);
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
// appropriate.
PHINode *PN;
for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
if (PN->use_empty()) continue;
MVT::ValueType VT = TLI.getValueType(PN->getType());
unsigned NumElements;
if (VT != MVT::Vector)
NumElements = TLI.getNumElements(VT);
else {
MVT::ValueType VT1,VT2;
NumElements =
TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
VT1, VT2);
}
unsigned PHIReg = ValueMap[PN];
assert(PHIReg && "PHI node does not have an assigned virtual register!");
const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
for (unsigned i = 0; i != NumElements; ++i)
BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
}
}
}
/// CreateRegForValue - Allocate the appropriate number of virtual registers of
/// the correctly promoted or expanded types. Assign these registers
/// consecutive vreg numbers and return the first assigned number.
unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
MVT::ValueType VT = TLI.getValueType(V->getType());
// The number of multiples of registers that we need, to, e.g., split up
// a <2 x int64> -> 4 x i32 registers.
unsigned NumVectorRegs = 1;
// If this is a vector type, figure out what type it will decompose into
// and how many of the elements it will use.
if (VT == MVT::Vector) {
const VectorType *PTy = cast<VectorType>(V->getType());
unsigned NumElts = PTy->getNumElements();
MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
// Divide the input until we get to a supported size. This will always
// end with a scalar if the target doesn't support vectors.
while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
NumElts >>= 1;
NumVectorRegs <<= 1;
}
if (NumElts == 1)
VT = EltTy;
else
VT = getVectorType(EltTy, NumElts);
}
// The common case is that we will only create one register for this
// value. If we have that case, create and return the virtual register.
unsigned NV = TLI.getNumElements(VT);
if (NV == 1) {
// If we are promoting this value, pick the next largest supported type.
MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
unsigned Reg = MakeReg(PromotedType);
// If this is a vector of supported or promoted types (e.g. 4 x i16),
// create all of the registers.
for (unsigned i = 1; i != NumVectorRegs; ++i)
MakeReg(PromotedType);
return Reg;
}
// If this value is represented with multiple target registers, make sure
// to create enough consecutive registers of the right (smaller) type.
VT = TLI.getTypeToExpandTo(VT);
unsigned R = MakeReg(VT);
for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
MakeReg(VT);
return R;
}
//===----------------------------------------------------------------------===//
/// SelectionDAGLowering - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
/// Also, targets can overload any lowering method.
///
namespace llvm {
class SelectionDAGLowering {
MachineBasicBlock *CurMBB;
DenseMap<const Value*, SDOperand> NodeMap;
/// PendingLoads - Loads are not emitted to the program immediately. We bunch
/// them up and then emit token factor nodes when possible. This allows us to
/// get simple disambiguation between loads without worrying about alias
/// analysis.
std::vector<SDOperand> PendingLoads;
/// Case - A pair of values to record the Value for a switch case, and the
/// case's target basic block.
typedef std::pair<Constant*, MachineBasicBlock*> Case;
typedef std::vector<Case>::iterator CaseItr;
typedef std::pair<CaseItr, CaseItr> CaseRange;
/// CaseRec - A struct with ctor used in lowering switches to a binary tree
/// of conditional branches.
struct CaseRec {
CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
CaseBB(bb), LT(lt), GE(ge), Range(r) {}
/// CaseBB - The MBB in which to emit the compare and branch
MachineBasicBlock *CaseBB;
/// LT, GE - If nonzero, we know the current case value must be less-than or
/// greater-than-or-equal-to these Constants.
Constant *LT;
Constant *GE;
/// Range - A pair of iterators representing the range of case values to be
/// processed at this point in the binary search tree.
CaseRange Range;
};
/// The comparison function for sorting Case values.
struct CaseCmp {
bool operator () (const Case& C1, const Case& C2) {
assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first));
return cast<const ConstantInt>(C1.first)->getSExtValue() <
cast<const ConstantInt>(C2.first)->getSExtValue();
}
};
public:
// TLI - This is information that describes the available target features we
// need for lowering. This indicates when operations are unavailable,
// implemented with a libcall, etc.
TargetLowering &TLI;
SelectionDAG &DAG;
const TargetData *TD;
/// SwitchCases - Vector of CaseBlock structures used to communicate
/// SwitchInst code generation information.
std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
SelectionDAGISel::JumpTable JT;
/// FuncInfo - Information about the function as a whole.
///
FunctionLoweringInfo &FuncInfo;
SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
FunctionLoweringInfo &funcinfo)
: TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
JT(0,0,0,0), FuncInfo(funcinfo) {
}
/// getRoot - Return the current virtual root of the Selection DAG.
///
SDOperand getRoot() {
if (PendingLoads.empty())
return DAG.getRoot();
if (PendingLoads.size() == 1) {
SDOperand Root = PendingLoads[0];
DAG.setRoot(Root);
PendingLoads.clear();
return Root;
}
// Otherwise, we have to make a token factor node.
SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
&PendingLoads[0], PendingLoads.size());
PendingLoads.clear();
DAG.setRoot(Root);
return Root;
}
SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
void visit(Instruction &I) { visit(I.getOpcode(), I); }
void visit(unsigned Opcode, User &I) {
// Note: this doesn't use InstVisitor, because it has to work with
// ConstantExpr's in addition to instructions.
switch (Opcode) {
default: assert(0 && "Unknown instruction type encountered!");
abort();
// Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
#include "llvm/Instruction.def"
}
}
void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
const Value *SV, SDOperand Root,
bool isVolatile);
SDOperand getIntPtrConstant(uint64_t Val) {
return DAG.getConstant(Val, TLI.getPointerTy());
}
SDOperand getValue(const Value *V);
void setValue(const Value *V, SDOperand NewN) {
SDOperand &N = NodeMap[V];
assert(N.Val == 0 && "Already set a value for this node!");
N = NewN;
}
RegsForValue GetRegistersForValue(const std::string &ConstrCode,
MVT::ValueType VT,
bool OutReg, bool InReg,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs);
void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
unsigned Opc);
bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
void ExportFromCurrentBlock(Value *V);
void LowerCallTo(Instruction &I,
const Type *CalledValueTy, unsigned CallingConv,
bool IsTailCall, SDOperand Callee, unsigned OpIdx);
// Terminator instructions.
void visitRet(ReturnInst &I);
void visitBr(BranchInst &I);
void visitSwitch(SwitchInst &I);
void visitUnreachable(UnreachableInst &I) { /* noop */ }
// Helper for visitSwitch
void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
void visitJumpTable(SelectionDAGISel::JumpTable &JT);
// These all get lowered before this pass.
void visitInvoke(InvokeInst &I);
void visitInvoke(InvokeInst &I, bool AsTerminator);
void visitUnwind(UnwindInst &I);
void visitScalarBinary(User &I, unsigned OpCode);
void visitVectorBinary(User &I, unsigned OpCode);
void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
void visitShift(User &I, unsigned Opcode);
void visitAdd(User &I) {
if (isa<VectorType>(I.getType()))
visitVectorBinary(I, ISD::VADD);
else if (I.getType()->isFloatingPoint())
visitScalarBinary(I, ISD::FADD);
else
visitScalarBinary(I, ISD::ADD);
}
void visitSub(User &I);
void visitMul(User &I) {
if (isa<VectorType>(I.getType()))
visitVectorBinary(I, ISD::VMUL);
else if (I.getType()->isFloatingPoint())
visitScalarBinary(I, ISD::FMUL);
else
visitScalarBinary(I, ISD::MUL);
}
void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
void visitAnd (User &I) { visitEitherBinary(I, ISD::AND, ISD::VAND ); }
void visitOr (User &I) { visitEitherBinary(I, ISD::OR, ISD::VOR ); }
void visitXor (User &I) { visitEitherBinary(I, ISD::XOR, ISD::VXOR ); }
void visitShl (User &I) { visitShift(I, ISD::SHL); }
void visitLShr(User &I) { visitShift(I, ISD::SRL); }
void visitAShr(User &I) { visitShift(I, ISD::SRA); }
void visitICmp(User &I);
void visitFCmp(User &I);
// Visit the conversion instructions
void visitTrunc(User &I);
void visitZExt(User &I);
void visitSExt(User &I);
void visitFPTrunc(User &I);
void visitFPExt(User &I);
void visitFPToUI(User &I);
void visitFPToSI(User &I);
void visitUIToFP(User &I);
void visitSIToFP(User &I);
void visitPtrToInt(User &I);
void visitIntToPtr(User &I);
void visitBitCast(User &I);
void visitExtractElement(User &I);
void visitInsertElement(User &I);
void visitShuffleVector(User &I);
void visitGetElementPtr(User &I);
void visitSelect(User &I);
void visitMalloc(MallocInst &I);
void visitFree(FreeInst &I);
void visitAlloca(AllocaInst &I);
void visitLoad(LoadInst &I);
void visitStore(StoreInst &I);
void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
void visitCall(CallInst &I);
void visitInlineAsm(CallInst &I);
const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
void visitVAStart(CallInst &I);
void visitVAArg(VAArgInst &I);
void visitVAEnd(CallInst &I);
void visitVACopy(CallInst &I);
void visitMemIntrinsic(CallInst &I, unsigned Op);
void visitUserOp1(Instruction &I) {
assert(0 && "UserOp1 should not exist at instruction selection time!");
abort();
}
void visitUserOp2(Instruction &I) {
assert(0 && "UserOp2 should not exist at instruction selection time!");
abort();
}
};
} // end namespace llvm
SDOperand SelectionDAGLowering::getValue(const Value *V) {
SDOperand &N = NodeMap[V];
if (N.Val) return N;
const Type *VTy = V->getType();
MVT::ValueType VT = TLI.getValueType(VTy);
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
visit(CE->getOpcode(), *CE);
SDOperand N1 = NodeMap[V];
assert(N1.Val && "visit didn't populate the ValueMap!");
return N1;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
return N = DAG.getGlobalAddress(GV, VT);
} else if (isa<ConstantPointerNull>(C)) {
return N = DAG.getConstant(0, TLI.getPointerTy());
} else if (isa<UndefValue>(C)) {
if (!isa<VectorType>(VTy))
return N = DAG.getNode(ISD::UNDEF, VT);
// Create a VBUILD_VECTOR of undef nodes.
const VectorType *PTy = cast<VectorType>(VTy);
unsigned NumElements = PTy->getNumElements();
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
SmallVector<SDOperand, 8> Ops;
Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
// Create a VConstant node with generic Vector type.
Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
Ops.push_back(DAG.getValueType(PVT));
return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
&Ops[0], Ops.size());
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
return N = DAG.getConstantFP(CFP->getValue(), VT);
} else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
unsigned NumElements = PTy->getNumElements();
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
// Now that we know the number and type of the elements, push a
// Constant or ConstantFP node onto the ops list for each element of
// the packed constant.
SmallVector<SDOperand, 8> Ops;
if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
for (unsigned i = 0; i != NumElements; ++i)
Ops.push_back(getValue(CP->getOperand(i)));
} else {
assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
SDOperand Op;
if (MVT::isFloatingPoint(PVT))
Op = DAG.getConstantFP(0, PVT);
else
Op = DAG.getConstant(0, PVT);
Ops.assign(NumElements, Op);
}
// Create a VBUILD_VECTOR node with generic Vector type.
Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
Ops.push_back(DAG.getValueType(PVT));
return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
Ops.size());
} else {
// Canonicalize all constant ints to be unsigned.
return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
}
}
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
std::map<const AllocaInst*, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end())
return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
}
unsigned InReg = FuncInfo.ValueMap[V];
assert(InReg && "Value not in map!");
// If this type is not legal, make it so now.
if (VT != MVT::Vector) {
if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
// Source must be expanded. This input value is actually coming from the
// register pair InReg and InReg+1.
MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
unsigned NumVals = TLI.getNumElements(VT);
N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
if (NumVals == 1)
N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
else {
assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
}
} else {
MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
N = MVT::isFloatingPoint(VT)
? DAG.getNode(ISD::FP_ROUND, VT, N)
: DAG.getNode(ISD::TRUNCATE, VT, N);
}
} else {
// Otherwise, if this is a vector, make it available as a generic vector
// here.
MVT::ValueType PTyElementVT, PTyLegalElementVT;
const VectorType *PTy = cast<VectorType>(VTy);
unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
PTyLegalElementVT);
// Build a VBUILD_VECTOR with the input registers.
SmallVector<SDOperand, 8> Ops;
if (PTyElementVT == PTyLegalElementVT) {
// If the value types are legal, just VBUILD the CopyFromReg nodes.
for (unsigned i = 0; i != NE; ++i)
Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
PTyElementVT));
} else if (PTyElementVT < PTyLegalElementVT) {
// If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
for (unsigned i = 0; i != NE; ++i) {
SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
PTyElementVT);
if (MVT::isFloatingPoint(PTyElementVT))
Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
else
Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
Ops.push_back(Op);
}
} else {
// If the register was expanded, use BUILD_PAIR.
assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
for (unsigned i = 0; i != NE/2; ++i) {
SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
PTyElementVT);
SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
PTyElementVT);
Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
}
}
Ops.push_back(DAG.getConstant(NE, MVT::i32));
Ops.push_back(DAG.getValueType(PTyLegalElementVT));
N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
// Finally, use a VBIT_CONVERT to make this available as the appropriate
// vector type.
N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
DAG.getConstant(PTy->getNumElements(),
MVT::i32),
DAG.getValueType(TLI.getValueType(PTy->getElementType())));
}
return N;
}
void SelectionDAGLowering::visitRet(ReturnInst &I) {
if (I.getNumOperands() == 0) {
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
return;
}
SmallVector<SDOperand, 8> NewValues;
NewValues.push_back(getRoot());
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
SDOperand RetOp = getValue(I.getOperand(i));
// If this is an integer return value, we need to promote it ourselves to
// the full width of a register, since LegalizeOp will use ANY_EXTEND rather
// than sign/zero.
// FIXME: C calling convention requires the return type to be promoted to
// at least 32-bit. But this is not necessary for non-C calling conventions.
if (MVT::isInteger(RetOp.getValueType()) &&
RetOp.getValueType() < MVT::i64) {
MVT::ValueType TmpVT;
if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
TmpVT = TLI.getTypeToTransformTo(MVT::i32);
else
TmpVT = MVT::i32;
const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
if (FTy->paramHasAttr(0, FunctionType::SExtAttribute))
ExtendKind = ISD::SIGN_EXTEND;
if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
ExtendKind = ISD::ZERO_EXTEND;
RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
}
NewValues.push_back(RetOp);
NewValues.push_back(DAG.getConstant(false, MVT::i32));
}
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
&NewValues[0], NewValues.size()));
}
/// ExportFromCurrentBlock - If this condition isn't known to be exported from
/// the current basic block, add it to ValueMap now so that we'll get a
/// CopyTo/FromReg.
void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
// No need to export constants.
if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
// Already exported?
if (FuncInfo.isExportedInst(V)) return;
unsigned Reg = FuncInfo.InitializeRegForValue(V);
PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
}
bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
const BasicBlock *FromBB) {
// The operands of the setcc have to be in this block. We don't know
// how to export them from some other block.
if (Instruction *VI = dyn_cast<Instruction>(V)) {
// Can export from current BB.
if (VI->getParent() == FromBB)
return true;
// Is already exported, noop.
return FuncInfo.isExportedInst(V);
}
// If this is an argument, we can export it if the BB is the entry block or
// if it is already exported.
if (isa<Argument>(V)) {
if (FromBB == &FromBB->getParent()->getEntryBlock())
return true;
// Otherwise, can only export this if it is already exported.
return FuncInfo.isExportedInst(V);
}
// Otherwise, constants can always be exported.
return true;
}
static bool InBlock(const Value *V, const BasicBlock *BB) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getParent() == BB;
return true;
}
/// FindMergedConditions - If Cond is an expression like
void SelectionDAGLowering::FindMergedConditions(Value *Cond,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
MachineBasicBlock *CurBB,
unsigned Opc) {
// If this node is not part of the or/and tree, emit it as a branch.
Instruction *BOp = dyn_cast<Instruction>(Cond);
if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
(unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
BOp->getParent() != CurBB->getBasicBlock() ||
!InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
!InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
const BasicBlock *BB = CurBB->getBasicBlock();
// If the leaf of the tree is a comparison, merge the condition into
// the caseblock.
if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
// The operands of the cmp have to be in this block. We don't know
// how to export them from some other block. If this is the first block
// of the sequence, no exporting is needed.
(CurBB == CurMBB ||
(isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
BOp = cast<Instruction>(Cond);
ISD::CondCode Condition;
if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
switch (IC->getPredicate()) {
default: assert(0 && "Unknown icmp predicate opcode!");
case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
}
} else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
ISD::CondCode FPC, FOC;
switch (FC->getPredicate()) {
default: assert(0 && "Unknown fcmp predicate opcode!");
case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
}
if (FiniteOnlyFPMath())
Condition = FOC;
else
Condition = FPC;
} else {
Condition = ISD::SETEQ; // silence warning.
assert(0 && "Unknown compare instruction");
}
SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
BOp->getOperand(1), TBB, FBB, CurBB);
SwitchCases.push_back(CB);
return;
}
// Create a CaseBlock record representing this branch.
SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
TBB, FBB, CurBB);
SwitchCases.push_back(CB);
return;
}
// Create TmpBB after CurBB.
MachineFunction::iterator BBI = CurBB;
MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
if (Opc == Instruction::Or) {
// Codegen X | Y as:
// jmp_if_X TBB
// jmp TmpBB
// TmpBB:
// jmp_if_Y TBB
// jmp FBB
//
// Emit the LHS condition.
FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
// Emit the RHS condition into TmpBB.
FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
} else {
assert(Opc == Instruction::And && "Unknown merge op!");
// Codegen X & Y as:
// jmp_if_X TmpBB
// jmp FBB
// TmpBB:
// jmp_if_Y TBB
// jmp FBB
//
// This requires creation of TmpBB after CurBB.
// Emit the LHS condition.
FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
// Emit the RHS condition into TmpBB.
FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
}
}
/// If the set of cases should be emitted as a series of branches, return true.
/// If we should emit this as a bunch of and/or'd together conditions, return
/// false.
static bool
ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
if (Cases.size() != 2) return true;
// If this is two comparisons of the same values or'd or and'd together, they
// will get folded into a single comparison, so don't emit two blocks.
if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
Cases[0].CmpRHS == Cases[1].CmpRHS) ||
(Cases[0].CmpRHS == Cases[1].CmpLHS &&
Cases[0].CmpLHS == Cases[1].CmpRHS)) {
return false;
}
return true;
}
void SelectionDAGLowering::visitBr(BranchInst &I) {
// Update machine-CFG edges.
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
if (I.isUnconditional()) {
// If this is not a fall-through branch, emit the branch.
if (Succ0MBB != NextBlock)
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
DAG.getBasicBlock(Succ0MBB)));
// Update machine-CFG edges.
CurMBB->addSuccessor(Succ0MBB);
return;
}
// If this condition is one of the special cases we handle, do special stuff
// now.
Value *CondVal = I.getCondition();
MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
// If this is a series of conditions that are or'd or and'd together, emit
// this as a sequence of branches instead of setcc's with and/or operations.
// For example, instead of something like:
// cmp A, B
// C = seteq
// cmp D, E
// F = setle
// or C, F
// jnz foo
// Emit:
// cmp A, B
// je foo
// cmp D, E
// jle foo
//
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
if (BOp->hasOneUse() &&
(BOp->getOpcode() == Instruction::And ||
BOp->getOpcode() == Instruction::Or)) {
FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
// If the compares in later blocks need to use values not currently
// exported from this block, export them now. This block should always
// be the first entry.
assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
// Allow some cases to be rejected.
if (ShouldEmitAsBranches(SwitchCases)) {
for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
}
// Emit the branch for this block.
visitSwitchCase(SwitchCases[0]);
SwitchCases.erase(SwitchCases.begin());
return;
}
// Okay, we decided not to do this, remove any inserted MBB's and clear
// SwitchCases.
for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
SwitchCases.clear();
}
}
// Create a CaseBlock record representing this branch.
SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
Succ0MBB, Succ1MBB, CurMBB);
// Use visitSwitchCase to actually insert the fast branch sequence for this
// cond branch.
visitSwitchCase(CB);
}
/// visitSwitchCase - Emits the necessary code to represent a single node in
/// the binary search tree resulting from lowering a switch instruction.
void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
SDOperand Cond;
SDOperand CondLHS = getValue(CB.CmpLHS);
// Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
// handle common cases produced by branch lowering.
if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
Cond = CondLHS;
else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
} else
Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
// Set NextBlock to be the MBB immediately after the current one, if any.
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
// If the lhs block is the next block, invert the condition so that we can
// fall through to the lhs instead of the rhs block.
if (CB.TrueBB == NextBlock) {
std::swap(CB.TrueBB, CB.FalseBB);
SDOperand True = DAG.getConstant(1, Cond.getValueType());
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
}
SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
DAG.getBasicBlock(CB.TrueBB));
if (CB.FalseBB == NextBlock)
DAG.setRoot(BrCond);
else
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
DAG.getBasicBlock(CB.FalseBB)));
// Update successor info
CurMBB->addSuccessor(CB.TrueBB);
CurMBB->addSuccessor(CB.FalseBB);
}
void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
// Emit the code for the jump table
MVT::ValueType PTy = TLI.getPointerTy();
SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
Table, Index));
return;
}
void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
assert(0 && "Should never be visited directly");
}
void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) {
// Retrieve successors.
MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
if (!AsTerminator) {
// Mark landing pad so that it doesn't get deleted in branch folding.
LandingPad->setIsLandingPad();
// Insert a label before the invoke call to mark the try range.
// This can be used to detect deletion of the invoke via the
// MachineModuleInfo.
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
unsigned BeginLabel = MMI->NextLabelID();
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
DAG.getConstant(BeginLabel, MVT::i32)));
LowerCallTo(I, I.getCalledValue()->getType(),
I.getCallingConv(),
false,
getValue(I.getOperand(0)),
3);
// Insert a label before the invoke call to mark the try range.
// This can be used to detect deletion of the invoke via the
// MachineModuleInfo.
unsigned EndLabel = MMI->NextLabelID();
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
DAG.getConstant(EndLabel, MVT::i32)));
// Inform MachineModuleInfo of range.
MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
// Update successor info
CurMBB->addSuccessor(Return);
CurMBB->addSuccessor(LandingPad);
} else {
// Drop into normal successor.
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
DAG.getBasicBlock(Return)));
}
}
void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
}
void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
// If there is only the default destination, branch to it if it is not the
// next basic block. Otherwise, just fall through.
if (I.getNumOperands() == 2) {
// Update machine-CFG edges.
// If this is not a fall-through branch, emit the branch.
if (Default != NextBlock)
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
DAG.getBasicBlock(Default)));
CurMBB->addSuccessor(Default);
return;
}
// If there are any non-default case statements, create a vector of Cases
// representing each one, and sort the vector so that we can efficiently
// create a binary search tree from them.
std::vector<Case> Cases;
for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
}
std::sort(Cases.begin(), Cases.end(), CaseCmp());
// Get the Value to be switched on and default basic blocks, which will be
// inserted into CaseBlock records, representing basic blocks in the binary
// search tree.
Value *SV = I.getOperand(0);
// Get the MachineFunction which holds the current MBB. This is used during
// emission of jump tables, and when inserting any additional MBBs necessary
// to represent the switch.
MachineFunction *CurMF = CurMBB->getParent();
const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
// If the switch has few cases (two or less) emit a series of specific
// tests.
if (Cases.size() < 3) {
// TODO: If any two of the cases has the same destination, and if one value
// is the same as the other, but has one bit unset that the other has set,
// use bit manipulation to do two compares at once. For example:
// "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
// Rearrange the case blocks so that the last one falls through if possible.
if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
// The last case block won't fall through into 'NextBlock' if we emit the
// branches in this order. See if rearranging a case value would help.
for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
if (Cases[i].second == NextBlock) {
std::swap(Cases[i], Cases.back());
break;
}
}
}
// Create a CaseBlock record representing a conditional branch to
// the Case's target mbb if the value being switched on SV is equal
// to C.
MachineBasicBlock *CurBlock = CurMBB;
for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
MachineBasicBlock *FallThrough;
if (i != e-1) {
FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
CurMF->getBasicBlockList().insert(BBI, FallThrough);
} else {
// If the last case doesn't match, go to the default block.
FallThrough = Default;
}
SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
Cases[i].second, FallThrough, CurBlock);
// If emitting the first comparison, just call visitSwitchCase to emit the
// code into the current block. Otherwise, push the CaseBlock onto the
// vector to be later processed by SDISel, and insert the node's MBB
// before the next MBB.
if (CurBlock == CurMBB)
visitSwitchCase(CB);
else
SwitchCases.push_back(CB);
CurBlock = FallThrough;
}
return;
}
// If the switch has more than 5 blocks, and at least 31.25% dense, and the
// target supports indirect branches, then emit a jump table rather than
// lowering the switch to a binary tree of conditional branches.
if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
Cases.size() > 5) {
uint64_t First =cast<ConstantInt>(Cases.front().first)->getSExtValue();
uint64_t Last = cast<ConstantInt>(Cases.back().first)->getSExtValue();
double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
if (Density >= 0.3125) {
// Create a new basic block to hold the code for loading the address
// of the jump table, and jumping to it. Update successor information;
// we will either branch to the default case for the switch, or the jump
// table.
MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
CurMBB->addSuccessor(Default);
CurMBB->addSuccessor(JumpTableBB);
// Subtract the lowest switch case value from the value being switched on
// and conditional branch to default mbb if the result is greater than the
// difference between smallest and largest cases.
SDOperand SwitchOp = getValue(SV);
MVT::ValueType VT = SwitchOp.getValueType();
SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
DAG.getConstant(First, VT));
// The SDNode we just created, which holds the value being switched on
// minus the the smallest case value, needs to be copied to a virtual
// register so it can be used as an index into the jump table in a
// subsequent basic block. This value may be smaller or larger than the
// target's pointer type, and therefore require extension or truncating.
if (VT > TLI.getPointerTy())
SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
else
SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
// Emit the range check for the jump table, and branch to the default
// block for the switch statement if the value being switched on exceeds
// the largest case in the switch.
SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
DAG.getConstant(Last-First,VT), ISD::SETUGT);
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
DAG.getBasicBlock(Default)));
// Build a vector of destination BBs, corresponding to each target
// of the jump table. If the value of the jump table slot corresponds to
// a case statement, push the case's BB onto the vector, otherwise, push
// the default BB.
std::vector<MachineBasicBlock*> DestBBs;
int64_t TEI = First;
for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
if (cast<ConstantInt>(ii->first)->getSExtValue() == TEI) {
DestBBs.push_back(ii->second);
++ii;
} else {
DestBBs.push_back(Default);
}
// Update successor info. Add one edge to each unique successor.
// Vector bool would be better, but vector<bool> is really slow.
std::vector<unsigned char> SuccsHandled;
SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
E = DestBBs.end(); I != E; ++I) {
if (!SuccsHandled[(*I)->getNumber()]) {
SuccsHandled[(*I)->getNumber()] = true;
JumpTableBB->addSuccessor(*I);
}
}
// Create a jump table index for this jump table, or return an existing
// one.
unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
// Set the jump table information so that we can codegen it as a second
// MachineBasicBlock
JT.Reg = JumpTableReg;
JT.JTI = JTI;
JT.MBB = JumpTableBB;
JT.Default = Default;
return;
}
}
// Push the initial CaseRec onto the worklist
std::vector<CaseRec> CaseVec;
CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
while (!CaseVec.empty()) {
// Grab a record representing a case range to process off the worklist
CaseRec CR = CaseVec.back();
CaseVec.pop_back();
// Size is the number of Cases represented by this range. If Size is 1,
// then we are processing a leaf of the binary search tree. Otherwise,
// we need to pick a pivot, and push left and right ranges onto the
// worklist.
unsigned Size = CR.Range.second - CR.Range.first;
if (Size == 1) {
// Create a CaseBlock record representing a conditional branch to
// the Case's target mbb if the value being switched on SV is equal
// to C. Otherwise, branch to default.
Constant *C = CR.Range.first->first;
MachineBasicBlock *Target = CR.Range.first->second;
SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
CR.CaseBB);
// If the MBB representing the leaf node is the current MBB, then just
// call visitSwitchCase to emit the code into the current block.
// Otherwise, push the CaseBlock onto the vector to be later processed
// by SDISel, and insert the node's MBB before the next MBB.
if (CR.CaseBB == CurMBB)
visitSwitchCase(CB);
else
SwitchCases.push_back(CB);
} else {
// split case range at pivot
CaseItr Pivot = CR.Range.first + (Size / 2);
CaseRange LHSR(CR.Range.first, Pivot);
CaseRange RHSR(Pivot, CR.Range.second);
Constant *C = Pivot->first;
MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
// We know that we branch to the LHS if the Value being switched on is
// less than the Pivot value, C. We use this to optimize our binary
// tree a bit, by recognizing that if SV is greater than or equal to the
// LHS's Case Value, and that Case Value is exactly one less than the
// Pivot's Value, then we can branch directly to the LHS's Target,
// rather than creating a leaf node for it.
if ((LHSR.second - LHSR.first) == 1 &&
LHSR.first->first == CR.GE &&
cast<ConstantInt>(C)->getZExtValue() ==
(cast<ConstantInt>(CR.GE)->getZExtValue() + 1ULL)) {
TrueBB = LHSR.first->second;
} else {
TrueBB = new MachineBasicBlock(LLVMBB);
CurMF->getBasicBlockList().insert(BBI, TrueBB);
CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
}
// Similar to the optimization above, if the Value being switched on is
// known to be less than the Constant CR.LT, and the current Case Value
// is CR.LT - 1, then we can branch directly to the target block for
// the current Case Value, rather than emitting a RHS leaf node for it.
if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
cast<ConstantInt>(RHSR.first->first)->getZExtValue() ==
(cast<ConstantInt>(CR.LT)->getZExtValue() - 1ULL)) {
FalseBB = RHSR.first->second;
} else {
FalseBB = new MachineBasicBlock(LLVMBB);
CurMF->getBasicBlockList().insert(BBI, FalseBB);
CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
}
// Create a CaseBlock record representing a conditional branch to
// the LHS node if the value being switched on SV is less than C.
// Otherwise, branch to LHS.
SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, TrueBB, FalseBB,
CR.CaseBB);
if (CR.CaseBB == CurMBB)
visitSwitchCase(CB);
else
SwitchCases.push_back(CB);
}
}
}
void SelectionDAGLowering::visitSub(User &I) {
// -0.0 - X --> fneg
const Type *Ty = I.getType();
if (isa<VectorType>(Ty)) {
visitVectorBinary(I, ISD::VSUB);
} else if (Ty->isFloatingPoint()) {
if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
if (CFP->isExactlyValue(-0.0)) {
SDOperand Op2 = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
return;
}
visitScalarBinary(I, ISD::FSUB);
} else
visitScalarBinary(I, ISD::SUB);
}
void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
}
void
SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
assert(isa<VectorType>(I.getType()));
const VectorType *Ty = cast<VectorType>(I.getType());
SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
setValue(&I, DAG.getNode(OpCode, MVT::Vector,
getValue(I.getOperand(0)),
getValue(I.getOperand(1)),
DAG.getConstant(Ty->getNumElements(), MVT::i32),
Typ));
}
void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
unsigned VectorOp) {
if (isa<VectorType>(I.getType()))
visitVectorBinary(I, VectorOp);
else
visitScalarBinary(I, ScalarOp);
}
void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
if (TLI.getShiftAmountTy() < Op2.getValueType())
Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
else if (TLI.getShiftAmountTy() > Op2.getValueType())
Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
}
void SelectionDAGLowering::visitICmp(User &I) {
ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
predicate = IC->getPredicate();
else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
predicate = ICmpInst::Predicate(IC->getPredicate());
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
ISD::CondCode Opcode;
switch (predicate) {
case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
default:
assert(!"Invalid ICmp predicate value");
Opcode = ISD::SETEQ;
break;
}
setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
}
void SelectionDAGLowering::visitFCmp(User &I) {
FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
predicate = FC->getPredicate();
else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
predicate = FCmpInst::Predicate(FC->getPredicate());
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
ISD::CondCode Condition, FOC, FPC;
switch (predicate) {
case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
default:
assert(!"Invalid FCmp predicate value");
FOC = FPC = ISD::SETFALSE;
break;
}
if (FiniteOnlyFPMath())
Condition = FOC;
else
Condition = FPC;
setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
}
void SelectionDAGLowering::visitSelect(User &I) {
SDOperand Cond = getValue(I.getOperand(0));
SDOperand TrueVal = getValue(I.getOperand(1));
SDOperand FalseVal = getValue(I.getOperand(2));
if (!isa<VectorType>(I.getType())) {
setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
TrueVal, FalseVal));
} else {
setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
*(TrueVal.Val->op_end()-2),
*(TrueVal.Val->op_end()-1)));
}
}
void SelectionDAGLowering::visitTrunc(User &I) {
// TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
}
void SelectionDAGLowering::visitZExt(User &I) {
// ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
// ZExt also can't be a cast to bool for same reason. So, nothing much to do
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
}
void SelectionDAGLowering::visitSExt(User &I) {
// SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
// SExt also can't be a cast to bool for same reason. So, nothing much to do
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
}
void SelectionDAGLowering::visitFPTrunc(User &I) {
// FPTrunc is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
}
void SelectionDAGLowering::visitFPExt(User &I){
// FPTrunc is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
}
void SelectionDAGLowering::visitFPToUI(User &I) {
// FPToUI is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
}
void SelectionDAGLowering::visitFPToSI(User &I) {
// FPToSI is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
}
void SelectionDAGLowering::visitUIToFP(User &I) {
// UIToFP is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
}
void SelectionDAGLowering::visitSIToFP(User &I){
// UIToFP is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
}
void SelectionDAGLowering::visitPtrToInt(User &I) {
// What to do depends on the size of the integer and the size of the pointer.
// We can either truncate, zero extend, or no-op, accordingly.
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType SrcVT = N.getValueType();
MVT::ValueType DestVT = TLI.getValueType(I.getType());
SDOperand Result;
if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
else
// Note: ZERO_EXTEND can handle cases where the sizes are equal too
Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
setValue(&I, Result);
}
void SelectionDAGLowering::visitIntToPtr(User &I) {
// What to do depends on the size of the integer and the size of the pointer.
// We can either truncate, zero extend, or no-op, accordingly.
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType SrcVT = N.getValueType();
MVT::ValueType DestVT = TLI.getValueType(I.getType());
if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
else
// Note: ZERO_EXTEND can handle cases where the sizes are equal too
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
}
void SelectionDAGLowering::visitBitCast(User &I) {
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
if (DestVT == MVT::Vector) {
// This is a cast to a vector from something else.
// Get information about the output vector.
const VectorType *DestTy = cast<VectorType>(I.getType());
MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
DAG.getConstant(DestTy->getNumElements(),MVT::i32),
DAG.getValueType(EltVT)));
return;
}
MVT::ValueType SrcVT = N.getValueType();
if (SrcVT == MVT::Vector) {
// This is a cast from a vctor to something else.
// Get information about the input vector.
setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
return;
}
// BitCast assures us that source and destination are the same size so this
// is either a BIT_CONVERT or a no-op.
if (DestVT != N.getValueType())
setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
else
setValue(&I, N); // noop cast.
}
void SelectionDAGLowering::visitInsertElement(User &I) {
SDOperand InVec = getValue(I.getOperand(0));
SDOperand InVal = getValue(I.getOperand(1));
SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
getValue(I.getOperand(2)));
SDOperand Num = *(InVec.Val->op_end()-2);
SDOperand Typ = *(InVec.Val->op_end()-1);
setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
InVec, InVal, InIdx, Num, Typ));
}
void SelectionDAGLowering::visitExtractElement(User &I) {
SDOperand InVec = getValue(I.getOperand(0));
SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
getValue(I.getOperand(1)));
SDOperand Typ = *(InVec.Val->op_end()-1);
setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
TLI.getValueType(I.getType()), InVec, InIdx));
}
void SelectionDAGLowering::visitShuffleVector(User &I) {
SDOperand V1 = getValue(I.getOperand(0));
SDOperand V2 = getValue(I.getOperand(1));
SDOperand Mask = getValue(I.getOperand(2));
SDOperand Num = *(V1.Val->op_end()-2);
SDOperand Typ = *(V2.Val->op_end()-1);
setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
V1, V2, Mask, Num, Typ));
}
void SelectionDAGLowering::visitGetElementPtr(User &I) {
SDOperand N = getValue(I.getOperand(0));
const Type *Ty = I.getOperand(0)->getType();
for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
OI != E; ++OI) {
Value *Idx = *OI;
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
if (Field) {
// N = N + Offset
uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
N = DAG.getNode(ISD::ADD, N.getValueType(), N,
getIntPtrConstant(Offset));
}
Ty = StTy->getElementType(Field);
} else {
Ty = cast<SequentialType>(Ty)->getElementType();
// If this is a constant subscript, handle it quickly.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->getZExtValue() == 0) continue;
uint64_t Offs =
TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
continue;
}
// N = N + Idx * ElementSize;
uint64_t ElementSize = TD->getTypeSize(Ty);
SDOperand IdxN = getValue(Idx);
// If the index is smaller or larger than intptr_t, truncate or extend
// it.
if (IdxN.getValueType() < N.getValueType()) {
IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
} else if (IdxN.getValueType() > N.getValueType())
IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
// If this is a multiply by a power of two, turn it into a shl
// immediately. This is a very common case.
if (isPowerOf2_64(ElementSize)) {
unsigned Amt = Log2_64(ElementSize);
IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
DAG.getConstant(Amt, TLI.getShiftAmountTy()));
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
continue;
}
SDOperand Scale = getIntPtrConstant(ElementSize);
IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
}
}
setValue(&I, N);
}
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
// If this is a fixed sized alloca in the entry block of the function,
// allocate it statically on the stack.
if (FuncInfo.StaticAllocaMap.count(&I))
return; // getValue will auto-populate this.
const Type *Ty = I.getAllocatedType();
uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
unsigned Align =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
I.getAlignment());
SDOperand AllocSize = getValue(I.getArraySize());
MVT::ValueType IntPtr = TLI.getPointerTy();
if (IntPtr < AllocSize.getValueType())
AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
else if (IntPtr > AllocSize.getValueType())
AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
getIntPtrConstant(TySize));
// Handle alignment. If the requested alignment is less than or equal to the
// stack alignment, ignore it and round the size of the allocation up to the
// stack alignment size. If the size is greater than the stack alignment, we
// note this in the DYNAMIC_STACKALLOC node.
unsigned StackAlign =
TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
if (Align <= StackAlign) {
Align = 0;
// Add SA-1 to the size.
AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
getIntPtrConstant(StackAlign-1));
// Mask out the low bits for alignment purposes.
AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
getIntPtrConstant(~(uint64_t)(StackAlign-1)));
}
SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
MVT::Other);
SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
setValue(&I, DSA);
DAG.setRoot(DSA.getValue(1));
// Inform the Frame Information that we have just allocated a variable-sized
// object.
CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
}
void SelectionDAGLowering::visitLoad(LoadInst &I) {
SDOperand Ptr = getValue(I.getOperand(0));
SDOperand Root;
if (I.isVolatile())
Root = getRoot();
else {
// Do not serialize non-volatile loads against each other.
Root = DAG.getRoot();
}
setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
Root, I.isVolatile()));
}
SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
const Value *SV, SDOperand Root,
bool isVolatile) {
SDOperand L;
if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
DAG.getSrcValue(SV));
} else {
L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
}
if (isVolatile)
DAG.setRoot(L.getValue(1));
else
PendingLoads.push_back(L.getValue(1));
return L;
}
void SelectionDAGLowering::visitStore(StoreInst &I) {
Value *SrcV = I.getOperand(0);
SDOperand Src = getValue(SrcV);
SDOperand Ptr = getValue(I.getOperand(1));
DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
I.isVolatile()));
}
/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
/// access memory and has no other side effects at all.
static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
#define GET_NO_MEMORY_INTRINSICS
#include "llvm/Intrinsics.gen"
#undef GET_NO_MEMORY_INTRINSICS
return false;
}
// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
// have any side-effects or if it only reads memory.
static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
#define GET_SIDE_EFFECT_INFO
#include "llvm/Intrinsics.gen"
#undef GET_SIDE_EFFECT_INFO
return false;
}
/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
/// node.
void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
unsigned Intrinsic) {
bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
// Build the operand list.
SmallVector<SDOperand, 8> Ops;
if (HasChain) { // If this intrinsic has side-effects, chainify it.
if (OnlyLoad) {
// We don't need to serialize loads against other loads.
Ops.push_back(DAG.getRoot());
} else {
Ops.push_back(getRoot());
}
}
// Add the intrinsic ID as an integer operand.
Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
// Add all operands of the call to the operand list.
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
SDOperand Op = getValue(I.getOperand(i));
// If this is a vector type, force it to the right vector type.
if (Op.getValueType() == MVT::Vector) {
const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
}
assert(TLI.isTypeLegal(Op.getValueType()) &&
"Intrinsic uses a non-legal type?");
Ops.push_back(Op);
}
std::vector<MVT::ValueType> VTs;
if (I.getType() != Type::VoidTy) {
MVT::ValueType VT = TLI.getValueType(I.getType());
if (VT == MVT::Vector) {
const VectorType *DestTy = cast<VectorType>(I.getType());
MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
}
assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
VTs.push_back(VT);
}
if (HasChain)
VTs.push_back(MVT::Other);
const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
// Create the node.
SDOperand Result;
if (!HasChain)
Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
&Ops[0], Ops.size());
else if (I.getType() != Type::VoidTy)
Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
&Ops[0], Ops.size());
else
Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
&Ops[0], Ops.size());
if (HasChain) {
SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
if (OnlyLoad)
PendingLoads.push_back(Chain);
else
DAG.setRoot(Chain);
}
if (I.getType() != Type::VoidTy) {
if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
DAG.getConstant(PTy->getNumElements(), MVT::i32),
DAG.getValueType(EVT));
}
setValue(&I, Result);
}
}
/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
/// we want to emit this as a call to a named external function, return the name
/// otherwise lower it and return null.
const char *
SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
switch (Intrinsic) {
default:
// By default, turn this into a target intrinsic node.
visitTargetIntrinsic(I, Intrinsic);
return 0;
case Intrinsic::vastart: visitVAStart(I); return 0;
case Intrinsic::vaend: visitVAEnd(I); return 0;
case Intrinsic::vacopy: visitVACopy(I); return 0;
case Intrinsic::returnaddress:
setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::frameaddress:
setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::setjmp:
return "_setjmp"+!TLI.usesUnderscoreSetJmp();
break;
case Intrinsic::longjmp:
return "_longjmp"+!TLI.usesUnderscoreLongJmp();
break;
case Intrinsic::memcpy_i32:
case Intrinsic::memcpy_i64:
visitMemIntrinsic(I, ISD::MEMCPY);
return 0;
case Intrinsic::memset_i32:
case Intrinsic::memset_i64:
visitMemIntrinsic(I, ISD::MEMSET);
return 0;
case Intrinsic::memmove_i32:
case Intrinsic::memmove_i64:
visitMemIntrinsic(I, ISD::MEMMOVE);
return 0;
case Intrinsic::dbg_stoppoint: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
SDOperand Ops[5];
Ops[0] = getRoot();
Ops[1] = getValue(SPI.getLineValue());
Ops[2] = getValue(SPI.getColumnValue());
DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
assert(DD && "Not a debug information descriptor");
CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
Ops[3] = DAG.getString(CompileUnit->getFileName());
Ops[4] = DAG.getString(CompileUnit->getDirectory());
DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
}
return 0;
}
case Intrinsic::dbg_region_start: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
DAG.getConstant(LabelID, MVT::i32)));
}
return 0;
}
case Intrinsic::dbg_region_end: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
getRoot(), DAG.getConstant(LabelID, MVT::i32)));
}
return 0;
}
case Intrinsic::dbg_func_start: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
if (MMI && FSI.getSubprogram() &&
MMI->Verify(FSI.getSubprogram())) {
unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
getRoot(), DAG.getConstant(LabelID, MVT::i32)));
}
return 0;
}
case Intrinsic::dbg_declare: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
SDOperand AddressOp = getValue(DI.getAddress());
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
MMI->RecordVariable(DI.getVariable(), FI->getIndex());
}
return 0;
}
case Intrinsic::eh_exception: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
if (MMI) {
// Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo.
unsigned LabelID = MMI->addLandingPad(CurMBB);
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
DAG.getConstant(LabelID, MVT::i32)));
// Mark exception register as live in.
unsigned Reg = TLI.getExceptionAddressRegister();
if (Reg) CurMBB->addLiveIn(Reg);
// Insert the EXCEPTIONADDR instruction.
SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
SDOperand Ops[1];
Ops[0] = DAG.getRoot();
SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
setValue(&I, Op);
DAG.setRoot(Op.getValue(1));
} else {
setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
}
return 0;
}
case Intrinsic::eh_selector:
case Intrinsic::eh_filter:{
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
if (MMI) {
// Inform the MachineModuleInfo of the personality for this landing pad.
ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
assert(CE && CE->getOpcode() == Instruction::BitCast &&
isa<Function>(CE->getOperand(0)) &&
"Personality should be a function");
MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
if (Intrinsic == Intrinsic::eh_filter)
MMI->setIsFilterLandingPad(CurMBB);
// Gather all the type infos for this landing pad and pass them along to
// MachineModuleInfo.
std::vector<GlobalVariable *> TyInfo;
for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i));
if (CE && CE->getOpcode() == Instruction::BitCast &&
isa<GlobalVariable>(CE->getOperand(0))) {
TyInfo.push_back(cast<GlobalVariable>(CE->getOperand(0)));
} else {
ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i));
assert(CI && CI->getZExtValue() == 0 &&
"TypeInfo must be a global variable typeinfo or NULL");
TyInfo.push_back(NULL);
}
}
MMI->addCatchTypeInfo(CurMBB, TyInfo);
// Mark exception selector register as live in.
unsigned Reg = TLI.getExceptionSelectorRegister();
if (Reg) CurMBB->addLiveIn(Reg);
// Insert the EHSELECTION instruction.
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
SDOperand Ops[2];
Ops[0] = getValue(I.getOperand(1));
Ops[1] = getRoot();
SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
setValue(&I, Op);
DAG.setRoot(Op.getValue(1));
} else {
setValue(&I, DAG.getConstant(0, MVT::i32));
}
return 0;
}
case Intrinsic::eh_typeid_for: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
if (MMI) {
// Find the type id for the given typeinfo.
GlobalVariable *GV = NULL;
ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(1));
if (CE && CE->getOpcode() == Instruction::BitCast &&
isa<GlobalVariable>(CE->getOperand(0))) {
GV = cast<GlobalVariable>(CE->getOperand(0));
} else {
ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
assert(CI && CI->getZExtValue() == 0 &&
"TypeInfo must be a global variable typeinfo or NULL");
GV = NULL;
}
unsigned TypeID = MMI->getTypeIDFor(GV);
setValue(&I, DAG.getConstant(TypeID, MVT::i32));
} else {
setValue(&I, DAG.getConstant(0, MVT::i32));
}
return 0;
}
case Intrinsic::sqrt_f32:
case Intrinsic::sqrt_f64:
setValue(&I, DAG.getNode(ISD::FSQRT,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::powi_f32:
case Intrinsic::powi_f64:
setValue(&I, DAG.getNode(ISD::FPOWI,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1)),
getValue(I.getOperand(2))));
return 0;
case Intrinsic::pcmarker: {
SDOperand Tmp = getValue(I.getOperand(1));
DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
return 0;
}
case Intrinsic::readcyclecounter: {
SDOperand Op = getRoot();
SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
&Op, 1);
setValue(&I, Tmp);
DAG.setRoot(Tmp.getValue(1));
return 0;
}
case Intrinsic::bswap_i16:
case Intrinsic::bswap_i32:
case Intrinsic::bswap_i64:
setValue(&I, DAG.getNode(ISD::BSWAP,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::cttz_i8:
case Intrinsic::cttz_i16:
case Intrinsic::cttz_i32:
case Intrinsic::cttz_i64:
setValue(&I, DAG.getNode(ISD::CTTZ,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::ctlz_i8:
case Intrinsic::ctlz_i16:
case Intrinsic::ctlz_i32:
case Intrinsic::ctlz_i64:
setValue(&I, DAG.getNode(ISD::CTLZ,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::ctpop_i8:
case Intrinsic::ctpop_i16:
case Intrinsic::ctpop_i32:
case Intrinsic::ctpop_i64:
setValue(&I, DAG.getNode(ISD::CTPOP,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::stacksave: {
SDOperand Op = getRoot();
SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
setValue(&I, Tmp);
DAG.setRoot(Tmp.getValue(1));
return 0;
}
case Intrinsic::stackrestore: {
SDOperand Tmp = getValue(I.getOperand(1));
DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
return 0;
}
case Intrinsic::prefetch:
// FIXME: Currently discarding prefetches.
return 0;
}
}
void SelectionDAGLowering::LowerCallTo(Instruction &I,
const Type *CalledValueTy,
unsigned CallingConv,
bool IsTailCall,
SDOperand Callee, unsigned OpIdx) {
const PointerType *PT = cast<PointerType>(CalledValueTy);
const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Args.reserve(I.getNumOperands());
for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
Value *Arg = I.getOperand(i);
SDOperand ArgNode = getValue(Arg);
Entry.Node = ArgNode; Entry.Ty = Arg->getType();
Entry.isSExt = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
Entry.isZExt = FTy->paramHasAttr(i, FunctionType::ZExtAttribute);
Entry.isInReg = FTy->paramHasAttr(i, FunctionType::InRegAttribute);
Entry.isSRet = FTy->paramHasAttr(i, FunctionType::StructRetAttribute);
Args.push_back(Entry);
}
std::pair<SDOperand,SDOperand> Result =
TLI.LowerCallTo(getRoot(), I.getType(),
FTy->paramHasAttr(0,FunctionType::SExtAttribute),
FTy->isVarArg(), CallingConv, IsTailCall,
Callee, Args, DAG);
if (I.getType() != Type::VoidTy)
setValue(&I, Result.first);
DAG.setRoot(Result.second);
}
void SelectionDAGLowering::visitCall(CallInst &I) {
const char *RenameFn = 0;
if (Function *F = I.getCalledFunction()) {
if (F->isDeclaration())
if (unsigned IID = F->getIntrinsicID()) {
RenameFn = visitIntrinsicCall(I, IID);
if (!RenameFn)
return;
} else { // Not an LLVM intrinsic.
const std::string &Name = F->getName();
if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
if (I.getNumOperands() == 3 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType() &&
I.getType() == I.getOperand(2)->getType()) {
SDOperand LHS = getValue(I.getOperand(1));
SDOperand RHS = getValue(I.getOperand(2));
setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
LHS, RHS));
return;
}
} else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType()) {
SDOperand Tmp = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
return;
}
} else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType()) {
SDOperand Tmp = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
return;
}
} else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType()) {
SDOperand Tmp = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
return;
}
}
}
} else if (isa<InlineAsm>(I.getOperand(0))) {
visitInlineAsm(I);
return;
}
SDOperand Callee;
if (!RenameFn)
Callee = getValue(I.getOperand(0));
else
Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
LowerCallTo(I, I.getCalledValue()->getType(),
I.getCallingConv(),
I.isTailCall(),
Callee,
1);
}
SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
SDOperand &Chain, SDOperand &Flag)const{
SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
Chain = Val.getValue(1);
Flag = Val.getValue(2);
// If the result was expanded, copy from the top part.
if (Regs.size() > 1) {
assert(Regs.size() == 2 &&
"Cannot expand to more than 2 elts yet!");
SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
Chain = Hi.getValue(1);
Flag = Hi.getValue(2);
if (DAG.getTargetLoweringInfo().isLittleEndian())
return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
else
return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
}
// Otherwise, if the return value was promoted or extended, truncate it to the
// appropriate type.
if (RegVT == ValueVT)
return Val;
if (MVT::isInteger(RegVT)) {
if (ValueVT < RegVT)
return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
else
return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
} else {
return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
}
}
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
/// specified value into the registers specified by this object. This uses
/// Chain/Flag as the input and updates them for the output Chain/Flag.
void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
SDOperand &Chain, SDOperand &Flag,
MVT::ValueType PtrVT) const {
if (Regs.size() == 1) {
// If there is a single register and the types differ, this must be
// a promotion.
if (RegVT != ValueVT) {
if (MVT::isInteger(RegVT)) {
if (RegVT < ValueVT)
Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
else
Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
} else
Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
}
Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
Flag = Chain.getValue(1);
} else {
std::vector<unsigned> R(Regs);
if (!DAG.getTargetLoweringInfo().isLittleEndian())
std::reverse(R.begin(), R.end());
for (unsigned i = 0, e = R.size(); i != e; ++i) {
SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
DAG.getConstant(i, PtrVT));
Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
Flag = Chain.getValue(1);
}
}
}
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
/// operand list. This adds the code marker and includes the number of
/// values added into it.
void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
std::vector<SDOperand> &Ops) const {
Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(Regs[i], RegVT));
}
/// isAllocatableRegister - If the specified register is safe to allocate,
/// i.e. it isn't a stack pointer or some other special register, return the
/// register class for the register. Otherwise, return null.
static const TargetRegisterClass *
isAllocatableRegister(unsigned Reg, MachineFunction &MF,
const TargetLowering &TLI, const MRegisterInfo *MRI) {
MVT::ValueType FoundVT = MVT::Other;
const TargetRegisterClass *FoundRC = 0;
for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
E = MRI->regclass_end(); RCI != E; ++RCI) {
MVT::ValueType ThisVT = MVT::Other;
const TargetRegisterClass *RC = *RCI;
// If none of the the value types for this register class are valid, we
// can't use it. For example, 64-bit reg classes on 32-bit targets.
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
I != E; ++I) {
if (TLI.isTypeLegal(*I)) {
// If we have already found this register in a different register class,
// choose the one with the largest VT specified. For example, on
// PowerPC, we favor f64 register classes over f32.
if (FoundVT == MVT::Other ||
MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
ThisVT = *I;
break;
}
}
}
if (ThisVT == MVT::Other) continue;
// NOTE: This isn't ideal. In particular, this might allocate the
// frame pointer in functions that need it (due to them not being taken
// out of allocation, because a variable sized allocation hasn't been seen
// yet). This is a slight code pessimization, but should still work.
for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
E = RC->allocation_order_end(MF); I != E; ++I)
if (*I == Reg) {
// We found a matching register class. Keep looking at others in case
// we find one with larger registers that this physreg is also in.
FoundRC = RC;
FoundVT = ThisVT;
break;
}
}
return FoundRC;
}
RegsForValue SelectionDAGLowering::
GetRegistersForValue(const std::string &ConstrCode,
MVT::ValueType VT, bool isOutReg, bool isInReg,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs) {
std::pair<unsigned, const TargetRegisterClass*> PhysReg =
TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
std::vector<unsigned> Regs;
unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
MVT::ValueType RegVT;
MVT::ValueType ValueVT = VT;
// If this is a constraint for a specific physical register, like {r17},
// assign it now.
if (PhysReg.first) {
if (VT == MVT::Other)
ValueVT = *PhysReg.second->vt_begin();
// Get the actual register value type. This is important, because the user
// may have asked for (e.g.) the AX register in i32 type. We need to
// remember that AX is actually i16 to get the right extension.
RegVT = *PhysReg.second->vt_begin();
// This is a explicit reference to a physical register.
Regs.push_back(PhysReg.first);
// If this is an expanded reference, add the rest of the regs to Regs.
if (NumRegs != 1) {
TargetRegisterClass::iterator I = PhysReg.second->begin();
TargetRegisterClass::iterator E = PhysReg.second->end();
for (; *I != PhysReg.first; ++I)
assert(I != E && "Didn't find reg!");
// Already added the first reg.
--NumRegs; ++I;
for (; NumRegs; --NumRegs, ++I) {
assert(I != E && "Ran out of registers to allocate!");
Regs.push_back(*I);
}
}
return RegsForValue(Regs, RegVT, ValueVT);
}
// Otherwise, if this was a reference to an LLVM register class, create vregs
// for this reference.
std::vector<unsigned> RegClassRegs;
if (PhysReg.second) {
// If this is an early clobber or tied register, our regalloc doesn't know
// how to maintain the constraint. If it isn't, go ahead and create vreg
// and let the regalloc do the right thing.
if (!isOutReg || !isInReg) {
if (VT == MVT::Other)
ValueVT = *PhysReg.second->vt_begin();
RegVT = *PhysReg.second->vt_begin();
// Create the appropriate number of virtual registers.
SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
for (; NumRegs; --NumRegs)
Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
return RegsForValue(Regs, RegVT, ValueVT);
}
// Otherwise, we can't allocate it. Let the code below figure out how to
// maintain these constraints.
RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
} else {
// This is a reference to a register class that doesn't directly correspond
// to an LLVM register class. Allocate NumRegs consecutive, available,
// registers from the class.
RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
}
const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
MachineFunction &MF = *CurMBB->getParent();
unsigned NumAllocated = 0;
for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
unsigned Reg = RegClassRegs[i];
// See if this register is available.
if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
(isInReg && InputRegs.count(Reg))) { // Already used.
// Make sure we find consecutive registers.
NumAllocated = 0;
continue;
}
// Check to see if this register is allocatable (i.e. don't give out the
// stack pointer).
const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
if (!RC) {
// Make sure we find consecutive registers.
NumAllocated = 0;
continue;
}
// Okay, this register is good, we can use it.
++NumAllocated;
// If we allocated enough consecutive
if (NumAllocated == NumRegs) {
unsigned RegStart = (i-NumAllocated)+1;
unsigned RegEnd = i+1;
// Mark all of the allocated registers used.
for (unsigned i = RegStart; i != RegEnd; ++i) {
unsigned Reg = RegClassRegs[i];
Regs.push_back(Reg);
if (isOutReg) OutputRegs.insert(Reg); // Mark reg used.
if (isInReg) InputRegs.insert(Reg); // Mark reg used.
}
return RegsForValue(Regs, *RC->vt_begin(), VT);
}
}
// Otherwise, we couldn't allocate enough registers for this.
return RegsForValue();
}
/// getConstraintGenerality - Return an integer indicating how general CT is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
switch (CT) {
default: assert(0 && "Unknown constraint type!");
case TargetLowering::C_Other:
case TargetLowering::C_Unknown:
return 0;
case TargetLowering::C_Register:
return 1;
case TargetLowering::C_RegisterClass:
return 2;
case TargetLowering::C_Memory:
return 3;
}
}
static std::string GetMostGeneralConstraint(std::vector<std::string> &C,
const TargetLowering &TLI) {
assert(!C.empty() && "Must have at least one constraint");
if (C.size() == 1) return C[0];
std::string *Current = &C[0];
// If we have multiple constraints, try to pick the most general one ahead
// of time. This isn't a wonderful solution, but handles common cases.
TargetLowering::ConstraintType Flavor = TLI.getConstraintType(Current[0][0]);
for (unsigned j = 1, e = C.size(); j != e; ++j) {
TargetLowering::ConstraintType ThisFlavor = TLI.getConstraintType(C[j][0]);
if (getConstraintGenerality(ThisFlavor) >
getConstraintGenerality(Flavor)) {
// This constraint letter is more general than the previous one,
// use it.
Flavor = ThisFlavor;
Current = &C[j];
}
}
return *Current;
}
/// visitInlineAsm - Handle a call to an InlineAsm object.
///
void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
MVT::Other);
std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
std::vector<MVT::ValueType> ConstraintVTs;
/// AsmNodeOperands - A list of pairs. The first element is a register, the
/// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
/// if it is a def of that register.
std::vector<SDOperand> AsmNodeOperands;
AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
AsmNodeOperands.push_back(AsmStr);
SDOperand Chain = getRoot();
SDOperand Flag;
// We fully assign registers here at isel time. This is not optimal, but
// should work. For register classes that correspond to LLVM classes, we
// could let the LLVM RA do its thing, but we currently don't. Do a prepass
// over the constraints, collecting fixed registers that we know we can't use.
std::set<unsigned> OutputRegs, InputRegs;
unsigned OpNum = 1;
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
std::string ConstraintCode =
GetMostGeneralConstraint(Constraints[i].Codes, TLI);
MVT::ValueType OpVT;
// Compute the value type for each operand and add it to ConstraintVTs.
switch (Constraints[i].Type) {
case InlineAsm::isOutput:
if (!Constraints[i].isIndirectOutput) {
assert(I.getType() != Type::VoidTy && "Bad inline asm!");
OpVT = TLI.getValueType(I.getType());
} else {
const Type *OpTy = I.getOperand(OpNum)->getType();
OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
OpNum++; // Consumes a call operand.
}
break;
case InlineAsm::isInput:
OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
OpNum++; // Consumes a call operand.
break;
case InlineAsm::isClobber:
OpVT = MVT::Other;
break;
}
ConstraintVTs.push_back(OpVT);
if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
continue; // Not assigned a fixed reg.
// Build a list of regs that this operand uses. This always has a single
// element for promoted/expanded operands.
RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
false, false,
OutputRegs, InputRegs);
switch (Constraints[i].Type) {
case InlineAsm::isOutput:
// We can't assign any other output to this register.
OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
// If this is an early-clobber output, it cannot be assigned to the same
// value as the input reg.
if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
break;
case InlineAsm::isInput:
// We can't assign any other input to this register.
InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
break;
case InlineAsm::isClobber:
// Clobbered regs cannot be used as inputs or outputs.
InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
break;
}
}
// Loop over all of the inputs, copying the operand values into the
// appropriate registers and processing the output regs.
RegsForValue RetValRegs;
std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
OpNum = 1;
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
std::string ConstraintCode =
GetMostGeneralConstraint(Constraints[i].Codes, TLI);
switch (Constraints[i].Type) {
case InlineAsm::isOutput: {
TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
if (ConstraintCode.size() == 1) // not a physreg name.
CTy = TLI.getConstraintType(ConstraintCode[0]);
if (CTy == TargetLowering::C_Memory) {
// Memory output.
SDOperand InOperandVal = getValue(I.getOperand(OpNum));
// Check that the operand (the address to store to) isn't a float.
if (!MVT::isInteger(InOperandVal.getValueType()))
assert(0 && "MATCH FAIL!");
if (!Constraints[i].isIndirectOutput)
assert(0 && "MATCH FAIL!");
OpNum++; // Consumes a call operand.
// Extend/truncate to the right pointer type if needed.
MVT::ValueType PtrType = TLI.getPointerTy();
if (InOperandVal.getValueType() < PtrType)
InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
else if (InOperandVal.getValueType() > PtrType)
InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
// Add information to the INLINEASM node to know about this output.
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
AsmNodeOperands.push_back(InOperandVal);
break;
}
// Otherwise, this is a register output.
assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
// If this is an early-clobber output, or if there is an input
// constraint that matches this, we need to reserve the input register
// so no other inputs allocate to it.
bool UsesInputRegister = false;
if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
UsesInputRegister = true;
// Copy the output from the appropriate register. Find a register that
// we can use.
RegsForValue Regs =
GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
true, UsesInputRegister,
OutputRegs, InputRegs);
if (Regs.Regs.empty()) {
cerr << "Couldn't allocate output reg for contraint '"
<< ConstraintCode << "'!\n";
exit(1);
}
if (!Constraints[i].isIndirectOutput) {
assert(RetValRegs.Regs.empty() &&
"Cannot have multiple output constraints yet!");
assert(I.getType() != Type::VoidTy && "Bad inline asm!");
RetValRegs = Regs;
} else {
IndirectStoresToEmit.push_back(std::make_pair(Regs,
I.getOperand(OpNum)));
OpNum++; // Consumes a call operand.
}
// Add information to the INLINEASM node to know that this register is
// set.
Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
break;
}
case InlineAsm::isInput: {
SDOperand InOperandVal = getValue(I.getOperand(OpNum));
OpNum++; // Consumes a call operand.
if (isdigit(ConstraintCode[0])) { // Matching constraint?
// If this is required to match an output register we have already set,
// just use its register.
unsigned OperandNo = atoi(ConstraintCode.c_str());
// Scan until we find the definition we already emitted of this operand.
// When we find it, create a RegsForValue operand.
unsigned CurOp = 2; // The first operand.
for (; OperandNo; --OperandNo) {
// Advance to the next operand.
unsigned NumOps =
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
assert(((NumOps & 7) == 2 /*REGDEF*/ ||
(NumOps & 7) == 4 /*MEM*/) &&
"Skipped past definitions?");
CurOp += (NumOps>>3)+1;
}
unsigned NumOps =
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
if ((NumOps & 7) == 2 /*REGDEF*/) {
// Add NumOps>>3 registers to MatchedRegs.
RegsForValue MatchedRegs;
MatchedRegs.ValueVT = InOperandVal.getValueType();
MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
unsigned Reg =
cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
MatchedRegs.Regs.push_back(Reg);
}
// Use the produced MatchedRegs object to
MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
TLI.getPointerTy());
MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
break;
} else {
assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
assert(0 && "matching constraints for memory operands unimp");
}
}
TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
if (ConstraintCode.size() == 1) // not a physreg name.
CTy = TLI.getConstraintType(ConstraintCode[0]);
if (CTy == TargetLowering::C_Other) {
InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
ConstraintCode[0], DAG);
if (!InOperandVal.Val) {
cerr << "Invalid operand for inline asm constraint '"
<< ConstraintCode << "'!\n";
exit(1);
}
// Add information to the INLINEASM node to know about this input.
unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
AsmNodeOperands.push_back(InOperandVal);
break;
} else if (CTy == TargetLowering::C_Memory) {
// Memory input.
// Check that the operand isn't a float.
if (!MVT::isInteger(InOperandVal.getValueType())) {
cerr << "Match failed, can't handle floats yet!\n";
exit(1);
}
// Extend/truncate to the right pointer type if needed.
MVT::ValueType PtrType = TLI.getPointerTy();
if (InOperandVal.getValueType() < PtrType)
InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
else if (InOperandVal.getValueType() > PtrType)
InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
// Add information to the INLINEASM node to know about this input.
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
AsmNodeOperands.push_back(InOperandVal);
break;
}
assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
// Copy the input into the appropriate registers.
RegsForValue InRegs =
GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
false, true, OutputRegs, InputRegs);
// FIXME: should be match fail.
assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
break;
}
case InlineAsm::isClobber: {
RegsForValue ClobberedRegs =
GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
OutputRegs, InputRegs);
// Add the clobbered value to the operand list, so that the register
// allocator is aware that the physreg got clobbered.
if (!ClobberedRegs.Regs.empty())
ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
break;
}
}
}
// Finish up input operands.
AsmNodeOperands[0] = Chain;
if (Flag.Val) AsmNodeOperands.push_back(Flag);
Chain = DAG.getNode(ISD::INLINEASM,
DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
&AsmNodeOperands[0], AsmNodeOperands.size());
Flag = Chain.getValue(1);
// If this asm returns a register value, copy the result from that register
// and set it as the value of the call.
if (!RetValRegs.Regs.empty())
setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
// Process indirect outputs, first output all of the flagged copies out of
// physregs.
for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
Value *Ptr = IndirectStoresToEmit[i].second;
SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
}
// Emit the non-flagged stores from the physregs.
SmallVector<SDOperand, 8> OutChains;
for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
getValue(StoresToEmit[i].second),
StoresToEmit[i].second, 0));
if (!OutChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&OutChains[0], OutChains.size());
DAG.setRoot(Chain);
}
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
SDOperand Src = getValue(I.getOperand(0));
MVT::ValueType IntPtr = TLI.getPointerTy();
if (IntPtr < Src.getValueType())
Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
else if (IntPtr > Src.getValueType())
Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
// Scale the source by the type size.
uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
Src = DAG.getNode(ISD::MUL, Src.getValueType(),
Src, getIntPtrConstant(ElementSize));
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Src;
Entry.Ty = TLI.getTargetData()->getIntPtrType();
Args.push_back(Entry);
std::pair<SDOperand,SDOperand> Result =
TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
DAG.getExternalSymbol("malloc", IntPtr),
Args, DAG);
setValue(&I, Result.first); // Pointers always fit in registers
DAG.setRoot(Result.second);
}
void SelectionDAGLowering::visitFree(FreeInst &I) {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = getValue(I.getOperand(0));
Entry.Ty = TLI.getTargetData()->getIntPtrType();
Args.push_back(Entry);
MVT::ValueType IntPtr = TLI.getPointerTy();
std::pair<SDOperand,SDOperand> Result =
TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
DAG.getExternalSymbol("free", IntPtr), Args, DAG);
DAG.setRoot(Result.second);
}
// InsertAtEndOfBasicBlock - This method should be implemented by targets that
// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
// instructions are special in various ways, which require special support to
// insert. The specified MachineInstr is created but not inserted into any
// basic blocks, and the scheduler passes ownership of it to this method.
MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
MachineBasicBlock *MBB) {
cerr << "If a target marks an instruction with "
<< "'usesCustomDAGSchedInserter', it must implement "
<< "TargetLowering::InsertAtEndOfBasicBlock!\n";
abort();
return 0;
}
void SelectionDAGLowering::visitVAStart(CallInst &I) {
DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
getValue(I.getOperand(1)),
DAG.getSrcValue(I.getOperand(1))));
}
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
getValue(I.getOperand(0)),
DAG.getSrcValue(I.getOperand(0)));
setValue(&I, V);
DAG.setRoot(V.getValue(1));
}
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
getValue(I.getOperand(1)),
DAG.getSrcValue(I.getOperand(1))));
}
void SelectionDAGLowering::visitVACopy(CallInst &I) {
DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
getValue(I.getOperand(1)),
getValue(I.getOperand(2)),
DAG.getSrcValue(I.getOperand(1)),
DAG.getSrcValue(I.getOperand(2))));
}
/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
unsigned &i, SelectionDAG &DAG,
TargetLowering &TLI) {
if (TLI.getTypeAction(VT) != TargetLowering::Expand)
return SDOperand(Arg, i++);
MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
if (NumVals == 1) {
return DAG.getNode(ISD::BIT_CONVERT, VT,
ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
} else if (NumVals == 2) {
SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
} else {
// Value scalarized into many values. Unimp for now.
assert(0 && "Cannot expand i64 -> i16 yet!");
}
return SDOperand();
}
/// TargetLowering::LowerArguments - This is the default LowerArguments
/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
/// integrated into SDISel.
std::vector<SDOperand>
TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
const FunctionType *FTy = F.getFunctionType();
// Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
std::vector<SDOperand> Ops;
Ops.push_back(DAG.getRoot());
Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
// Add one result value for each formal argument.
std::vector<MVT::ValueType> RetVals;
unsigned j = 1;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I, ++j) {
MVT::ValueType VT = getValueType(I->getType());
unsigned Flags = ISD::ParamFlags::NoFlagSet;
unsigned OriginalAlignment =
getTargetData()->getABITypeAlignment(I->getType());
// FIXME: Distinguish between a formal with no [sz]ext attribute from one
// that is zero extended!
if (FTy->paramHasAttr(j, FunctionType::ZExtAttribute))
Flags &= ~(ISD::ParamFlags::SExt);
if (FTy->paramHasAttr(j, FunctionType::SExtAttribute))
Flags |= ISD::ParamFlags::SExt;
if (FTy->paramHasAttr(j, FunctionType::InRegAttribute))
Flags |= ISD::ParamFlags::InReg;
if (FTy->paramHasAttr(j, FunctionType::StructRetAttribute))
Flags |= ISD::ParamFlags::StructReturn;
Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
switch (getTypeAction(VT)) {
default: assert(0 && "Unknown type action!");
case Legal:
RetVals.push_back(VT);
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
break;
case Promote:
RetVals.push_back(getTypeToTransformTo(VT));
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
break;
case Expand:
if (VT != MVT::Vector) {
// If this is a large integer, it needs to be broken up into small
// integers. Figure out what the destination type is and how many small
// integers it turns into.
MVT::ValueType NVT = getTypeToExpandTo(VT);
unsigned NumVals = getNumElements(VT);
for (unsigned i = 0; i != NumVals; ++i) {
RetVals.push_back(NVT);
// if it isn't first piece, alignment must be 1
if (i > 0)
Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
(1 << ISD::ParamFlags::OrigAlignmentOffs);
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
}
} else {
// Otherwise, this is a vector type. We only support legal vectors
// right now.
unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
if (TVT != MVT::Other && isTypeLegal(TVT)) {
RetVals.push_back(TVT);
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
} else {
assert(0 && "Don't support illegal by-val vector arguments yet!");
}
}
break;
}
}
RetVals.push_back(MVT::Other);
// Create the node.
SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
DAG.getNodeValueTypes(RetVals), RetVals.size(),
&Ops[0], Ops.size()).Val;
DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
// Set up the return result vector.
Ops.clear();
unsigned i = 0;
unsigned Idx = 1;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
++I, ++Idx) {
MVT::ValueType VT = getValueType(I->getType());
switch (getTypeAction(VT)) {
default: assert(0 && "Unknown type action!");
case Legal:
Ops.push_back(SDOperand(Result, i++));
break;
case Promote: {
SDOperand Op(Result, i++);
if (MVT::isInteger(VT)) {
if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute))
Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
DAG.getValueType(VT));
else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
DAG.getValueType(VT));
Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
} else {
assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
}
Ops.push_back(Op);
break;
}
case Expand:
if (VT != MVT::Vector) {
// If this is a large integer or a floating point node that needs to be
// expanded, it needs to be reassembled from small integers. Figure out
// what the source elt type is and how many small integers it is.
Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
} else {
// Otherwise, this is a vector type. We only support legal vectors
// right now.
const VectorType *PTy = cast<VectorType>(I->getType());
unsigned NumElems = PTy->getNumElements();
const Type *EltTy = PTy->getElementType();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
if (TVT != MVT::Other && isTypeLegal(TVT)) {
SDOperand N = SDOperand(Result, i++);
// Handle copies from generic vectors to registers.
N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
DAG.getConstant(NumElems, MVT::i32),
DAG.getValueType(getValueType(EltTy)));
Ops.push_back(N);
} else {
assert(0 && "Don't support illegal by-val vector arguments yet!");
abort();
}
}
break;
}
}
return Ops;
}
/// ExpandScalarCallArgs - Recursively expand call argument node by
/// bit_converting it or extract a pair of elements from the larger node.
static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
unsigned Flags,
SmallVector<SDOperand, 32> &Ops,
SelectionDAG &DAG,
TargetLowering &TLI,
bool isFirst = true) {
if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
// if it isn't first piece, alignment must be 1
if (!isFirst)
Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
(1 << ISD::ParamFlags::OrigAlignmentOffs);
Ops.push_back(Arg);
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
return;
}
MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
if (NumVals == 1) {
Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
} else if (NumVals == 2) {
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
DAG.getConstant(0, TLI.getPointerTy()));
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
DAG.getConstant(1, TLI.getPointerTy()));
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
} else {
// Value scalarized into many values. Unimp for now.
assert(0 && "Cannot expand i64 -> i16 yet!");
}
}
/// TargetLowering::LowerCallTo - This is the default LowerCallTo
/// implementation, which just inserts an ISD::CALL node, which is later custom
/// lowered by the target to something concrete. FIXME: When all targets are
/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
std::pair<SDOperand, SDOperand>
TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
bool RetTyIsSigned, bool isVarArg,
unsigned CallingConv, bool isTailCall,
SDOperand Callee,
ArgListTy &Args, SelectionDAG &DAG) {
SmallVector<SDOperand, 32> Ops;
Ops.push_back(Chain); // Op#0 - Chain
Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
Ops.push_back(Callee);
// Handle all of the outgoing arguments.
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
MVT::ValueType VT = getValueType(Args[i].Ty);
SDOperand Op = Args[i].Node;
unsigned Flags = ISD::ParamFlags::NoFlagSet;
unsigned OriginalAlignment =
getTargetData()->getABITypeAlignment(Args[i].Ty);
if (Args[i].isSExt)
Flags |= ISD::ParamFlags::SExt;
if (Args[i].isZExt)
Flags |= ISD::ParamFlags::ZExt;
if (Args[i].isInReg)
Flags |= ISD::ParamFlags::InReg;
if (Args[i].isSRet)
Flags |= ISD::ParamFlags::StructReturn;
Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
switch (getTypeAction(VT)) {
default: assert(0 && "Unknown type action!");
case Legal:
Ops.push_back(Op);
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
break;
case Promote:
if (MVT::isInteger(VT)) {
unsigned ExtOp;
if (Args[i].isSExt)
ExtOp = ISD::SIGN_EXTEND;
else if (Args[i].isZExt)
ExtOp = ISD::ZERO_EXTEND;
else
ExtOp = ISD::ANY_EXTEND;
Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
} else {
assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
}
Ops.push_back(Op);
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
break;
case Expand:
if (VT != MVT::Vector) {
// If this is a large integer, it needs to be broken down into small
// integers. Figure out what the source elt type is and how many small
// integers it is.
ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
} else {
// Otherwise, this is a vector type. We only support legal vectors
// right now.
const VectorType *PTy = cast<VectorType>(Args[i].Ty);
unsigned NumElems = PTy->getNumElements();
const Type *EltTy = PTy->getElementType();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
if (TVT != MVT::Other && isTypeLegal(TVT)) {
// Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
Ops.push_back(Op);
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
} else {
assert(0 && "Don't support illegal by-val vector call args yet!");
abort();
}
}
break;
}
}
// Figure out the result value types.
SmallVector<MVT::ValueType, 4> RetTys;
if (RetTy != Type::VoidTy) {
MVT::ValueType VT = getValueType(RetTy);
switch (getTypeAction(VT)) {
default: assert(0 && "Unknown type action!");
case Legal:
RetTys.push_back(VT);
break;
case Promote:
RetTys.push_back(getTypeToTransformTo(VT));
break;
case Expand:
if (VT != MVT::Vector) {
// If this is a large integer, it needs to be reassembled from small
// integers. Figure out what the source elt type is and how many small
// integers it is.
MVT::ValueType NVT = getTypeToExpandTo(VT);
unsigned NumVals = getNumElements(VT);
for (unsigned i = 0; i != NumVals; ++i)
RetTys.push_back(NVT);
} else {
// Otherwise, this is a vector type. We only support legal vectors
// right now.
const VectorType *PTy = cast<VectorType>(RetTy);
unsigned NumElems = PTy->getNumElements();
const Type *EltTy = PTy->getElementType();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
if (TVT != MVT::Other && isTypeLegal(TVT)) {
RetTys.push_back(TVT);
} else {
assert(0 && "Don't support illegal by-val vector call results yet!");
abort();
}
}
}
}
RetTys.push_back(MVT::Other); // Always has a chain.
// Finally, create the CALL node.
SDOperand Res = DAG.getNode(ISD::CALL,
DAG.getVTList(&RetTys[0], RetTys.size()),
&Ops[0], Ops.size());
// This returns a pair of operands. The first element is the
// return value for the function (if RetTy is not VoidTy). The second
// element is the outgoing token chain.
SDOperand ResVal;
if (RetTys.size() != 1) {
MVT::ValueType VT = getValueType(RetTy);
if (RetTys.size() == 2) {
ResVal = Res;
// If this value was promoted, truncate it down.
if (ResVal.getValueType() != VT) {
if (VT == MVT::Vector) {
// Insert a VBITCONVERT to convert from the packed result type to the
// MVT::Vector type.
unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
// Figure out if there is a Packed type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
if (TVT != MVT::Other && isTypeLegal(TVT)) {
// Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
// "N x PTyElementVT" MVT::Vector type.
ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
DAG.getConstant(NumElems, MVT::i32),
DAG.getValueType(getValueType(EltTy)));
} else {
abort();
}
} else if (MVT::isInteger(VT)) {
unsigned AssertOp = ISD::AssertSext;
if (!RetTyIsSigned)
AssertOp = ISD::AssertZext;
ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
DAG.getValueType(VT));
ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
} else {
assert(MVT::isFloatingPoint(VT));
if (getTypeAction(VT) == Expand)
ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
else
ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
}
}
} else if (RetTys.size() == 3) {
ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
Res.getValue(0), Res.getValue(1));
} else {
assert(0 && "Case not handled yet!");
}
}
return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
}
SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
assert(0 && "LowerOperation not implemented for this target!");
abort();
return SDOperand();
}
SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
SelectionDAG &DAG) {
assert(0 && "CustomPromoteOperation not implemented for this target!");
abort();
return SDOperand();
}
/// getMemsetValue - Vectorized representation of the memset value
/// operand.
static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
SelectionDAG &DAG) {
MVT::ValueType CurVT = VT;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
uint64_t Val = C->getValue() & 255;
unsigned Shift = 8;
while (CurVT != MVT::i8) {
Val = (Val << Shift) | Val;
Shift <<= 1;
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
}
return DAG.getConstant(Val, VT);
} else {
Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
unsigned Shift = 8;
while (CurVT != MVT::i8) {
Value =
DAG.getNode(ISD::OR, VT,
DAG.getNode(ISD::SHL, VT, Value,
DAG.getConstant(Shift, MVT::i8)), Value);
Shift <<= 1;
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
}
return Value;
}
}
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDOperand getMemsetStringVal(MVT::ValueType VT,
SelectionDAG &DAG, TargetLowering &TLI,
std::string &Str, unsigned Offset) {
uint64_t Val = 0;
unsigned MSB = getSizeInBits(VT) / 8;
if (TLI.isLittleEndian())
Offset = Offset + MSB - 1;
for (unsigned i = 0; i != MSB; ++i) {
Val = (Val << 8) | (unsigned char)Str[Offset];
Offset += TLI.isLittleEndian() ? -1 : 1;
}
return DAG.getConstant(Val, VT);
}
/// getMemBasePlusOffset - Returns base and offset node for the
static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
SelectionDAG &DAG, TargetLowering &TLI) {
MVT::ValueType VT = Base.getValueType();
return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
}
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
/// to replace the memset / memcpy is below the threshold. It also returns the
/// types of the sequence of memory ops to perform memset / memcpy.
static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
unsigned Limit, uint64_t Size,
unsigned Align, TargetLowering &TLI) {
MVT::ValueType VT;
if (TLI.allowsUnalignedMemoryAccesses()) {
VT = MVT::i64;
} else {
switch (Align & 7) {
case 0:
VT = MVT::i64;
break;
case 4:
VT = MVT::i32;
break;
case 2:
VT = MVT::i16;
break;
default:
VT = MVT::i8;
break;
}
}
MVT::ValueType LVT = MVT::i64;
while (!TLI.isTypeLegal(LVT))
LVT = (MVT::ValueType)((unsigned)LVT - 1);
assert(MVT::isInteger(LVT));
if (VT > LVT)
VT = LVT;
unsigned NumMemOps = 0;
while (Size != 0) {
unsigned VTSize = getSizeInBits(VT) / 8;
while (VTSize > Size) {
VT = (MVT::ValueType)((unsigned)VT - 1);
VTSize >>= 1;
}
assert(MVT::isInteger(VT));
if (++NumMemOps > Limit)
return false;
MemOps.push_back(VT);
Size -= VTSize;
}
return true;
}
void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
SDOperand Op1 = getValue(I.getOperand(1));
SDOperand Op2 = getValue(I.getOperand(2));
SDOperand Op3 = getValue(I.getOperand(3));
SDOperand Op4 = getValue(I.getOperand(4));
unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
if (Align == 0) Align = 1;
if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
std::vector<MVT::ValueType> MemOps;
// Expand memset / memcpy to a series of load / store ops
// if the size operand falls below a certain threshold.
SmallVector<SDOperand, 8> OutChains;
switch (Op) {
default: break; // Do nothing for now.
case ISD::MEMSET: {
if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
Size->getValue(), Align, TLI)) {
unsigned NumMemOps = MemOps.size();
unsigned Offset = 0;
for (unsigned i = 0; i < NumMemOps; i++) {
MVT::ValueType VT = MemOps[i];
unsigned VTSize = getSizeInBits(VT) / 8;
SDOperand Value = getMemsetValue(Op2, VT, DAG);
SDOperand Store = DAG.getStore(getRoot(), Value,
getMemBasePlusOffset(Op1, Offset, DAG, TLI),
I.getOperand(1), Offset);
OutChains.push_back(Store);
Offset += VTSize;
}
}
break;
}
case ISD::MEMCPY: {
if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
Size->getValue(), Align, TLI)) {
unsigned NumMemOps = MemOps.size();
unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
GlobalAddressSDNode *G = NULL;
std::string Str;
bool CopyFromStr = false;
if (Op2.getOpcode() == ISD::GlobalAddress)
G = cast<GlobalAddressSDNode>(Op2);
else if (Op2.getOpcode() == ISD::ADD &&
Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
Op2.getOperand(1).getOpcode() == ISD::Constant) {
G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
}
if (G) {
GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
if (GV && GV->isConstant()) {
Str = GV->getStringValue(false);
if (!Str.empty()) {
CopyFromStr = true;
SrcOff += SrcDelta;
}
}
}
for (unsigned i = 0; i < NumMemOps; i++) {
MVT::ValueType VT = MemOps[i];
unsigned VTSize = getSizeInBits(VT) / 8;
SDOperand Value, Chain, Store;
if (CopyFromStr) {
Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
Chain = getRoot();
Store =
DAG.getStore(Chain, Value,
getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
I.getOperand(1), DstOff);
} else {
Value = DAG.getLoad(VT, getRoot(),
getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
I.getOperand(2), SrcOff);
Chain = Value.getValue(1);
Store =
DAG.getStore(Chain, Value,
getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
I.getOperand(1), DstOff);
}
OutChains.push_back(Store);
SrcOff += VTSize;
DstOff += VTSize;
}
}
break;
}
}
if (!OutChains.empty()) {
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
&OutChains[0], OutChains.size()));
return;
}
}
DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
}
//===----------------------------------------------------------------------===//
// SelectionDAGISel code
//===----------------------------------------------------------------------===//
unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
}
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
// FIXME: we only modify the CFG to split critical edges. This
// updates dom and loop info.
AU.addRequired<AliasAnalysis>();
}
/// OptimizeNoopCopyExpression - We have determined that the specified cast
/// instruction is a noop copy (e.g. it's casting from one pointer type to
/// another, int->uint, or int->sbyte on PPC.
///
/// Return true if any changes are made.
static bool OptimizeNoopCopyExpression(CastInst *CI) {
BasicBlock *DefBB = CI->getParent();
/// InsertedCasts - Only insert a cast in each block once.
std::map<BasicBlock*, CastInst*> InsertedCasts;
bool MadeChange = false;
for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
UI != E; ) {
Use &TheUse = UI.getUse();
Instruction *User = cast<Instruction>(*UI);
// Figure out which BB this cast is used in. For PHI's this is the
// appropriate predecessor block.
BasicBlock *UserBB = User->getParent();
if (PHINode *PN = dyn_cast<PHINode>(User)) {
unsigned OpVal = UI.getOperandNo()/2;
UserBB = PN->getIncomingBlock(OpVal);
}
// Preincrement use iterator so we don't invalidate it.
++UI;
// If this user is in the same block as the cast, don't change the cast.
if (UserBB == DefBB) continue;
// If we have already inserted a cast into this block, use it.
CastInst *&InsertedCast = InsertedCasts[UserBB];
if (!InsertedCast) {
BasicBlock::iterator InsertPt = UserBB->begin();
while (isa<PHINode>(InsertPt)) ++InsertPt;
InsertedCast =
CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
InsertPt);
MadeChange = true;
}
// Replace a use of the cast with a use of the new casat.
TheUse = InsertedCast;
}
// If we removed all uses, nuke the cast.
if (CI->use_empty())
CI->eraseFromParent();
return MadeChange;
}
/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
/// casting to the type of GEPI.
static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
Instruction *GEPI, Value *Ptr,
Value *PtrOffset) {
if (V) return V; // Already computed.
// Figure out the insertion point
BasicBlock::iterator InsertPt;
if (BB == GEPI->getParent()) {
// If GEP is already inserted into BB, insert right after the GEP.
InsertPt = GEPI;
++InsertPt;
} else {
// Otherwise, insert at the top of BB, after any PHI nodes
InsertPt = BB->begin();
while (isa<PHINode>(InsertPt)) ++InsertPt;
}
// If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
// BB so that there is only one value live across basic blocks (the cast
// operand).
if (CastInst *CI = dyn_cast<CastInst>(Ptr))
if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
"", InsertPt);
// Add the offset, cast it to the right type.
Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
// Ptr is an integer type, GEPI is pointer type ==> IntToPtr
return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
"", InsertPt);
}
/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
/// compute its value. The RepPtr value can be computed with Ptr+PtrOffset. One
/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
/// block, then ReplaceAllUsesWith'ing everything. However, we would prefer to
/// sink PtrOffset into user blocks where doing so will likely allow us to fold
/// the constant add into a load or store instruction. Additionally, if a user
/// is a pointer-pointer cast, we look through it to find its users.
static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
Constant *PtrOffset, BasicBlock *DefBB,
GetElementPtrInst *GEPI,
std::map<BasicBlock*,Instruction*> &InsertedExprs) {
while (!RepPtr->use_empty()) {
Instruction *User = cast<Instruction>(RepPtr->use_back());
// If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
// used for a Pointer-Pointer cast.
if (isa<BitCastInst>(User)) {
ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
// Drop the use of RepPtr. The cast is dead. Don't delete it now, else we
// could invalidate an iterator.
User->setOperand(0, UndefValue::get(RepPtr->getType()));
continue;
}
// If this is a load of the pointer, or a store through the pointer, emit
// the increment into the load/store block.
Instruction *NewVal;
if (isa<LoadInst>(User) ||
(isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
User->getParent(), GEPI,
Ptr, PtrOffset);
} else {
// If this use is not foldable into the addressing mode, use a version
// emitted in the GEP block.
NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
Ptr, PtrOffset);
}
if (GEPI->getType() != RepPtr->getType()) {
BasicBlock::iterator IP = NewVal;
++IP;
// NewVal must be a GEP which must be pointer type, so BitCast
NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
}
User->replaceUsesOfWith(RepPtr, NewVal);
}
}
/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
/// selection, we want to be a bit careful about some things. In particular, if
/// we have a GEP instruction that is used in a different block than it is
/// defined, the addressing expression of the GEP cannot be folded into loads or
/// stores that use it. In this case, decompose the GEP and move constant
/// indices into blocks that use it.
static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
const TargetData *TD) {
// If this GEP is only used inside the block it is defined in, there is no
// need to rewrite it.
bool isUsedOutsideDefBB = false;
BasicBlock *DefBB = GEPI->getParent();
for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
UI != E; ++UI) {
if (cast<Instruction>(*UI)->getParent() != DefBB) {
isUsedOutsideDefBB = true;
break;
}
}
if (!isUsedOutsideDefBB) return false;
// If this GEP has no non-zero constant indices, there is nothing we can do,
// ignore it.
bool hasConstantIndex = false;
bool hasVariableIndex = false;
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
E = GEPI->op_end(); OI != E; ++OI) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
if (CI->getZExtValue()) {
hasConstantIndex = true;
break;
}
} else {
hasVariableIndex = true;
}
}
// If this is a "GEP X, 0, 0, 0", turn this into a cast.
if (!hasConstantIndex && !hasVariableIndex) {
/// The GEP operand must be a pointer, so must its result -> BitCast
Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
GEPI->getName(), GEPI);
GEPI->replaceAllUsesWith(NC);
GEPI->eraseFromParent();
return true;
}
// If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
return false;
// Otherwise, decompose the GEP instruction into multiplies and adds. Sum the
// constant offset (which we now know is non-zero) and deal with it later.
uint64_t ConstantOffset = 0;
const Type *UIntPtrTy = TD->getIntPtrType();
Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
const Type *Ty = GEPI->getOperand(0)->getType();
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
E = GEPI->op_end(); OI != E; ++OI) {
Value *Idx = *OI;
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
if (Field)
ConstantOffset += TD->getStructLayout(StTy)->getElementOffset(Field);
Ty = StTy->getElementType(Field);
} else {
Ty = cast<SequentialType>(Ty)->getElementType();
// Handle constant subscripts.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->getZExtValue() == 0) continue;
ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
continue;
}
// Ptr = Ptr + Idx * ElementSize;
// Cast Idx to UIntPtrTy if needed.
Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
uint64_t ElementSize = TD->getTypeSize(Ty);
// Mask off bits that should not be set.
ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
// Multiply by the element size and add to the base.
Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
}
}
// Make sure that the offset fits in uintptr_t.
ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
// Okay, we have now emitted all of the variable index parts to the BB that
// the GEP is defined in. Loop over all of the using instructions, inserting
// an "add Ptr, ConstantOffset" into each block that uses it and update the
// instruction to use the newly computed value, making GEPI dead. When the
// user is a load or store instruction address, we emit the add into the user
// block, otherwise we use a canonical version right next to the gep (these
// won't be foldable as addresses, so we might as well share the computation).
std::map<BasicBlock*,Instruction*> InsertedExprs;
ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
// Finally, the GEP is dead, remove it.
GEPI->eraseFromParent();
return true;
}
/// SplitEdgeNicely - Split the critical edge from TI to it's specified
/// successor if it will improve codegen. We only do this if the successor has
/// phi nodes (otherwise critical edges are ok). If there is already another
/// predecessor of the succ that is empty (and thus has no phi nodes), use it
/// instead of introducing a new block.
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
BasicBlock *TIBB = TI->getParent();
BasicBlock *Dest = TI->getSuccessor(SuccNum);
assert(isa<PHINode>(Dest->begin()) &&
"This should only be called if Dest has a PHI!");
/// TIPHIValues - This array is lazily computed to determine the values of
/// PHIs in Dest that TI would provide.
std::vector<Value*> TIPHIValues;
// Check to see if Dest has any blocks that can be used as a split edge for
// this terminator.
for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
BasicBlock *Pred = *PI;
// To be usable, the pred has to end with an uncond branch to the dest.
BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
if (!PredBr || !PredBr->isUnconditional() ||
// Must be empty other than the branch.
&Pred->front() != PredBr)
continue;
// Finally, since we know that Dest has phi nodes in it, we have to make
// sure that jumping to Pred will have the same affect as going to Dest in
// terms of PHI values.
PHINode *PN;
unsigned PHINo = 0;
bool FoundMatch = true;
for (BasicBlock::iterator I = Dest->begin();
(PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
if (PHINo == TIPHIValues.size())
TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
// If the PHI entry doesn't work, we can't use this pred.
if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
FoundMatch = false;
break;
}
}
// If we found a workable predecessor, change TI to branch to Succ.
if (FoundMatch) {
Dest->removePredecessor(TIBB);
TI->setSuccessor(SuccNum, Pred);
return;
}
}
SplitCriticalEdge(TI, SuccNum, P, true);
}
bool SelectionDAGISel::runOnFunction(Function &Fn) {
MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
RegMap = MF.getSSARegMap();
DOUT << "\n\n\n=== " << Fn.getName() << "\n";
// First, split all critical edges.
//
// In this pass we also look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
//
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (Function::iterator FNI = Fn.begin(), E = Fn.end(); FNI != E; ++FNI) {
// Split all critical edges where the dest block has a PHI.
TerminatorInst *BBTI = FNI->getTerminator();
if (BBTI->getNumSuccessors() > 1) {
for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
isCriticalEdge(BBTI, i, true))
SplitEdgeNicely(BBTI, i, this);
}
for (BasicBlock::iterator BBI = FNI->begin(), E = FNI->end(); BBI != E; ) {
Instruction *I = BBI++;
if (CallInst *CI = dyn_cast<CallInst>(I)) {
// If we found an inline asm expession, and if the target knows how to
// lower it to normal LLVM code, do so now.
if (isa<InlineAsm>(CI->getCalledValue()))
if (const TargetAsmInfo *TAI =
TLI.getTargetMachine().getTargetAsmInfo()) {
if (TAI->ExpandInlineAsm(CI))
BBI = FNI->begin();
}
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
} else if (CastInst *CI = dyn_cast<CastInst>(I)) {
// If the source of the cast is a constant, then this should have
// already been constant folded. The only reason NOT to constant fold
// it is if something (e.g. LSR) was careful to place the constant
// evaluation in a block other than then one that uses it (e.g. to hoist
// the address of globals out of a loop). If this is the case, we don't
// want to forward-subst the cast.
if (isa<Constant>(CI->getOperand(0)))
continue;
// If this is a noop copy, sink it into user blocks to reduce the number
// of virtual registers that must be created and coallesced.
MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
MVT::ValueType DstVT = TLI.getValueType(CI->getType());
// This is an fp<->int conversion?
if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
continue;
// If this is an extension, it will be a zero or sign extension, which
// isn't a noop.
if (SrcVT < DstVT) continue;
// If these values will be promoted, find out what they will be promoted
// to. This helps us consider truncates on PPC as noop copies when they
// are.
if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
SrcVT = TLI.getTypeToTransformTo(SrcVT);
if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
DstVT = TLI.getTypeToTransformTo(DstVT);
// If, after promotion, these are the same types, this is a noop copy.
if (SrcVT == DstVT)
MadeChange |= OptimizeNoopCopyExpression(CI);
}
}
}
}
FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
SelectBasicBlock(I, MF, FuncInfo);
// Add function live-ins to entry block live-in set.
BasicBlock *EntryBB = &Fn.getEntryBlock();
BB = FuncInfo.MBBMap[EntryBB];
if (!MF.livein_empty())
for (MachineFunction::livein_iterator I = MF.livein_begin(),
E = MF.livein_end(); I != E; ++I)
BB->addLiveIn(I->first);
return true;
}
SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
unsigned Reg) {
SDOperand Op = getValue(V);
assert((Op.getOpcode() != ISD::CopyFromReg ||
cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
"Copy from a reg to the same reg!");
// If this type is not legal, we must make sure to not create an invalid
// register use.
MVT::ValueType SrcVT = Op.getValueType();
MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
if (SrcVT == DestVT) {
return DAG.getCopyToReg(getRoot(), Reg, Op);
} else if (SrcVT == MVT::Vector) {
// Handle copies from generic vectors to registers.
MVT::ValueType PTyElementVT, PTyLegalElementVT;
unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
PTyElementVT, PTyLegalElementVT);
// Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
// MVT::Vector type.
Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
DAG.getConstant(NE, MVT::i32),
DAG.getValueType(PTyElementVT));
// Loop over all of the elements of the resultant vector,
// VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
// copying them into output registers.
SmallVector<SDOperand, 8> OutChains;
SDOperand Root = getRoot();
for (unsigned i = 0; i != NE; ++i) {
SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
Op, DAG.getConstant(i, TLI.getPointerTy()));
if (PTyElementVT == PTyLegalElementVT) {
// Elements are legal.
OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
} else if (PTyLegalElementVT > PTyElementVT) {
// Elements are promoted.
if (MVT::isFloatingPoint(PTyLegalElementVT))
Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
else
Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
} else {
// Elements are expanded.
// The src value is expanded into multiple registers.
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
Elt, DAG.getConstant(0, TLI.getPointerTy()));
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
Elt, DAG.getConstant(1, TLI.getPointerTy()));
OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
}
}
return DAG.getNode(ISD::TokenFactor, MVT::Other,
&OutChains[0], OutChains.size());
} else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
// The src value is promoted to the register.
if (MVT::isFloatingPoint(SrcVT))
Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
else
Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
return DAG.getCopyToReg(getRoot(), Reg, Op);
} else {
DestVT = TLI.getTypeToExpandTo(SrcVT);
unsigned NumVals = TLI.getNumElements(SrcVT);
if (NumVals == 1)
return DAG.getCopyToReg(getRoot(), Reg,
DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
// The src value is expanded into multiple registers.
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
Op, DAG.getConstant(0, TLI.getPointerTy()));
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
Op, DAG.getConstant(1, TLI.getPointerTy()));
Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
return DAG.getCopyToReg(Op, Reg+1, Hi);
}
}
void SelectionDAGISel::
LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
std::vector<SDOperand> &UnorderedChains) {
// If this is the entry block, emit arguments.
Function &F = *LLVMBB->getParent();
FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
SDOperand OldRoot = SDL.DAG.getRoot();
std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
unsigned a = 0;
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI, ++a)
if (!AI->use_empty()) {
SDL.setValue(AI, Args[a]);
// If this argument is live outside of the entry block, insert a copy from
// whereever we got it to the vreg that other BB's will reference it as.
DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
if (VMI != FuncInfo.ValueMap.end()) {
SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
UnorderedChains.push_back(Copy);
}
}
// Finally, if the target has anything special to do, allow it to do so.
// FIXME: this should insert code into the DAG!
EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
}
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
FunctionLoweringInfo &FuncInfo) {
SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
std::vector<SDOperand> UnorderedChains;
// Lower any arguments needed in this block if this is the entry block.
if (LLVMBB == &LLVMBB->getParent()->front())
LowerArguments(LLVMBB, SDL, UnorderedChains);
BB = FuncInfo.MBBMap[LLVMBB];
SDL.setCurrentBasicBlock(BB);
// Lower all of the non-terminator instructions.
for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
I != E; ++I)
SDL.visit(*I);
// Lower call part of invoke.
InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator());
if (Invoke) SDL.visitInvoke(*Invoke, false);
// Ensure that all instructions which are used outside of their defining
// blocks are available as virtual registers.
for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
if (!I->use_empty() && !isa<PHINode>(I)) {
DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
if (VMI != FuncInfo.ValueMap.end())
UnorderedChains.push_back(
SDL.CopyValueToVirtualRegister(I, VMI->second));
}
// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
// ensure constants are generated when needed. Remember the virtual registers
// that need to be added to the Machine PHI nodes as input. We cannot just
// directly add them, because expansion might result in multiple MBB's for one
// BB. As such, the start of the BB might correspond to a different MBB than
// the end.
//
TerminatorInst *TI = LLVMBB->getTerminator();
// Emit constants only once even if used by multiple PHI nodes.
std::map<Constant*, unsigned> ConstantsOut;
// Vector bool would be better, but vector<bool> is really slow.
std::vector<unsigned char> SuccsHandled;
if (TI->getNumSuccessors())
SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
// Check successor nodes PHI nodes that expect a constant to be available from
// this block.
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
BasicBlock *SuccBB = TI->getSuccessor(succ);
if (!isa<PHINode>(SuccBB->begin())) continue;
MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
// If this terminator has multiple identical successors (common for
// switches), only handle each succ once.
unsigned SuccMBBNo = SuccMBB->getNumber();
if (SuccsHandled[SuccMBBNo]) continue;
SuccsHandled[SuccMBBNo] = true;
MachineBasicBlock::iterator MBBI = SuccMBB->begin();
PHINode *PN;
// At this point we know that there is a 1-1 correspondence between LLVM PHI
// nodes and Machine PHI nodes, but the incoming operands have not been
// emitted yet.
for (BasicBlock::iterator I = SuccBB->begin();
(PN = dyn_cast<PHINode>(I)); ++I) {
// Ignore dead phi's.
if (PN->use_empty()) continue;
unsigned Reg;
Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
if (Constant *C = dyn_cast<Constant>(PHIOp)) {
unsigned &RegOut = ConstantsOut[C];
if (RegOut == 0) {
RegOut = FuncInfo.CreateRegForValue(C);
UnorderedChains.push_back(
SDL.CopyValueToVirtualRegister(C, RegOut));
}
Reg = RegOut;
} else {
Reg = FuncInfo.ValueMap[PHIOp];
if (Reg == 0) {
assert(isa<AllocaInst>(PHIOp) &&
FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
"Didn't codegen value into a register!??");
Reg = FuncInfo.CreateRegForValue(PHIOp);
UnorderedChains.push_back(
SDL.CopyValueToVirtualRegister(PHIOp, Reg));
}
}
// Remember that this register needs to added to the machine PHI node as
// the input for this MBB.
MVT::ValueType VT = TLI.getValueType(PN->getType());
unsigned NumElements;
if (VT != MVT::Vector)
NumElements = TLI.getNumElements(VT);
else {
MVT::ValueType VT1,VT2;
NumElements =
TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
VT1, VT2);
}
for (unsigned i = 0, e = NumElements; i != e; ++i)
PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
}
}
ConstantsOut.clear();
// Turn all of the unordered chains into one factored node.
if (!UnorderedChains.empty()) {
SDOperand Root = SDL.getRoot();
if (Root.getOpcode() != ISD::EntryToken) {
unsigned i = 0, e = UnorderedChains.size();
for (; i != e; ++i) {
assert(UnorderedChains[i].Val->getNumOperands() > 1);
if (UnorderedChains[i].Val->getOperand(0) == Root)
break; // Don't add the root if we already indirectly depend on it.
}
if (i == e)
UnorderedChains.push_back(Root);
}
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
&UnorderedChains[0], UnorderedChains.size()));
}
// Lower the terminator after the copies are emitted.
if (Invoke) {
// Just the branch part of invoke.
SDL.visitInvoke(*Invoke, true);
} else {
SDL.visit(*LLVMBB->getTerminator());
}
// Copy over any CaseBlock records that may now exist due to SwitchInst
// lowering, as well as any jump table information.
SwitchCases.clear();
SwitchCases = SDL.SwitchCases;
JT = SDL.JT;
// Make sure the root of the DAG is up-to-date.
DAG.setRoot(SDL.getRoot());
}
void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
// Get alias analysis for load/store combining.
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
// Run the DAG combiner in pre-legalize mode.
DAG.Combine(false, AA);
DOUT << "Lowered selection DAG:\n";
DEBUG(DAG.dump());
// Second step, hack on the DAG until it only uses operations and types that
// the target supports.
DAG.Legalize();
DOUT << "Legalized selection DAG:\n";
DEBUG(DAG.dump());
// Run the DAG combiner in post-legalize mode.
DAG.Combine(true, AA);
if (ViewISelDAGs) DAG.viewGraph();
// Third, instruction select all of the operations to machine code, adding the
// code to the MachineBasicBlock.
InstructionSelectBasicBlock(DAG);
DOUT << "Selected machine code:\n";
DEBUG(BB->dump());
}
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
FunctionLoweringInfo &FuncInfo) {
std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
{
SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &DAG;
// First step, lower LLVM code to some DAG. This DAG may use operations and
// types that are not supported by the target.
BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
// Second step, emit the lowered DAG as machine code.
CodeGenAndEmitDAG(DAG);
}
// Next, now that we know what the last MBB the LLVM BB expanded is, update
// PHI nodes in successors.
if (SwitchCases.empty() && JT.Reg == 0) {
for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
MachineInstr *PHI = PHINodesToUpdate[i].first;
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
"This is not a machine PHI node that we are updating!");
PHI->addRegOperand(PHINodesToUpdate[i].second, false);
PHI->addMachineBasicBlockOperand(BB);
}
return;
}
// If the JumpTable record is filled in, then we need to emit a jump table.
// Updating the PHI nodes is tricky in this case, since we need to determine
// whether the PHI is a successor of the range check MBB or the jump table MBB
if (JT.Reg) {
assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &SDAG;
SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
MachineBasicBlock *RangeBB = BB;
// Set the current basic block to the mbb we wish to insert the code into
BB = JT.MBB;
SDL.setCurrentBasicBlock(BB);
// Emit the code
SDL.visitJumpTable(JT);
SDAG.setRoot(SDL.getRoot());
CodeGenAndEmitDAG(SDAG);
// Update PHI Nodes
for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
MachineInstr *PHI = PHINodesToUpdate[pi].first;
MachineBasicBlock *PHIBB = PHI->getParent();
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
"This is not a machine PHI node that we are updating!");
if (PHIBB == JT.Default) {
PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
PHI->addMachineBasicBlockOperand(RangeBB);
}
if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
PHI->addMachineBasicBlockOperand(BB);
}
}
return;
}
// If the switch block involved a branch to one of the actual successors, we
// need to update PHI nodes in that block.
for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
MachineInstr *PHI = PHINodesToUpdate[i].first;
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
"This is not a machine PHI node that we are updating!");
if (BB->isSuccessor(PHI->getParent())) {
PHI->addRegOperand(PHINodesToUpdate[i].second, false);
PHI->addMachineBasicBlockOperand(BB);
}
}
// If we generated any switch lowering information, build and codegen any
// additional DAGs necessary.
for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &SDAG;
SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
// Set the current basic block to the mbb we wish to insert the code into
BB = SwitchCases[i].ThisBB;
SDL.setCurrentBasicBlock(BB);
// Emit the code
SDL.visitSwitchCase(SwitchCases[i]);
SDAG.setRoot(SDL.getRoot());
CodeGenAndEmitDAG(SDAG);
// Handle any PHI nodes in successors of this chunk, as if we were coming
// from the original BB before switch expansion. Note that PHI nodes can
// occur multiple times in PHINodesToUpdate. We have to be very careful to
// handle them the right number of times.
while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
for (MachineBasicBlock::iterator Phi = BB->begin();
Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
// This value for this PHI node is recorded in PHINodesToUpdate, get it.
for (unsigned pn = 0; ; ++pn) {
assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
if (PHINodesToUpdate[pn].first == Phi) {
Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
break;
}
}
}
// Don't process RHS if same block as LHS.
if (BB == SwitchCases[i].FalseBB)
SwitchCases[i].FalseBB = 0;
// If we haven't handled the RHS, do so now. Otherwise, we're done.
SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
SwitchCases[i].FalseBB = 0;
}
assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
}
}
//===----------------------------------------------------------------------===//
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
/// target node in the graph.
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
if (ViewSchedDAGs) DAG.viewGraph();
RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
if (!Ctor) {
Ctor = ISHeuristic;
RegisterScheduler::setDefault(Ctor);
}
ScheduleDAG *SL = Ctor(this, &DAG, BB);
BB = SL->Run();
delete SL;
}
HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
return new HazardRecognizer();
}
//===----------------------------------------------------------------------===//
// Helper functions used by the generated instruction selector.
//===----------------------------------------------------------------------===//
// Calls to these methods are generated by tblgen.
/// CheckAndMask - The isel is trying to match something like (and X, 255). If
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) {
uint64_t ActualMask = RHS->getValue();
uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (ActualMask & ~DesiredMask)
return false;
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
uint64_t NeededMask = DesiredMask & ~ActualMask;
if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
return true;
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
return false;
}
/// CheckOrMask - The isel is trying to match something like (or X, 255). If
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) {
uint64_t ActualMask = RHS->getValue();
uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (ActualMask & ~DesiredMask)
return false;
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
uint64_t NeededMask = DesiredMask & ~ActualMask;
uint64_t KnownZero, KnownOne;
getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
// If all the missing bits in the or are already known to be set, match!
if ((NeededMask & KnownOne) == NeededMask)
return true;
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
return false;
}
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
/// by tblgen. Others should not call it.
void SelectionDAGISel::
SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
std::vector<SDOperand> InOps;
std::swap(InOps, Ops);
Ops.push_back(InOps[0]); // input chain.
Ops.push_back(InOps[1]); // input asm string.
unsigned i = 2, e = InOps.size();
if (InOps[e-1].getValueType() == MVT::Flag)
--e; // Don't process a flag operand if it is here.
while (i != e) {
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
if ((Flags & 7) != 4 /*MEM*/) {
// Just skip over this operand, copying the operands verbatim.
Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
i += (Flags >> 3) + 1;
} else {
assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
// Otherwise, this is a memory operand. Ask the target to select it.
std::vector<SDOperand> SelOps;
if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
cerr << "Could not match memory address. Inline asm failure!\n";
exit(1);
}
// Add this to the output node.
Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
MVT::i32));
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
i += 2;
}
}
// Add the flag input back if present.
if (e != InOps.size())
Ops.push_back(InOps.back());
}
|