aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
blob: 1697ad39fff880707cd8eb713b615dd517207d3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAGISel class.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "isel"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <map>
#include <iostream>
using namespace llvm;

#ifndef _NDEBUG
static cl::opt<bool>
ViewDAGs("view-isel-dags", cl::Hidden,
         cl::desc("Pop up a window to show isel dags as they are selected"));
#else
static const bool ViewDAGS = 0;
#endif

namespace llvm {
  //===--------------------------------------------------------------------===//
  /// FunctionLoweringInfo - This contains information that is global to a
  /// function that is used when lowering a region of the function.
  class FunctionLoweringInfo {
  public:
    TargetLowering &TLI;
    Function &Fn;
    MachineFunction &MF;
    SSARegMap *RegMap;

    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);

    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;

    /// ValueMap - Since we emit code for the function a basic block at a time,
    /// we must remember which virtual registers hold the values for
    /// cross-basic-block values.
    std::map<const Value*, unsigned> ValueMap;

    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
    /// the entry block.  This allows the allocas to be efficiently referenced
    /// anywhere in the function.
    std::map<const AllocaInst*, int> StaticAllocaMap;

    /// BlockLocalArguments - If any arguments are only used in a single basic
    /// block, and if the target can access the arguments without side-effects,
    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
    /// track of which arguments are local to each BB.
    std::multimap<BasicBlock*, std::pair<Argument*,
                                         unsigned> > BlockLocalArguments;


    unsigned MakeReg(MVT::ValueType VT) {
      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
    }

    unsigned CreateRegForValue(const Value *V) {
      MVT::ValueType VT = TLI.getValueType(V->getType());
      // The common case is that we will only create one register for this
      // value.  If we have that case, create and return the virtual register.
      unsigned NV = TLI.getNumElements(VT);
      if (NV == 1) {
        // If we are promoting this value, pick the next largest supported type.
        return MakeReg(TLI.getTypeToTransformTo(VT));
      }

      // If this value is represented with multiple target registers, make sure
      // to create enough consequtive registers of the right (smaller) type.
      unsigned NT = VT-1;  // Find the type to use.
      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
        --NT;

      unsigned R = MakeReg((MVT::ValueType)NT);
      for (unsigned i = 1; i != NV; ++i)
        MakeReg((MVT::ValueType)NT);
      return R;
    }

    unsigned InitializeRegForValue(const Value *V) {
      unsigned &R = ValueMap[V];
      assert(R == 0 && "Already initialized this value register!");
      return R = CreateRegForValue(V);
    }
  };
}

/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it.
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
  if (isa<PHINode>(I)) return true;
  BasicBlock *BB = I->getParent();
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
      return true;
  return false;
}

FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
                                           Function &fn, MachineFunction &mf)
    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {

  // Initialize the mapping of values to registers.  This is only set up for
  // instruction values that are used outside of the block that defines
  // them.
  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); AI != E; ++AI)
    InitializeRegForValue(AI);

  Function::iterator BB = Fn.begin(), E = Fn.end();
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
        const Type *Ty = AI->getAllocatedType();
        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
        TySize *= CUI->getValue();   // Get total allocated size.
        StaticAllocaMap[AI] =
          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
      }

  for (; BB != E; ++BB)
    for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
        if (!isa<AllocaInst>(I) ||
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
          InitializeRegForValue(I);

  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
  // also creates the initial PHI MachineInstrs, though none of the input
  // operands are populated.
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
    MBBMap[BB] = MBB;
    MF.getBasicBlockList().push_back(MBB);

    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    // appropriate.
    PHINode *PN;
    for (BasicBlock::iterator I = BB->begin();
         (PN = dyn_cast<PHINode>(I)); ++I)
      if (!PN->use_empty()) {
        unsigned NumElements =
          TLI.getNumElements(TLI.getValueType(PN->getType()));
        unsigned PHIReg = ValueMap[PN];
        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
        for (unsigned i = 0; i != NumElements; ++i)
          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
      }
  }
}



//===----------------------------------------------------------------------===//
/// SelectionDAGLowering - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
/// Also, targets can overload any lowering method.
///
namespace llvm {
class SelectionDAGLowering {
  MachineBasicBlock *CurMBB;

  std::map<const Value*, SDOperand> NodeMap;

  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
  /// them up and then emit token factor nodes when possible.  This allows us to
  /// get simple disambiguation between loads without worrying about alias
  /// analysis.
  std::vector<SDOperand> PendingLoads;

public:
  // TLI - This is information that describes the available target features we
  // need for lowering.  This indicates when operations are unavailable,
  // implemented with a libcall, etc.
  TargetLowering &TLI;
  SelectionDAG &DAG;
  const TargetData &TD;

  /// FuncInfo - Information about the function as a whole.
  ///
  FunctionLoweringInfo &FuncInfo;

  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
                       FunctionLoweringInfo &funcinfo)
    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
      FuncInfo(funcinfo) {
  }

  /// getRoot - Return the current virtual root of the Selection DAG.
  ///
  SDOperand getRoot() {
    if (PendingLoads.empty())
      return DAG.getRoot();

    if (PendingLoads.size() == 1) {
      SDOperand Root = PendingLoads[0];
      DAG.setRoot(Root);
      PendingLoads.clear();
      return Root;
    }

    // Otherwise, we have to make a token factor node.
    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
    PendingLoads.clear();
    DAG.setRoot(Root);
    return Root;
  }

  void visit(Instruction &I) { visit(I.getOpcode(), I); }

  void visit(unsigned Opcode, User &I) {
    switch (Opcode) {
    default: assert(0 && "Unknown instruction type encountered!");
             abort();
      // Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS) \
    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
#include "llvm/Instruction.def"
    }
  }

  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }


  SDOperand getIntPtrConstant(uint64_t Val) {
    return DAG.getConstant(Val, TLI.getPointerTy());
  }

  SDOperand getValue(const Value *V) {
    SDOperand &N = NodeMap[V];
    if (N.Val) return N;

    MVT::ValueType VT = TLI.getValueType(V->getType());
    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
        visit(CE->getOpcode(), *CE);
        assert(N.Val && "visit didn't populate the ValueMap!");
        return N;
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
        return N = DAG.getGlobalAddress(GV, VT);
      } else if (isa<ConstantPointerNull>(C)) {
        return N = DAG.getConstant(0, TLI.getPointerTy());
      } else if (isa<UndefValue>(C)) {
        return N = DAG.getNode(ISD::UNDEF, VT);
      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
        return N = DAG.getConstantFP(CFP->getValue(), VT);
      } else {
        // Canonicalize all constant ints to be unsigned.
        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
      }

    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
      std::map<const AllocaInst*, int>::iterator SI =
        FuncInfo.StaticAllocaMap.find(AI);
      if (SI != FuncInfo.StaticAllocaMap.end())
        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
    }

    std::map<const Value*, unsigned>::const_iterator VMI =
      FuncInfo.ValueMap.find(V);
    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");

    return N = DAG.getCopyFromReg(VMI->second, VT, DAG.getEntryNode());
  }

  const SDOperand &setValue(const Value *V, SDOperand NewN) {
    SDOperand &N = NodeMap[V];
    assert(N.Val == 0 && "Already set a value for this node!");
    return N = NewN;
  }

  // Terminator instructions.
  void visitRet(ReturnInst &I);
  void visitBr(BranchInst &I);
  void visitUnreachable(UnreachableInst &I) { /* noop */ }

  // These all get lowered before this pass.
  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }

  //
  void visitBinary(User &I, unsigned Opcode);
  void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
  void visitSub(User &I);
  void visitMul(User &I) { visitBinary(I, ISD::MUL); }
  void visitDiv(User &I) {
    visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
  }
  void visitRem(User &I) {
    visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
  }
  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
  void visitOr (User &I) { visitBinary(I, ISD::OR); }
  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
  void visitShl(User &I) { visitBinary(I, ISD::SHL); }
  void visitShr(User &I) {
    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
  }

  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }

  void visitGetElementPtr(User &I);
  void visitCast(User &I);
  void visitSelect(User &I);
  //

  void visitMalloc(MallocInst &I);
  void visitFree(FreeInst &I);
  void visitAlloca(AllocaInst &I);
  void visitLoad(LoadInst &I);
  void visitStore(StoreInst &I);
  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
  void visitCall(CallInst &I);

  void visitVAStart(CallInst &I);
  void visitVANext(VANextInst &I);
  void visitVAArg(VAArgInst &I);
  void visitVAEnd(CallInst &I);
  void visitVACopy(CallInst &I);
  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);

  void visitMemIntrinsic(CallInst &I, unsigned Op);

  void visitUserOp1(Instruction &I) {
    assert(0 && "UserOp1 should not exist at instruction selection time!");
    abort();
  }
  void visitUserOp2(Instruction &I) {
    assert(0 && "UserOp2 should not exist at instruction selection time!");
    abort();
  }
};
} // end namespace llvm

void SelectionDAGLowering::visitRet(ReturnInst &I) {
  if (I.getNumOperands() == 0) {
    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
    return;
  }

  SDOperand Op1 = getValue(I.getOperand(0));
  MVT::ValueType TmpVT;

  switch (Op1.getValueType()) {
  default: assert(0 && "Unknown value type!");
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    // If this is a machine where 32-bits is legal or expanded, promote to
    // 32-bits, otherwise, promote to 64-bits.
    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
    else
      TmpVT = MVT::i32;

    // Extend integer types to result type.
    if (I.getOperand(0)->getType()->isSigned())
      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
    else
      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
    break;
  case MVT::f32:
    // Extend float to double.
    Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1);
    break;
  case MVT::i64:
  case MVT::f64:
    break; // No extension needed!
  }

  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
}

void SelectionDAGLowering::visitBr(BranchInst &I) {
  // Update machine-CFG edges.
  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];

  // Figure out which block is immediately after the current one.
  MachineBasicBlock *NextBlock = 0;
  MachineFunction::iterator BBI = CurMBB;
  if (++BBI != CurMBB->getParent()->end())
    NextBlock = BBI;

  if (I.isUnconditional()) {
    // If this is not a fall-through branch, emit the branch.
    if (Succ0MBB != NextBlock)
      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
                              DAG.getBasicBlock(Succ0MBB)));
  } else {
    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];

    SDOperand Cond = getValue(I.getCondition());
    if (Succ1MBB == NextBlock) {
      // If the condition is false, fall through.  This means we should branch
      // if the condition is true to Succ #0.
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
                              Cond, DAG.getBasicBlock(Succ0MBB)));
    } else if (Succ0MBB == NextBlock) {
      // If the condition is true, fall through.  This means we should branch if
      // the condition is false to Succ #1.  Invert the condition first.
      SDOperand True = DAG.getConstant(1, Cond.getValueType());
      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
                              Cond, DAG.getBasicBlock(Succ1MBB)));
    } else {
      std::vector<SDOperand> Ops;
      Ops.push_back(getRoot());
      Ops.push_back(Cond);
      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
    }
  }
}

void SelectionDAGLowering::visitSub(User &I) {
  // -0.0 - X --> fneg
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
    if (CFP->isExactlyValue(-0.0)) {
      SDOperand Op2 = getValue(I.getOperand(1));
      setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
      return;
    }

  visitBinary(I, ISD::SUB);
}

void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
  SDOperand Op1 = getValue(I.getOperand(0));
  SDOperand Op2 = getValue(I.getOperand(1));

  if (isa<ShiftInst>(I))
    Op2 = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), Op2);

  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
}

void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
                                      ISD::CondCode UnsignedOpcode) {
  SDOperand Op1 = getValue(I.getOperand(0));
  SDOperand Op2 = getValue(I.getOperand(1));
  ISD::CondCode Opcode = SignedOpcode;
  if (I.getOperand(0)->getType()->isUnsigned())
    Opcode = UnsignedOpcode;
  setValue(&I, DAG.getSetCC(Opcode, MVT::i1, Op1, Op2));
}

void SelectionDAGLowering::visitSelect(User &I) {
  SDOperand Cond     = getValue(I.getOperand(0));
  SDOperand TrueVal  = getValue(I.getOperand(1));
  SDOperand FalseVal = getValue(I.getOperand(2));
  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
                           TrueVal, FalseVal));
}

void SelectionDAGLowering::visitCast(User &I) {
  SDOperand N = getValue(I.getOperand(0));
  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
  MVT::ValueType DestTy = TLI.getValueType(I.getType());

  if (N.getValueType() == DestTy) {
    setValue(&I, N);  // noop cast.
  } else if (isInteger(SrcTy)) {
    if (isInteger(DestTy)) {        // Int -> Int cast
      if (DestTy < SrcTy)   // Truncating cast?
        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
      else if (I.getOperand(0)->getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
    } else {                        // Int -> FP cast
      if (I.getOperand(0)->getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
    }
  } else {
    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
      if (DestTy < SrcTy)   // Rounding cast?
        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
    } else {                        // FP -> Int cast.
      if (I.getType()->isSigned())
        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
      else
        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
    }
  }
}

void SelectionDAGLowering::visitGetElementPtr(User &I) {
  SDOperand N = getValue(I.getOperand(0));
  const Type *Ty = I.getOperand(0)->getType();
  const Type *UIntPtrTy = TD.getIntPtrType();

  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
       OI != E; ++OI) {
    Value *Idx = *OI;
    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
      if (Field) {
        // N = N + Offset
        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
                        getIntPtrConstant(Offset));
      }
      Ty = StTy->getElementType(Field);
    } else {
      Ty = cast<SequentialType>(Ty)->getElementType();
      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
        // N = N + Idx * ElementSize;
        uint64_t ElementSize = TD.getTypeSize(Ty);
        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);

        // If the index is smaller or larger than intptr_t, truncate or extend
        // it.
        if (IdxN.getValueType() < Scale.getValueType()) {
          if (Idx->getType()->isSigned())
            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
          else
            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
        } else if (IdxN.getValueType() > Scale.getValueType())
          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);

        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
      }
    }
  }
  setValue(&I, N);
}

void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
  // If this is a fixed sized alloca in the entry block of the function,
  // allocate it statically on the stack.
  if (FuncInfo.StaticAllocaMap.count(&I))
    return;   // getValue will auto-populate this.

  const Type *Ty = I.getAllocatedType();
  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);

  SDOperand AllocSize = getValue(I.getArraySize());
  MVT::ValueType IntPtr = TLI.getPointerTy();
  if (IntPtr < AllocSize.getValueType())
    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
  else if (IntPtr > AllocSize.getValueType())
    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);

  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
                          getIntPtrConstant(TySize));

  // Handle alignment.  If the requested alignment is less than or equal to the
  // stack alignment, ignore it and round the size of the allocation up to the
  // stack alignment size.  If the size is greater than the stack alignment, we
  // note this in the DYNAMIC_STACKALLOC node.
  unsigned StackAlign =
    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
  if (Align <= StackAlign) {
    Align = 0;
    // Add SA-1 to the size.
    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
                            getIntPtrConstant(StackAlign-1));
    // Mask out the low bits for alignment purposes.
    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
  }

  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(),
                              getRoot(), AllocSize,
                              getIntPtrConstant(Align));
  DAG.setRoot(setValue(&I, DSA).getValue(1));

  // Inform the Frame Information that we have just allocated a variable-sized
  // object.
  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
}


void SelectionDAGLowering::visitLoad(LoadInst &I) {
  SDOperand Ptr = getValue(I.getOperand(0));

  SDOperand Root;
  if (I.isVolatile())
    Root = getRoot();
  else {
    // Do not serialize non-volatile loads against each other.
    Root = DAG.getRoot();
  }

  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr);
  setValue(&I, L);

  if (I.isVolatile())
    DAG.setRoot(L.getValue(1));
  else
    PendingLoads.push_back(L.getValue(1));
}


void SelectionDAGLowering::visitStore(StoreInst &I) {
  Value *SrcV = I.getOperand(0);
  SDOperand Src = getValue(SrcV);
  SDOperand Ptr = getValue(I.getOperand(1));
  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr));
}

void SelectionDAGLowering::visitCall(CallInst &I) {
  const char *RenameFn = 0;
  if (Function *F = I.getCalledFunction())
    if (F->isExternal())
      switch (F->getIntrinsicID()) {
      case 0:     // Not an LLVM intrinsic.
        if (F->getName() == "fabs" || F->getName() == "fabsf") {
          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
              I.getOperand(1)->getType()->isFloatingPoint() &&
              I.getType() == I.getOperand(1)->getType()) {
            SDOperand Tmp = getValue(I.getOperand(1));
            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
            return;
          }
        }
        break;
      case Intrinsic::vastart:  visitVAStart(I); return;
      case Intrinsic::vaend:    visitVAEnd(I); return;
      case Intrinsic::vacopy:   visitVACopy(I); return;
      case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
      case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
      default:
        // FIXME: IMPLEMENT THESE.
        // readport, writeport, readio, writeio
        assert(0 && "This intrinsic is not implemented yet!");
        return;
      case Intrinsic::setjmp:  RenameFn = "setjmp"; break;
      case Intrinsic::longjmp: RenameFn = "longjmp"; break;
      case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
      case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
      case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;

      case Intrinsic::isunordered:
        setValue(&I, DAG.getSetCC(ISD::SETUO, MVT::i1,getValue(I.getOperand(1)),
                                  getValue(I.getOperand(2))));
        return;
      case Intrinsic::pcmarker: {
        SDOperand Num = getValue(I.getOperand(1));
        DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Num));
        return;
      }
      }

  SDOperand Callee;
  if (!RenameFn)
    Callee = getValue(I.getOperand(0));
  else
    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
  std::vector<std::pair<SDOperand, const Type*> > Args;

  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
    Value *Arg = I.getOperand(i);
    SDOperand ArgNode = getValue(Arg);
    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
  }

  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());

  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), Callee, Args, DAG);
  if (I.getType() != Type::VoidTy)
    setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitMalloc(MallocInst &I) {
  SDOperand Src = getValue(I.getOperand(0));

  MVT::ValueType IntPtr = TLI.getPointerTy();

  if (IntPtr < Src.getValueType())
    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
  else if (IntPtr > Src.getValueType())
    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);

  // Scale the source by the type size.
  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
                    Src, getIntPtrConstant(ElementSize));

  std::vector<std::pair<SDOperand, const Type*> > Args;
  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));

  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), I.getType(), false,
                    DAG.getExternalSymbol("malloc", IntPtr),
                    Args, DAG);
  setValue(&I, Result.first);  // Pointers always fit in registers
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitFree(FreeInst &I) {
  std::vector<std::pair<SDOperand, const Type*> > Args;
  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
                                TLI.getTargetData().getIntPtrType()));
  MVT::ValueType IntPtr = TLI.getPointerTy();
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerCallTo(getRoot(), Type::VoidTy, false,
                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
  DAG.setRoot(Result.second);
}

std::pair<SDOperand, SDOperand>
TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
  // We have no sane default behavior, just emit a useful error message and bail
  // out.
  std::cerr << "Variable arguments handling not implemented on this target!\n";
  abort();
  return std::make_pair(SDOperand(), SDOperand());
}

SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand L,
                                     SelectionDAG &DAG) {
  // Default to a noop.
  return Chain;
}

std::pair<SDOperand,SDOperand>
TargetLowering::LowerVACopy(SDOperand Chain, SDOperand L, SelectionDAG &DAG) {
  // Default to returning the input list.
  return std::make_pair(L, Chain);
}

std::pair<SDOperand,SDOperand>
TargetLowering::LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
                               const Type *ArgTy, SelectionDAG &DAG) {
  // We have no sane default behavior, just emit a useful error message and bail
  // out.
  std::cerr << "Variable arguments handling not implemented on this target!\n";
  abort();
  return std::make_pair(SDOperand(), SDOperand());
}


void SelectionDAGLowering::visitVAStart(CallInst &I) {
  std::pair<SDOperand,SDOperand> Result = TLI.LowerVAStart(getRoot(), DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerVAArgNext(false, getRoot(), getValue(I.getOperand(0)),
                       I.getType(), DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitVANext(VANextInst &I) {
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerVAArgNext(true, getRoot(), getValue(I.getOperand(0)),
                       I.getArgType(), DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitVAEnd(CallInst &I) {
  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)), DAG));
}

void SelectionDAGLowering::visitVACopy(CallInst &I) {
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(1)), DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}


// It is always conservatively correct for llvm.returnaddress and
// llvm.frameaddress to return 0.
std::pair<SDOperand, SDOperand>
TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
                                        unsigned Depth, SelectionDAG &DAG) {
  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
}

SDOperand TargetLowering::LowerOperation(SDOperand Op) {
  assert(0 && "LowerOperation not implemented for this target!");
  abort();
  return SDOperand();
}

void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
  std::pair<SDOperand,SDOperand> Result =
    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
  setValue(&I, Result.first);
  DAG.setRoot(Result.second);
}

void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
  std::vector<SDOperand> Ops;
  Ops.push_back(getRoot());
  Ops.push_back(getValue(I.getOperand(1)));
  Ops.push_back(getValue(I.getOperand(2)));
  Ops.push_back(getValue(I.getOperand(3)));
  Ops.push_back(getValue(I.getOperand(4)));
  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
}

//===----------------------------------------------------------------------===//
// SelectionDAGISel code
//===----------------------------------------------------------------------===//

unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
}



bool SelectionDAGISel::runOnFunction(Function &Fn) {
  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
  RegMap = MF.getSSARegMap();
  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");

  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);

  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
    SelectBasicBlock(I, MF, FuncInfo);

  return true;
}


SDOperand SelectionDAGISel::
CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
  SelectionDAG &DAG = SDL.DAG;
  SDOperand Op = SDL.getValue(V);
  assert((Op.getOpcode() != ISD::CopyFromReg ||
          cast<RegSDNode>(Op)->getReg() != Reg) &&
         "Copy from a reg to the same reg!");
  return DAG.getCopyToReg(SDL.getRoot(), Op, Reg);
}

/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
/// single basic block, return that block.  Otherwise, return a null pointer.
static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
  if (A->use_empty()) return 0;
  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
       ++UI)
    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
      return 0;  // Disagreement among the users?

  // Okay, there is a single BB user.  Only permit this optimization if this is
  // the entry block, otherwise, we might sink argument loads into loops and
  // stuff.  Later, when we have global instruction selection, this won't be an
  // issue clearly.
  if (BB == BB->getParent()->begin())
    return BB;
  return 0;
}

void SelectionDAGISel::
LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
               std::vector<SDOperand> &UnorderedChains) {
  // If this is the entry block, emit arguments.
  Function &F = *BB->getParent();
  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;

  if (BB == &F.front()) {
    SDOperand OldRoot = SDL.DAG.getRoot();

    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);

    // If there were side effects accessing the argument list, do not do
    // anything special.
    if (OldRoot != SDL.DAG.getRoot()) {
      unsigned a = 0;
      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
           AI != E; ++AI,++a)
        if (!AI->use_empty()) {
          SDL.setValue(AI, Args[a]);
          SDOperand Copy =
            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
          UnorderedChains.push_back(Copy);
        }
    } else {
      // Otherwise, if any argument is only accessed in a single basic block,
      // emit that argument only to that basic block.
      unsigned a = 0;
      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
           AI != E; ++AI,++a)
        if (!AI->use_empty()) {
          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
                                                      std::make_pair(AI, a)));
          } else {
            SDL.setValue(AI, Args[a]);
            SDOperand Copy =
              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
            UnorderedChains.push_back(Copy);
          }
        }
    }
  }

  // See if there are any block-local arguments that need to be emitted in this
  // block.

  if (!FuncInfo.BlockLocalArguments.empty()) {
    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
      FuncInfo.BlockLocalArguments.lower_bound(BB);
    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
      // Lower the arguments into this block.
      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);

      // Set up the value mapping for the local arguments.
      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
           ++BLAI)
        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);

      // Any dead arguments will just be ignored here.
    }
  }
}


void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
                                    FunctionLoweringInfo &FuncInfo) {
  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);

  std::vector<SDOperand> UnorderedChains;

  // Lower any arguments needed in this block.
  LowerArguments(LLVMBB, SDL, UnorderedChains);

  BB = FuncInfo.MBBMap[LLVMBB];
  SDL.setCurrentBasicBlock(BB);

  // Lower all of the non-terminator instructions.
  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
       I != E; ++I)
    SDL.visit(*I);

  // Ensure that all instructions which are used outside of their defining
  // blocks are available as virtual registers.
  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
    if (!I->use_empty() && !isa<PHINode>(I)) {
      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
      if (VMI != FuncInfo.ValueMap.end())
        UnorderedChains.push_back(
                           CopyValueToVirtualRegister(SDL, I, VMI->second));
    }

  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
  // ensure constants are generated when needed.  Remember the virtual registers
  // that need to be added to the Machine PHI nodes as input.  We cannot just
  // directly add them, because expansion might result in multiple MBB's for one
  // BB.  As such, the start of the BB might correspond to a different MBB than
  // the end.
  //

  // Emit constants only once even if used by multiple PHI nodes.
  std::map<Constant*, unsigned> ConstantsOut;

  // Check successor nodes PHI nodes that expect a constant to be available from
  // this block.
  TerminatorInst *TI = LLVMBB->getTerminator();
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
    BasicBlock *SuccBB = TI->getSuccessor(succ);
    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
    PHINode *PN;

    // At this point we know that there is a 1-1 correspondence between LLVM PHI
    // nodes and Machine PHI nodes, but the incoming operands have not been
    // emitted yet.
    for (BasicBlock::iterator I = SuccBB->begin();
         (PN = dyn_cast<PHINode>(I)); ++I)
      if (!PN->use_empty()) {
        unsigned Reg;
        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
          unsigned &RegOut = ConstantsOut[C];
          if (RegOut == 0) {
            RegOut = FuncInfo.CreateRegForValue(C);
            UnorderedChains.push_back(
                             CopyValueToVirtualRegister(SDL, C, RegOut));
          }
          Reg = RegOut;
        } else {
          Reg = FuncInfo.ValueMap[PHIOp];
          if (Reg == 0) {
            assert(isa<AllocaInst>(PHIOp) &&
                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
                   "Didn't codegen value into a register!??");
            Reg = FuncInfo.CreateRegForValue(PHIOp);
            UnorderedChains.push_back(
                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
          }
        }

        // Remember that this register needs to added to the machine PHI node as
        // the input for this MBB.
        unsigned NumElements =
          TLI.getNumElements(TLI.getValueType(PN->getType()));
        for (unsigned i = 0, e = NumElements; i != e; ++i)
          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
      }
  }
  ConstantsOut.clear();

  // Turn all of the unordered chains into one factored node.
  if (!UnorderedChains.empty()) {
    UnorderedChains.push_back(SDL.getRoot());
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
  }

  // Lower the terminator after the copies are emitted.
  SDL.visit(*LLVMBB->getTerminator());

  // Make sure the root of the DAG is up-to-date.
  DAG.setRoot(SDL.getRoot());
}

void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
                                        FunctionLoweringInfo &FuncInfo) {
  SelectionDAG DAG(TLI, MF);
  CurDAG = &DAG;
  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;

  // First step, lower LLVM code to some DAG.  This DAG may use operations and
  // types that are not supported by the target.
  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);

  DEBUG(std::cerr << "Lowered selection DAG:\n");
  DEBUG(DAG.dump());

  // Second step, hack on the DAG until it only uses operations and types that
  // the target supports.
  DAG.Legalize();

  DEBUG(std::cerr << "Legalized selection DAG:\n");
  DEBUG(DAG.dump());

  // Third, instruction select all of the operations to machine code, adding the
  // code to the MachineBasicBlock.
  InstructionSelectBasicBlock(DAG);

  if (ViewDAGs) DAG.viewGraph();

  DEBUG(std::cerr << "Selected machine code:\n");
  DEBUG(BB->dump());

  // Next, now that we know what the last MBB the LLVM BB expanded is, update
  // PHI nodes in successors.
  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
    MachineInstr *PHI = PHINodesToUpdate[i].first;
    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
           "This is not a machine PHI node that we are updating!");
    PHI->addRegOperand(PHINodesToUpdate[i].second);
    PHI->addMachineBasicBlockOperand(BB);
  }

  // Finally, add the CFG edges from the last selected MBB to the successor
  // MBBs.
  TerminatorInst *TI = LLVMBB->getTerminator();
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
    BB->addSuccessor(Succ0MBB);
  }
}