aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
blob: c30293084129327d6d442bcc9321a571b07d2217 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAGISel class.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "isel"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineDebugInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Debug.h"
#include <map>
#include <iostream>
using namespace llvm;

#ifndef NDEBUG
static cl::opt<bool>
ViewDAGs("view-isel-dags", cl::Hidden,
         cl::desc("Pop up a window to show isel dags as they are selected"));
#else
static const bool ViewDAGs = 0;
#endif

namespace llvm {
  //===--------------------------------------------------------------------===//
  /// FunctionLoweringInfo - This contains information that is global to a
  /// function that is used when lowering a region of the function.
  class FunctionLoweringInfo {
  public:
    TargetLowering &TLI;
    Function &Fn;
    MachineFunction &MF;
    SSARegMap *RegMap;

    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);

    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;

    /// ValueMap - Since we emit code for the function a basic block at a time,
    /// we must remember which virtual registers hold the values for
    /// cross-basic-block values.
    std::map<const Value*, unsigned> ValueMap;

    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
    /// the entry block.  This allows the allocas to be efficiently referenced
    /// anywhere in the function.
    std::map<const AllocaInst*, int> StaticAllocaMap;

    unsigned MakeReg(MVT::ValueType VT) {
      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
    }

    unsigned CreateRegForValue(const Value *V) {
      MVT::ValueType VT = TLI.getValueType(V->getType());
      // The common case is that we will only create one register for this
      // value.  If we have that case, create and return the virtual register.
      unsigned NV = TLI.getNumElements(VT);
      if (NV == 1) {
        // If we are promoting this value, pick the next largest supported type.
        return MakeReg(TLI.getTypeToTransformTo(VT));
      }

      // If this value is represented with multiple target registers, make sure
      // to create enough consequtive registers of the right (smaller) type.
      unsigned NT = VT-1;  // Find the type to use.
      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
        --NT;

      unsigned R = MakeReg((MVT::ValueType)NT);
      for (unsigned i = 1; i != NV; ++i)
        MakeReg((MVT::ValueType)NT);
      return R;
    }

    unsigned InitializeRegForValue(const Value *V) {
      unsigned &R = ValueMap[V];
      assert(R == 0 && "Already initialized this value register!");
      return R = CreateRegForValue(V);
    }
  };
}

/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it.
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
  if (isa<PHINode>(I)) return true;
  BasicBlock *BB = I->getParent();
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
      return true;
  return false;
}

/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
/// entry block, return true.
static bool isOnlyUsedInEntryBlock(Argument *A) {
  BasicBlock *Entry = A->getParent()->begin();
  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
    if (cast<Instruction>(*UI)->getParent() != Entry)
      return false;  // Use not in entry block.
  return true;
}

FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
                                           Function &fn, MachineFunction &mf)
    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {

  // Create a vreg for each argument register that is not dead and is used
  // outside of the entry block for the function.
  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
       AI != E; ++AI)
    if (!isOnlyUsedInEntryBlock(AI))
      InitializeRegForValue(AI);

  // Initialize the mapping of values to registers.  This is only set up for
  // instruction values that are used outside of the block that defines
  // them.
  Function::iterator BB = Fn.begin(), EB = Fn.end();
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
        const Type *Ty = AI->getAllocatedType();
        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
        unsigned Align = 
          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
                   AI->getAlignment());

        // If the alignment of the value is smaller than the size of the value,
        // and if the size of the value is particularly small (<= 8 bytes),
        // round up to the size of the value for potentially better performance.
        //
        // FIXME: This could be made better with a preferred alignment hook in
        // TargetData.  It serves primarily to 8-byte align doubles for X86.
        if (Align < TySize && TySize <= 8) Align = TySize;
        TySize *= CUI->getValue();   // Get total allocated size.
        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
        StaticAllocaMap[AI] =
          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
      }

  for (; BB != EB; ++BB)
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
        if (!isa<AllocaInst>(I) ||
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
          InitializeRegForValue(I);

  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
  // also creates the initial PHI MachineInstrs, though none of the input
  // operands are populated.
  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
    MBBMap[BB] = MBB;
    MF.getBasicBlockList().push_back(MBB);

    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    // appropriate.
    PHINode *PN;
    for (BasicBlock::iterator I = BB->begin();
         (PN = dyn_cast<PHINode>(I)); ++I)
      if (!PN->use_empty()) {
        unsigned NumElements =
          TLI.getNumElements(TLI.getValueType(PN->getType()));
        unsigned PHIReg = ValueMap[PN];
        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
        for (unsigned i = 0; i != NumElements; ++i)
          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
      }
  }
}



//===----------------------------------------------------------------------===//
/// SelectionDAGLowering - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
/// Also, targets can overload any lowering method.
///
namespace llvm {
class SelectionDAGLowering {
  MachineBasicBlock *CurMBB;

  std::map<const Value*, SDOperand> NodeMap;

  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
  /// them up and then emit token factor nodes when possible.  This allows us to
  /// get simple disambiguation between loads without worrying about alias
  /// analysis.
  std::vector<SDOperand> PendingLoads;

public:
  // TLI - This is information that describes the available target features we
  // need for lowering.  This indicates when operations are unavailable,
  // implemented with a libcall, etc.
  TargetLowering &TLI;
  SelectionDAG &DAG;
  const TargetData &TD;

  /// FuncInfo - Information about the function as a whole.
  ///
  FunctionLoweringInfo &FuncInfo;

  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
                       FunctionLoweringInfo &funcinfo)
    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
      FuncInfo(funcinfo) {
  }

  /// getRoot - Return the current virtual root of the Selection DAG.
  ///
  SDOperand getRoot() {
    if (PendingLoads.empty())
      return DAG.getRoot();

    if (PendingLoads.size() == 1) {
      SDOperand Root = PendingLoads[0];
      DAG.setRoot(Root);
      PendingLoads.clear();
      return Root;
    }

    // Otherwise, we have to make a token factor node.
    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
    PendingLoads.clear();
    DAG.setRoot(Root);
    return Root;
  }

  void visit(Instruction &I) { visit(I.getOpcode(), I); }

  void visit(unsigned Opcode, User &I) {
    switch (Opcode) {
    default: assert(0 && "Unknown instruction type encountered!");
             abort();
      // Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS) \
    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
#include "llvm/Instruction.def"
    }
  }

  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }


  SDOperand getIntPtrConstant(uint64_t Val) {
    return DAG.getConstant(Val, TLI.getPointerTy());
  }

  SDOperand getValue(const Value *V) {
    SDOperand &N = NodeMap[V];
    if (N.Val) return N;

    const Type *VTy = V->getType();
    MVT::ValueType VT = TLI.getValueType(VTy);
    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
        visit(CE->getOpcode(), *CE);
        assert(N.Val && "visit didn't populate the ValueMap!");
        return N;
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
        return N = DAG.getGlobalAddress(GV, VT);
      } else if (isa<ConstantPointerNull>(C)) {
        return N = DAG.getConstant(0, TLI.getPointerTy());
      } else if (isa<UndefValue>(C)) {
        return N = DAG.getNode(ISD::UNDEF, VT);
      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
        return N = DAG.getConstantFP(CFP->getValue(), VT);
      } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
        unsigned NumElements = PTy->getNumElements();
        MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
        MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
        
        // Now that we know the number and type of the elements, push a
        // Constant or ConstantFP node onto the ops list for each element of
        // the packed constant.
        std::vector<SDOperand> Ops;
        if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
          if (MVT::isFloatingPoint(PVT)) {
            for (unsigned i = 0; i != NumElements; ++i) {
              const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
              Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
            }
          } else {
            for (unsigned i = 0; i != NumElements; ++i) {
              const ConstantIntegral *El = 
                cast<ConstantIntegral>(CP->getOperand(i));
              Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
            }
          }
        } else {
          assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
          SDOperand Op;
          if (MVT::isFloatingPoint(PVT))
            Op = DAG.getConstantFP(0, PVT);
          else
            Op = DAG.getConstant(0, PVT);
          Ops.assign(NumElements, Op);
        }
        
        // Handle the case where we have a 1-element vector, in which
        // case we want to immediately turn it into a scalar constant.
        if (Ops.size() == 1) {
          return N = Ops[0];
        } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
          return N = DAG.getNode(ISD::ConstantVec, TVT, Ops);
        } else {
          // If the packed type isn't legal, then create a ConstantVec node with
          // generic Vector type instead.
          return N = DAG.getNode(ISD::ConstantVec, MVT::Vector, Ops);
        }
      } else {
        // Canonicalize all constant ints to be unsigned.
        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
      }

    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
      std::map<const AllocaInst*, int>::iterator SI =
        FuncInfo.StaticAllocaMap.find(AI);
      if (SI != FuncInfo.StaticAllocaMap.end())
        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
    }

    std::map<const Value*, unsigned>::const_iterator VMI =
      FuncInfo.ValueMap.find(V);
    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");

    unsigned InReg = VMI->second;
   
    // If this type is not legal, make it so now.
    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
    
    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
    if (DestVT < VT) {
      // Source must be expanded.  This input value is actually coming from the
      // register pair VMI->second and VMI->second+1.
      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
    } else {
      if (DestVT > VT) { // Promotion case
        if (MVT::isFloatingPoint(VT))
          N = DAG.getNode(ISD::FP_ROUND, VT, N);
        else
          N = DAG.getNode(ISD::TRUNCATE, VT, N);
      }
    }
    
    return N;
  }

  const SDOperand &setValue(const Value *V, SDOperand NewN) {
    SDOperand &N = NodeMap[V];
    assert(N.Val == 0 && "Already set a value for this node!");
    return N = NewN;
  }

  // Terminator instructions.
  void visitRet(ReturnInst &I);
  void visitBr(BranchInst &I);
  void visitUnreachable(UnreachableInst &I) { /* noop */ }

  // These all get lowered before this pass.
  void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); }
  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }

  //
  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
  void visitShift(User &I, unsigned Opcode);
  void visitAdd(User &I) { 
    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD); 
  }
  void visitSub(User &I);
  void visitMul(User &I) { 
    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL); 
  }
  void visitDiv(User &I) {
    const Type *Ty = I.getType();
    visitBinary(I, Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV, 0);
  }
  void visitRem(User &I) {
    const Type *Ty = I.getType();
    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
  }
  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, 0); }
  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, 0); }
  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, 0); }
  void visitShl(User &I) { visitShift(I, ISD::SHL); }
  void visitShr(User &I) { 
    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
  }

  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }

  void visitGetElementPtr(User &I);
  void visitCast(User &I);
  void visitSelect(User &I);
  //

  void visitMalloc(MallocInst &I);
  void visitFree(FreeInst &I);
  void visitAlloca(AllocaInst &I);
  void visitLoad(LoadInst &I);
  void visitStore(StoreInst &I);
  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
  void visitCall(CallInst &I);
  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);

  void visitVAStart(CallInst &I);
  void visitVAArg(VAArgInst &I);
  void visitVAEnd(CallInst &I);
  void visitVACopy(CallInst &I);
  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);

  void visitMemIntrinsic(CallInst &I, unsigned Op);

  void visitUserOp1(Instruction &I) {
    assert(0 && "UserOp1 should not exist at instruction selection time!");
    abort();
  }
  void visitUserOp2(Instruction &I) {
    assert(0 && "UserOp2 should not exist at instruction selection time!");
    abort();
  }
};
} // end namespace llvm

void SelectionDAGLowering::visitRet(ReturnInst &I) {
  if (I.getNumOperands() == 0) {
    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
    return;
  }

  SDOperand Op1 = getValue(I.getOperand(0));
  MVT::ValueType TmpVT;

  switch (Op1.getValueType()) {
  default: assert(0 && "Unknown value type!");
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    // If this is a machine where 32-bits is legal or expanded, promote to
    // 32-bits, otherwise, promote to 64-bits.
    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
    else
      TmpVT = MVT::i32;

    // Extend integer types to result type.
    if (I.getOperand(0)->getType()->isSigned())
      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
    else
      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
    break;
  case MVT::f32:
  case MVT::i64:
  case MVT::f64:
    break; // No extension needed!
  }
  // Allow targets to lower this further to meet ABI requirements
  DAG.setRoot(TLI.LowerReturnTo(getRoot(), Op1, DAG));
}

void SelectionDAGLowering::visitBr(BranchInst &I) {
  // Update machine-CFG edges.
  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];

  // Figure out which block is immediately after the current one.
  MachineBasicBlock *NextBlock = 0;
  MachineFunction::iterator BBI = CurMBB;
  if (++BBI != CurMBB->getParent()->end())
    NextBlock = BBI;

  if (I.isUnconditional()) {
    // If this is not a fall-through branch, emit the branch.
    if (Succ0MBB != NextBlock)
      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
                              DAG.getBasicBlock(Succ0MBB)));
  } else {
    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];

    SDOperand Cond = getValue(I.getCondition());
    if (Succ1MBB == NextBlock) {
      // If the condition is false, fall through.  This means we should branch
      // if the condition is true to Succ #0.
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
                              Cond, DAG.getBasicBlock(Succ0MBB)));
    } else if (Succ0MBB == NextBlock) {
      // If the condition is true, fall through.  This means we should branch if
      // the condition is false to Succ #1.  Invert the condition first.
      SDOperand True = DAG.getConstant(1, Cond.getValueType());
      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
                              Cond, DAG.getBasicBlock(Succ1MBB)));
    } else {
      std::vector<SDOperand> Ops;
      Ops.push_back(getRoot());
      Ops.push_back(Cond);
      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
    }
  }
}

void SelectionDAGLowering::visitSub(User &I) {
  // -0.0 - X --> fneg
  if (I.getType()->isFloatingPoint()) {
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
      if (CFP->isExactlyValue(-0.0)) {
        SDOperand Op2 = getValue(I.getOperand(1));
        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
        return;
      }
  }
  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
}

void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp, 
                                       unsigned VecOp) {
  const Type *Ty = I.getType();
  SDOperand Op1 = getValue(I.getOperand(0));
  SDOperand Op2 = getValue(I.getOperand(1));

  if (Ty->isIntegral()) {
    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
  } else if (Ty->isFloatingPoint()) {
    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
  } else {
    const PackedType *PTy = cast<PackedType>(Ty);
    unsigned NumElements = PTy->getNumElements();
    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
    
    // Immediately scalarize packed types containing only one element, so that
    // the Legalize pass does not have to deal with them.  Similarly, if the
    // abstract vector is going to turn into one that the target natively
    // supports, generate that type now so that Legalize doesn't have to deal
    // with that either.  These steps ensure that Legalize only has to handle
    // vector types in its Expand case.
    unsigned Opc = MVT::isFloatingPoint(PVT) ? FPOp : IntOp;
    if (NumElements == 1) {
      setValue(&I, DAG.getNode(Opc, PVT, Op1, Op2));
    } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
      setValue(&I, DAG.getNode(Opc, TVT, Op1, Op2));
    } else {
      SDOperand Num = DAG.getConstant(NumElements, MVT::i32);
      SDOperand Typ = DAG.getValueType(PVT);
      setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
    }
  }
}

void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
  SDOperand Op1 = getValue(I.getOperand(0));
  SDOperand Op2 = getValue(I.getOperand(1));
  
  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
  
  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
}

void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
                                      ISD::CondCode UnsignedOpcode) {
  SDOperand Op1 = getValue(I.getOperand(0));
  SDOperand Op2 = getValue(I.getOperand(1));
  ISD::CondCode Opcode = SignedOpcode;
  if (I.getOperand(0)->getType()->isUnsigned())
    Opcode = UnsignedOpcode;
  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
}

void SelectionDAGLowering::visitSelect(User &I) {
  SDOperand Cond     = getValue(I.getOperand(0));
  SDOperand TrueVal  = getValue(I.getOperand(1));
  SDOperand FalseVal = getValue(I.getOperand(2));
  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
                           TrueVal, FalseVal));
}

void SelectionDAGLowering::visitCast(User &I) {
  SDOperand N = getValue(I.getOperand(0));
  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
  MVT::ValueType DestTy = TLI.getValueType(I.getType());

  if (N.getValueType() == DestTy) {
    setValue(&I, N);  // noop cast.
  } else if (DestTy == MVT::i1) {
    // Cast to bool is a comparison against zero, not truncation to zero.
    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
                                       DAG.getConstantFP(0.0, N.getValueType());
    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
  } else if (isInteger(SrcTy)) {
    if (isInteger(DestTy)) {        // Int -> Int cast
      if (DestTy < SrcTy)   // Truncating cast?
        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
      else if (I.getOperand(0)->getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
    } else {                        // Int -> FP cast
      if (I.getOperand(0)->getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
    }
  } else {
    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
      if (DestTy < SrcTy)   // Rounding cast?
        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
    } else {                        // FP -> Int cast.
      if (I.getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
    }
  }
}

void SelectionDAGLowering::visitGetElementPtr(User &I) {
  SDOperand N = getValue(I.getOperand(0));
  const Type *Ty = I.getOperand(0)->getType();
  const Type *UIntPtrTy = TD.getIntPtrType();

  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
       OI != E; ++OI) {
    Value *Idx = *OI;
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
      if (Field) {
        // N = N + Offset
        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
                        getIntPtrConstant(Offset));
      }
      Ty = StTy->getElementType(Field);
    } else {
      Ty = cast<SequentialType>(Ty)->getElementType();

      // If this is a constant subscript, handle it quickly.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
        if (CI->getRawValue() == 0) continue;

        uint64_t Offs;
        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
        else
          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
        continue;
      }
      
      // N = N + Idx * ElementSize;
      uint64_t ElementSize = TD.getTypeSize(Ty);
      SDOperand IdxN = getValue(Idx);

      // If the index is smaller or larger than intptr_t, truncate or extend
      // it.
      if (IdxN.getValueType() < N.getValueType()) {
        if (Idx->getType()->isSigned())
          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
        else
          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
      } else if (IdxN.getValueType() > N.getValueType())
        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);

      // If this is a multiply by a power of two, turn it into a shl
      // immediately.  This is a very common case.
      if (isPowerOf2_64(ElementSize)) {
        unsigned Amt = Log2_64(ElementSize);
        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
        continue;
      }
      
      SDOperand Scale = getIntPtrConstant(ElementSize);
      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
    }
  }
  setValue(&I, N);
}

void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
  // If this is a fixed sized alloca in the entry block of the function,
  // allocate it statically on the stack.
  if (FuncInfo.StaticAllocaMap.count(&I))
    return;   // getValue will auto-populate this.

  const Type *Ty = I.getAllocatedType();
  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
                            I.getAlignment());

  SDOperand AllocSize = getValue(I.getArraySize());
  MVT::ValueType IntPtr = TLI.getPointerTy();
  if (IntPtr < AllocSize.getValueType())
    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
  else if (IntPtr > AllocSize.getValueType())
    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);

  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
                          getIntPtrConstant(TySize));

  // Handle alignment.  If the requested alignment is less than or equal to the
  // stack alignment, ignore it and round the size of the allocation up to the
  // stack alignment size.  If the size is greater than the stack alignment, we
  // note this in the DYNAMIC_STACKALLOC node.
  unsigned StackAlign =
    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
  if (Align <= StackAlign) {
    Align = 0;
    // Add SA-1 to the size.
    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
                            getIntPtrConstant(StackAlign-1));
    // Mask out the low bits for alignment purposes.
    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
  }

  std::vector<MVT::ValueType> VTs;
  VTs.push_back(AllocSize.getValueType());
  VTs.push_back(MVT::Other);
  std::vector<SDOperand> Ops;
  Ops.push_back(getRoot());
  Ops.push_back(AllocSize);
  Ops.push_back(getIntPtrConstant(Align));
  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
  DAG.setRoot(setValue(&I, DSA).getValue(1));

  // Inform the Frame Information that we have just allocated a variable-sized
  // object.
  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
}

/// getStringValue - Turn an LLVM constant pointer that eventually points to a
/// global into a string value.  Return an empty string if we can't do it.
///
static std::string getStringValue(Value *V, unsigned Offset = 0) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
      ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
      if (Init->isString()) {
        std::string Result = Init->getAsString();
        if (Offset < Result.size()) {
          // If we are pointing INTO The string, erase the beginning...
          Result.erase(Result.begin(), Result.begin()+Offset);

          // Take off the null terminator, and any string fragments after it.
          std::string::size_type NullPos = Result.find_first_of((char)0);
          if (NullPos != std::string::npos)
            Result.erase(Result.begin()+NullPos, Result.end());
          return Result;
        }
      }
    }
  } else if (Constant *C = dyn_cast<Constant>(V)) {
    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
      return getStringValue(GV, Offset);
    else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
      if (CE->getOpcode() == Instruction::GetElementPtr) {
        // Turn a gep into the specified offset.
        if (CE->getNumOperands() == 3 &&
            cast<Constant>(CE->getOperand(1))->isNullValue() &&
            isa<ConstantInt>(CE->getOperand(2))) {
          return getStringValue(CE->getOperand(0),
                   Offset+cast<ConstantInt>(CE->getOperand(2))->getRawValue());
        }
      }
    }
  }
  return "";
}

void SelectionDAGLowering::visitLoad(LoadInst &I) {
  SDOperand Ptr = getValue(I.getOperand(0));

  SDOperand Root;
  if (I.isVolatile())
    Root = getRoot();
  else {
    // Do not serialize non-volatile loads against each other.
    Root = DAG.getRoot();
  }
  
  const Type *Ty = I.getType();
  SDOperand L;
  
  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
    unsigned NumElements = PTy->getNumElements();
    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
    
    // Immediately scalarize packed types containing only one element, so that
    // the Legalize pass does not have to deal with them.
    if (NumElements == 1) {
      L = DAG.getLoad(PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
    } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
      L = DAG.getLoad(TVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
    } else {
      L = DAG.getVecLoad(NumElements, PVT, Root, Ptr, 
                         DAG.getSrcValue(I.getOperand(0)));
    }
  } else {
    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, 
                    DAG.getSrcValue(I.getOperand(0)));
  }
  setValue(&I, L);

  if (I.isVolatile())
    DAG.setRoot(L.getValue(1));
  else
    PendingLoads.push_back(L.getValue(1));
}


void SelectionDAGLowering::visitStore(StoreInst &I) {
  Value *SrcV = I.getOperand(0);
  SDOperand Src = getValue(SrcV);
  SDOperand Ptr = getValue(I.getOperand(1));
  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
                          DAG.getSrcValue(I.getOperand(1))));
}

/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
/// we want to emit this as a call to a named external function, return the name
/// otherwise lower it and return null.
const char *
SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
  switch (Intrinsic) {
  case Intrinsic::vastart:  visitVAStart(I); return 0;
  case Intrinsic::vaend:    visitVAEnd(I); return 0;
  case Intrinsic::vacopy:   visitVACopy(I); return 0;
  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
  case Intrinsic::setjmp:
    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
    break;
  case Intrinsic::longjmp:
    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
    break;
  case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return 0;
  case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return 0;
  case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return 0;
    
  case Intrinsic::readport:
  case Intrinsic::readio: {
    std::vector<MVT::ValueType> VTs;
    VTs.push_back(TLI.getValueType(I.getType()));
    VTs.push_back(MVT::Other);
    std::vector<SDOperand> Ops;
    Ops.push_back(getRoot());
    Ops.push_back(getValue(I.getOperand(1)));
    SDOperand Tmp = DAG.getNode(Intrinsic == Intrinsic::readport ?
                                ISD::READPORT : ISD::READIO, VTs, Ops);
    
    setValue(&I, Tmp);
    DAG.setRoot(Tmp.getValue(1));
    return 0;
  }
  case Intrinsic::writeport:
  case Intrinsic::writeio:
    DAG.setRoot(DAG.getNode(Intrinsic == Intrinsic::writeport ?
                            ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
                            getRoot(), getValue(I.getOperand(1)),
                            getValue(I.getOperand(2))));
    return 0;
    
  case Intrinsic::dbg_stoppoint: {
    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
      return "llvm_debugger_stop";
    
    std::string fname = "<unknown>";
    std::vector<SDOperand> Ops;

    // Input Chain
    Ops.push_back(getRoot());
    
    // line number
    Ops.push_back(getValue(I.getOperand(2)));
   
    // column
    Ops.push_back(getValue(I.getOperand(3)));

    // filename/working dir
    // Pull the filename out of the the compilation unit.
    const GlobalVariable *cunit = dyn_cast<GlobalVariable>(I.getOperand(4));
    if (cunit && cunit->hasInitializer()) {
      if (ConstantStruct *CS = 
            dyn_cast<ConstantStruct>(cunit->getInitializer())) {
        if (CS->getNumOperands() > 0) {
          Ops.push_back(DAG.getString(getStringValue(CS->getOperand(3))));
          Ops.push_back(DAG.getString(getStringValue(CS->getOperand(4))));
        }
      }
    }
    
    if (Ops.size() == 5)  // Found filename/workingdir.
      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
    setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
    return 0;
  }
  case Intrinsic::dbg_region_start:
    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
      return "llvm_dbg_region_start";
    if (I.getType() != Type::VoidTy)
      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
    return 0;
  case Intrinsic::dbg_region_end:
    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
      return "llvm_dbg_region_end";
    if (I.getType() != Type::VoidTy)
      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
    return 0;
  case Intrinsic::dbg_func_start:
    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
      return "llvm_dbg_subprogram";
    if (I.getType() != Type::VoidTy)
      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
    return 0;
  case Intrinsic::dbg_declare:
    if (I.getType() != Type::VoidTy)
      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
    return 0;
    
  case Intrinsic::isunordered:
    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
                              getValue(I.getOperand(2)), ISD::SETUO));
    return 0;
    
  case Intrinsic::sqrt:
    setValue(&I, DAG.getNode(ISD::FSQRT,
                             getValue(I.getOperand(1)).getValueType(),
                             getValue(I.getOperand(1))));
    return 0;
  case Intrinsic::pcmarker: {
    SDOperand Tmp = getValue(I.getOperand(1));
    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
    return 0;
  }
  case Intrinsic::readcyclecounter: {
    std::vector<MVT::ValueType> VTs;
    VTs.push_back(MVT::i64);
    VTs.push_back(MVT::Other);
    std::vector<SDOperand> Ops;
    Ops.push_back(getRoot());
    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
    setValue(&I, Tmp);
    DAG.setRoot(Tmp.getValue(1));
    return 0;
  }
  case Intrinsic::bswap_i16:
    setValue(&I, DAG.getNode(ISD::BSWAP,
                             getValue(I.getOperand(1)).getValueType(),
                             getValue(I.getOperand(1))));
    return 0;
  case Intrinsic::bswap_i32:
    setValue(&I, DAG.getNode(ISD::BSWAP,
                             getValue(I.getOperand(1)).getValueType(),
                             getValue(I.getOperand(1))));
    return 0;
  case Intrinsic::bswap_i64:
    setValue(&I, DAG.getNode(ISD::BSWAP,
                             getValue(I.getOperand(1)).getValueType(),
                             getValue(I.getOperand(1))));
    return 0;
  case Intrinsic::cttz:
    setValue(&I, DAG.getNode(ISD::CTTZ,
                             getValue(I.getOperand(1)).getValueType(),
                             getValue(I.getOperand(1))));
    return 0;
  case Intrinsic::ctlz:
    setValue(&I, DAG.getNode(ISD::CTLZ,
                             getValue(I.getOperand(1)).getValueType(),
                             getValue(I.getOperand(1))));
    return 0;
  case Intrinsic::ctpop:
    setValue(&I, DAG.getNode(ISD::CTPOP,
                             getValue(I.getOperand(1)).getValueType(),
                             getValue(I.getOperand(1))));
    return 0;
  case Intrinsic::stacksave: {
    std::vector<MVT::ValueType> VTs;
    VTs.push_back(TLI.getPointerTy());
    VTs.push_back(MVT::Other);
    std::vector<SDOperand> Ops;
    Ops.push_back(getRoot());
    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
    setValue(&I, Tmp);
    DAG.setRoot(Tmp.getValue(1));
    return 0;
  }
  case Intrinsic::stackrestore:
    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, DAG.getRoot(),
                            getValue(I.getOperand(1))));
    return 0;
  case Intrinsic::prefetch:
    // FIXME: Currently discarding prefetches.
    return 0;
  default:
    std::cerr << I;
    assert(0 && "This intrinsic is not implemented yet!");
    return 0;
  }
}


void SelectionDAGLowering::visitCall(CallInst &I) {
  const char *RenameFn = 0;
  if (Function *F = I.getCalledFunction()) {
    if (F->isExternal())
      if (unsigned IID = F->getIntrinsicID()) {
        RenameFn = visitIntrinsicCall(I, IID);
        if (!RenameFn)
          return;
      } else {    // Not an LLVM intrinsic.
        const std::string &Name = F->getName();
        if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
              I.getOperand(1)->getType()->isFloatingPoint() &&
              I.getType() == I.getOperand(1)->getType()) {
            SDOperand Tmp = getValue(I.getOperand(1));
            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
            return;
          }
        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
              I.getOperand(1)->getType()->isFloatingPoint() &&
              I.getType() == I.getOperand(1)->getType()) {
            SDOperand Tmp = getValue(I.getOperand(1));
            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
            return;
          }
        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
              I.getOperand(1)->getType()->isFloatingPoint() &&
              I.getType() == I.getOperand(1)->getType()) {
            SDOperand Tmp = getValue(I.getOperand(1));
            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
            return;
          }
        }
      }
  }

  SDOperand Callee;
  if (!RenameFn)
    Callee = getValue(I.getOperand(0));
  else
    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
  std::vector<std::pair<SDOperand, const Type*> > Args;
  Args.reserve(I.getNumOperands());
  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
    Value *Arg = I.getOperand(i);
    SDOperand ArgNode = getValue(Arg);
    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
  }

  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());

  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
                    I.isTailCall(), Callee, Args, DAG);
  if (I.getType() != Type::VoidTy)
    setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitMalloc(MallocInst &I) {
  SDOperand Src = getValue(I.getOperand(0));

  MVT::ValueType IntPtr = TLI.getPointerTy();

  if (IntPtr < Src.getValueType())
    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
  else if (IntPtr > Src.getValueType())
    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);

  // Scale the source by the type size.
  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
                    Src, getIntPtrConstant(ElementSize));

  std::vector<std::pair<SDOperand, const Type*> > Args;
  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));

  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
                    DAG.getExternalSymbol("malloc", IntPtr),
                    Args, DAG);
  setValue(&I, Result.first);  // Pointers always fit in registers
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitFree(FreeInst &I) {
  std::vector<std::pair<SDOperand, const Type*> > Args;
  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
                                TLI.getTargetData().getIntPtrType()));
  MVT::ValueType IntPtr = TLI.getPointerTy();
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
  DAG.setRoot(Result.second);
}

// InsertAtEndOfBasicBlock - This method should be implemented by targets that
// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
// instructions are special in various ways, which require special support to
// insert.  The specified MachineInstr is created but not inserted into any
// basic blocks, and the scheduler passes ownership of it to this method.
MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
                                                       MachineBasicBlock *MBB) {
  std::cerr << "If a target marks an instruction with "
               "'usesCustomDAGSchedInserter', it must implement "
               "TargetLowering::InsertAtEndOfBasicBlock!\n";
  abort();
  return 0;  
}

SDOperand TargetLowering::LowerReturnTo(SDOperand Chain, SDOperand Op,
                                        SelectionDAG &DAG) {
  return DAG.getNode(ISD::RET, MVT::Other, Chain, Op);
}

SDOperand TargetLowering::LowerVAStart(SDOperand Chain,
                                       SDOperand VAListP, Value *VAListV,
                                       SelectionDAG &DAG) {
  // We have no sane default behavior, just emit a useful error message and bail
  // out.
  std::cerr << "Variable arguments handling not implemented on this target!\n";
  abort();
  return SDOperand();
}

SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
                                     SelectionDAG &DAG) {
  // Default to a noop.
  return Chain;
}

SDOperand TargetLowering::LowerVACopy(SDOperand Chain,
                                      SDOperand SrcP, Value *SrcV,
                                      SDOperand DestP, Value *DestV,
                                      SelectionDAG &DAG) {
  // Default to copying the input list.
  SDOperand Val = DAG.getLoad(getPointerTy(), Chain,
                              SrcP, DAG.getSrcValue(SrcV));
  SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
                                 Val, DestP, DAG.getSrcValue(DestV));
  return Result;
}

std::pair<SDOperand,SDOperand>
TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
                           const Type *ArgTy, SelectionDAG &DAG) {
  // We have no sane default behavior, just emit a useful error message and bail
  // out.
  std::cerr << "Variable arguments handling not implemented on this target!\n";
  abort();
  return std::make_pair(SDOperand(), SDOperand());
}


void SelectionDAGLowering::visitVAStart(CallInst &I) {
  DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)),
                               I.getOperand(1), DAG));
}

void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0),
                   I.getType(), DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitVAEnd(CallInst &I) {
  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)),
                             I.getOperand(1), DAG));
}

void SelectionDAGLowering::visitVACopy(CallInst &I) {
  SDOperand Result =
    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2),
                    getValue(I.getOperand(1)), I.getOperand(1), DAG);
  DAG.setRoot(Result);
}


// It is always conservatively correct for llvm.returnaddress and
// llvm.frameaddress to return 0.
std::pair<SDOperand, SDOperand>
TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
                                        unsigned Depth, SelectionDAG &DAG) {
  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
}

SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
  assert(0 && "LowerOperation not implemented for this target!");
  abort();
  return SDOperand();
}

void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
#if 0
  // If the size of the cpy/move/set is constant (known)
  if (ConstantUInt* op3 = dyn_cast<ConstantUInt>(I.getOperand(3))) {
    uint64_t size = op3->getValue();
    switch (Op) {
      case ISD::MEMSET: 
        if (size <= TLI.getMaxStoresPerMemSet()) {
          if (ConstantUInt* op4 = dyn_cast<ConstantUInt>(I.getOperand(4))) {
        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
            uint64_t align = op4.getValue();
            while (size > align) {
              size -=align;
            }
  Value *SrcV = I.getOperand(0);
  SDOperand Src = getValue(SrcV);
  SDOperand Ptr = getValue(I.getOperand(1));
  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
                          DAG.getSrcValue(I.getOperand(1))));
          }
          break;
        }
        break; // don't do this optimization, use a normal memset
      case ISD::MEMMOVE: 
      case ISD::MEMCPY:
        break; // FIXME: not implemented yet
    }
  }
#endif

  // Non-optimized version
  std::vector<SDOperand> Ops;
  Ops.push_back(getRoot());
  Ops.push_back(getValue(I.getOperand(1)));
  Ops.push_back(getValue(I.getOperand(2)));
  Ops.push_back(getValue(I.getOperand(3)));
  Ops.push_back(getValue(I.getOperand(4)));
  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
}

//===----------------------------------------------------------------------===//
// SelectionDAGISel code
//===----------------------------------------------------------------------===//

unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
}

void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
  // FIXME: we only modify the CFG to split critical edges.  This
  // updates dom and loop info.
}


/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
/// casting to the type of GEPI.
static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
                                   Value *Ptr, Value *PtrOffset) {
  if (V) return V;   // Already computed.
  
  BasicBlock::iterator InsertPt;
  if (BB == GEPI->getParent()) {
    // If insert into the GEP's block, insert right after the GEP.
    InsertPt = GEPI;
    ++InsertPt;
  } else {
    // Otherwise, insert at the top of BB, after any PHI nodes
    InsertPt = BB->begin();
    while (isa<PHINode>(InsertPt)) ++InsertPt;
  }
  
  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
  // BB so that there is only one value live across basic blocks (the cast 
  // operand).
  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
  
  // Add the offset, cast it to the right type.
  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
  return V = Ptr;
}


/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
/// selection, we want to be a bit careful about some things.  In particular, if
/// we have a GEP instruction that is used in a different block than it is
/// defined, the addressing expression of the GEP cannot be folded into loads or
/// stores that use it.  In this case, decompose the GEP and move constant
/// indices into blocks that use it.
static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
                                  const TargetData &TD) {
  // If this GEP is only used inside the block it is defined in, there is no
  // need to rewrite it.
  bool isUsedOutsideDefBB = false;
  BasicBlock *DefBB = GEPI->getParent();
  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end(); 
       UI != E; ++UI) {
    if (cast<Instruction>(*UI)->getParent() != DefBB) {
      isUsedOutsideDefBB = true;
      break;
    }
  }
  if (!isUsedOutsideDefBB) return;

  // If this GEP has no non-zero constant indices, there is nothing we can do,
  // ignore it.
  bool hasConstantIndex = false;
  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
       E = GEPI->op_end(); OI != E; ++OI) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
      if (CI->getRawValue()) {
        hasConstantIndex = true;
        break;
      }
  }
  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
  
  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
  // constant offset (which we now know is non-zero) and deal with it later.
  uint64_t ConstantOffset = 0;
  const Type *UIntPtrTy = TD.getIntPtrType();
  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
  const Type *Ty = GEPI->getOperand(0)->getType();

  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
       E = GEPI->op_end(); OI != E; ++OI) {
    Value *Idx = *OI;
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
      if (Field)
        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
      Ty = StTy->getElementType(Field);
    } else {
      Ty = cast<SequentialType>(Ty)->getElementType();

      // Handle constant subscripts.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
        if (CI->getRawValue() == 0) continue;
        
        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
        else
          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
        continue;
      }
      
      // Ptr = Ptr + Idx * ElementSize;
      
      // Cast Idx to UIntPtrTy if needed.
      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
      
      uint64_t ElementSize = TD.getTypeSize(Ty);
      // Mask off bits that should not be set.
      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);

      // Multiply by the element size and add to the base.
      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
    }
  }
  
  // Make sure that the offset fits in uintptr_t.
  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
  
  // Okay, we have now emitted all of the variable index parts to the BB that
  // the GEP is defined in.  Loop over all of the using instructions, inserting
  // an "add Ptr, ConstantOffset" into each block that uses it and update the
  // instruction to use the newly computed value, making GEPI dead.  When the
  // user is a load or store instruction address, we emit the add into the user
  // block, otherwise we use a canonical version right next to the gep (these 
  // won't be foldable as addresses, so we might as well share the computation).
  
  std::map<BasicBlock*,Value*> InsertedExprs;
  while (!GEPI->use_empty()) {
    Instruction *User = cast<Instruction>(GEPI->use_back());

    // If this use is not foldable into the addressing mode, use a version 
    // emitted in the GEP block.
    Value *NewVal;
    if (!isa<LoadInst>(User) &&
        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI, 
                                    Ptr, PtrOffset);
    } else {
      // Otherwise, insert the code in the User's block so it can be folded into
      // any users in that block.
      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()], 
                                    User->getParent(), GEPI, 
                                    Ptr, PtrOffset);
    }
    User->replaceUsesOfWith(GEPI, NewVal);
  }
  
  // Finally, the GEP is dead, remove it.
  GEPI->eraseFromParent();
}

bool SelectionDAGISel::runOnFunction(Function &Fn) {
  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
  RegMap = MF.getSSARegMap();
  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");

  // First, split all critical edges for PHI nodes with incoming values that are
  // constants, this way the load of the constant into a vreg will not be placed
  // into MBBs that are used some other way.
  //
  // In this pass we also look for GEP instructions that are used across basic
  // blocks and rewrites them to improve basic-block-at-a-time selection.
  // 
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    PHINode *PN;
    BasicBlock::iterator BBI;
    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        if (isa<Constant>(PN->getIncomingValue(i)))
          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
    
    for (BasicBlock::iterator E = BB->end(); BBI != E; )
      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
        OptimizeGEPExpression(GEPI, TLI.getTargetData());
  }
  
  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);

  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
    SelectBasicBlock(I, MF, FuncInfo);

  return true;
}


SDOperand SelectionDAGISel::
CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
  SDOperand Op = SDL.getValue(V);
  assert((Op.getOpcode() != ISD::CopyFromReg ||
          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
         "Copy from a reg to the same reg!");
  
  // If this type is not legal, we must make sure to not create an invalid
  // register use.
  MVT::ValueType SrcVT = Op.getValueType();
  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
  SelectionDAG &DAG = SDL.DAG;
  if (SrcVT == DestVT) {
    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
  } else if (SrcVT < DestVT) {
    // The src value is promoted to the register.
    if (MVT::isFloatingPoint(SrcVT))
      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
    else
      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
  } else  {
    // The src value is expanded into multiple registers.
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
                               Op, DAG.getConstant(0, MVT::i32));
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
                               Op, DAG.getConstant(1, MVT::i32));
    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
    return DAG.getCopyToReg(Op, Reg+1, Hi);
  }
}

void SelectionDAGISel::
LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
               std::vector<SDOperand> &UnorderedChains) {
  // If this is the entry block, emit arguments.
  Function &F = *BB->getParent();
  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
  SDOperand OldRoot = SDL.DAG.getRoot();
  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);

  unsigned a = 0;
  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
       AI != E; ++AI, ++a)
    if (!AI->use_empty()) {
      SDL.setValue(AI, Args[a]);
      
      // If this argument is live outside of the entry block, insert a copy from
      // whereever we got it to the vreg that other BB's will reference it as.
      if (FuncInfo.ValueMap.count(AI)) {
        SDOperand Copy =
          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
        UnorderedChains.push_back(Copy);
      }
    }

  // Next, if the function has live ins that need to be copied into vregs,
  // emit the copies now, into the top of the block.
  MachineFunction &MF = SDL.DAG.getMachineFunction();
  if (MF.livein_begin() != MF.livein_end()) {
    SSARegMap *RegMap = MF.getSSARegMap();
    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
         E = MF.livein_end(); LI != E; ++LI)
      if (LI->second)
        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
                         LI->first, RegMap->getRegClass(LI->second));
  }
    
  // Finally, if the target has anything special to do, allow it to do so.
  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
}


void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
                                    FunctionLoweringInfo &FuncInfo) {
  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);

  std::vector<SDOperand> UnorderedChains;

  // Lower any arguments needed in this block if this is the entry block.
  if (LLVMBB == &LLVMBB->getParent()->front())
    LowerArguments(LLVMBB, SDL, UnorderedChains);

  BB = FuncInfo.MBBMap[LLVMBB];
  SDL.setCurrentBasicBlock(BB);

  // Lower all of the non-terminator instructions.
  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
       I != E; ++I)
    SDL.visit(*I);

  // Ensure that all instructions which are used outside of their defining
  // blocks are available as virtual registers.
  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
    if (!I->use_empty() && !isa<PHINode>(I)) {
      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
      if (VMI != FuncInfo.ValueMap.end())
        UnorderedChains.push_back(
                           CopyValueToVirtualRegister(SDL, I, VMI->second));
    }

  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
  // ensure constants are generated when needed.  Remember the virtual registers
  // that need to be added to the Machine PHI nodes as input.  We cannot just
  // directly add them, because expansion might result in multiple MBB's for one
  // BB.  As such, the start of the BB might correspond to a different MBB than
  // the end.
  //

  // Emit constants only once even if used by multiple PHI nodes.
  std::map<Constant*, unsigned> ConstantsOut;

  // Check successor nodes PHI nodes that expect a constant to be available from
  // this block.
  TerminatorInst *TI = LLVMBB->getTerminator();
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
    BasicBlock *SuccBB = TI->getSuccessor(succ);
    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
    PHINode *PN;

    // At this point we know that there is a 1-1 correspondence between LLVM PHI
    // nodes and Machine PHI nodes, but the incoming operands have not been
    // emitted yet.
    for (BasicBlock::iterator I = SuccBB->begin();
         (PN = dyn_cast<PHINode>(I)); ++I)
      if (!PN->use_empty()) {
        unsigned Reg;
        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
          unsigned &RegOut = ConstantsOut[C];
          if (RegOut == 0) {
            RegOut = FuncInfo.CreateRegForValue(C);
            UnorderedChains.push_back(
                             CopyValueToVirtualRegister(SDL, C, RegOut));
          }
          Reg = RegOut;
        } else {
          Reg = FuncInfo.ValueMap[PHIOp];
          if (Reg == 0) {
            assert(isa<AllocaInst>(PHIOp) &&
                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
                   "Didn't codegen value into a register!??");
            Reg = FuncInfo.CreateRegForValue(PHIOp);
            UnorderedChains.push_back(
                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
          }
        }

        // Remember that this register needs to added to the machine PHI node as
        // the input for this MBB.
        unsigned NumElements =
          TLI.getNumElements(TLI.getValueType(PN->getType()));
        for (unsigned i = 0, e = NumElements; i != e; ++i)
          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
      }
  }
  ConstantsOut.clear();

  // Turn all of the unordered chains into one factored node.
  if (!UnorderedChains.empty()) {
    SDOperand Root = SDL.getRoot();
    if (Root.getOpcode() != ISD::EntryToken) {
      unsigned i = 0, e = UnorderedChains.size();
      for (; i != e; ++i) {
        assert(UnorderedChains[i].Val->getNumOperands() > 1);
        if (UnorderedChains[i].Val->getOperand(0) == Root)
          break;  // Don't add the root if we already indirectly depend on it.
      }
        
      if (i == e)
        UnorderedChains.push_back(Root);
    }
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
  }

  // Lower the terminator after the copies are emitted.
  SDL.visit(*LLVMBB->getTerminator());

  // Make sure the root of the DAG is up-to-date.
  DAG.setRoot(SDL.getRoot());
}

void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
                                        FunctionLoweringInfo &FuncInfo) {
  SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
  CurDAG = &DAG;
  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;

  // First step, lower LLVM code to some DAG.  This DAG may use operations and
  // types that are not supported by the target.
  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);

  // Run the DAG combiner in pre-legalize mode.
  DAG.Combine(false);
  
  DEBUG(std::cerr << "Lowered selection DAG:\n");
  DEBUG(DAG.dump());

  // Second step, hack on the DAG until it only uses operations and types that
  // the target supports.
  DAG.Legalize();

  DEBUG(std::cerr << "Legalized selection DAG:\n");
  DEBUG(DAG.dump());

  // Run the DAG combiner in post-legalize mode.
  DAG.Combine(true);
  
  if (ViewDAGs) DAG.viewGraph();
  
  // Third, instruction select all of the operations to machine code, adding the
  // code to the MachineBasicBlock.
  InstructionSelectBasicBlock(DAG);

  DEBUG(std::cerr << "Selected machine code:\n");
  DEBUG(BB->dump());

  // Next, now that we know what the last MBB the LLVM BB expanded is, update
  // PHI nodes in successors.
  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
    MachineInstr *PHI = PHINodesToUpdate[i].first;
    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
           "This is not a machine PHI node that we are updating!");
    PHI->addRegOperand(PHINodesToUpdate[i].second);
    PHI->addMachineBasicBlockOperand(BB);
  }

  // Finally, add the CFG edges from the last selected MBB to the successor
  // MBBs.
  TerminatorInst *TI = LLVMBB->getTerminator();
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
    BB->addSuccessor(Succ0MBB);
  }
}