aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SelectionDAG/TargetLowering.cpp
blob: 81e7785a847655fc6d6ee1e747385148f29b83a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLowering class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;

TargetLowering::TargetLowering(TargetMachine &tm)
  : TM(tm), TD(TM.getTargetData()) {
  assert(ISD::BUILTIN_OP_END <= 156 &&
         "Fixed size array in TargetLowering is not large enough!");
  // All operations default to being supported.
  memset(OpActions, 0, sizeof(OpActions));

  IsLittleEndian = TD->isLittleEndian();
  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
  ShiftAmtHandling = Undefined;
  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
  memset(TargetDAGCombineArray, 0, 
         sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
  allowUnalignedMemoryAccesses = false;
  UseUnderscoreSetJmpLongJmp = false;
  IntDivIsCheap = false;
  Pow2DivIsCheap = false;
  StackPointerRegisterToSaveRestore = 0;
  SchedPreferenceInfo = SchedulingForLatency;
}

TargetLowering::~TargetLowering() {}

/// setValueTypeAction - Set the action for a particular value type.  This
/// assumes an action has not already been set for this value type.
static void SetValueTypeAction(MVT::ValueType VT,
                               TargetLowering::LegalizeAction Action,
                               TargetLowering &TLI,
                               MVT::ValueType *TransformToType,
                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
  ValueTypeActions.setTypeAction(VT, Action);
  if (Action == TargetLowering::Promote) {
    MVT::ValueType PromoteTo;
    if (VT == MVT::f32)
      PromoteTo = MVT::f64;
    else {
      unsigned LargerReg = VT+1;
      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
        ++LargerReg;
        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
               "Nothing to promote to??");
      }
      PromoteTo = (MVT::ValueType)LargerReg;
    }

    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
           "Can only promote from int->int or fp->fp!");
    assert(VT < PromoteTo && "Must promote to a larger type!");
    TransformToType[VT] = PromoteTo;
  } else if (Action == TargetLowering::Expand) {
    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
           "Cannot expand this type: target must support SOME integer reg!");
    // Expand to the next smaller integer type!
    TransformToType[VT] = (MVT::ValueType)(VT-1);
  }
}


/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void TargetLowering::computeRegisterProperties() {
  assert(MVT::LAST_VALUETYPE <= 32 &&
         "Too many value types for ValueTypeActions to hold!");

  // Everything defaults to one.
  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
    NumElementsForVT[i] = 1;

  // Find the largest integer register class.
  unsigned LargestIntReg = MVT::i128;
  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");

  // Every integer value type larger than this largest register takes twice as
  // many registers to represent as the previous ValueType.
  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];

  // Inspect all of the ValueType's possible, deciding how to process them.
  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
    // If we are expanding this type, expand it!
    if (getNumElements((MVT::ValueType)IntReg) != 1)
      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
                         ValueTypeActions);
    else if (!isTypeLegal((MVT::ValueType)IntReg))
      // Otherwise, if we don't have native support, we must promote to a
      // larger type.
      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
                         TransformToType, ValueTypeActions);
    else
      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;

  // If the target does not have native support for F32, promote it to F64.
  if (!isTypeLegal(MVT::f32))
    SetValueTypeAction(MVT::f32, Promote, *this,
                       TransformToType, ValueTypeActions);
  else
    TransformToType[MVT::f32] = MVT::f32;
  
  // Set MVT::Vector to always be Expanded
  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, 
                     ValueTypeActions);
  
  // Loop over all of the legal vector value types, specifying an identity type
  // transformation.
  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
    if (isTypeLegal((MVT::ValueType)i))
      TransformToType[i] = (MVT::ValueType)i;
  }

  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
  TransformToType[MVT::f64] = MVT::f64;
}

const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
  return NULL;
}

/// getPackedTypeBreakdown - Packed types are broken down into some number of
/// legal scalar types.  For example, <8 x float> maps to 2 MVT::v2f32 values
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
///
/// This method returns the number and type of the resultant breakdown.
///
unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy, 
                                                MVT::ValueType &PTyElementVT,
                                      MVT::ValueType &PTyLegalElementVT) const {
  // Figure out the right, legal destination reg to copy into.
  unsigned NumElts = PTy->getNumElements();
  MVT::ValueType EltTy = getValueType(PTy->getElementType());
  
  unsigned NumVectorRegs = 1;
  
  // Divide the input until we get to a supported size.  This will always
  // end with a scalar if the target doesn't support vectors.
  while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
    NumElts >>= 1;
    NumVectorRegs <<= 1;
  }
  
  MVT::ValueType VT;
  if (NumElts == 1) {
    VT = EltTy;
  } else {
    VT = getVectorType(EltTy, NumElts); 
  }
  PTyElementVT = VT;

  MVT::ValueType DestVT = getTypeToTransformTo(VT);
  PTyLegalElementVT = DestVT;
  if (DestVT < VT) {
    // Value is expanded, e.g. i64 -> i16.
    return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
  } else {
    // Otherwise, promotion or legal types use the same number of registers as
    // the vector decimated to the appropriate level.
    return NumVectorRegs;
  }
  
  return DestVT;
}

//===----------------------------------------------------------------------===//
//  Optimization Methods
//===----------------------------------------------------------------------===//

/// ShrinkDemandedConstant - Check to see if the specified operand of the 
/// specified instruction is a constant integer.  If so, check to see if there
/// are any bits set in the constant that are not demanded.  If so, shrink the
/// constant and return true.
bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, 
                                                            uint64_t Demanded) {
  // FIXME: ISD::SELECT, ISD::SELECT_CC
  switch(Op.getOpcode()) {
  default: break;
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
      if ((~Demanded & C->getValue()) != 0) {
        MVT::ValueType VT = Op.getValueType();
        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
                                    DAG.getConstant(Demanded & C->getValue(), 
                                                    VT));
        return CombineTo(Op, New);
      }
    break;
  }
  return false;
}

/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
/// DemandedMask bits of the result of Op are ever used downstream.  If we can
/// use this information to simplify Op, create a new simplified DAG node and
/// return true, returning the original and new nodes in Old and New. Otherwise,
/// analyze the expression and return a mask of KnownOne and KnownZero bits for
/// the expression (used to simplify the caller).  The KnownZero/One bits may
/// only be accurate for those bits in the DemandedMask.
bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, 
                                          uint64_t &KnownZero,
                                          uint64_t &KnownOne,
                                          TargetLoweringOpt &TLO,
                                          unsigned Depth) const {
  KnownZero = KnownOne = 0;   // Don't know anything.
  // Other users may use these bits.
  if (!Op.Val->hasOneUse()) { 
    if (Depth != 0) {
      // If not at the root, Just compute the KnownZero/KnownOne bits to 
      // simplify things downstream.
      ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
      return false;
    }
    // If this is the root being simplified, allow it to have multiple uses,
    // just set the DemandedMask to all bits.
    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
  } else if (DemandedMask == 0) {   
    // Not demanding any bits from Op.
    if (Op.getOpcode() != ISD::UNDEF)
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
    return false;
  } else if (Depth == 6) {        // Limit search depth.
    return false;
  }

  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
  switch (Op.getOpcode()) {
  case ISD::Constant:
    // We know all of the bits for a constant!
    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
    KnownZero = ~KnownOne & DemandedMask;
    return false;   // Don't fall through, will infinitely loop.
  case ISD::AND:
    // If the RHS is a constant, check to see if the LHS would be zero without
    // using the bits from the RHS.  Below, we use knowledge about the RHS to
    // simplify the LHS, here we're using information from the LHS to simplify
    // the RHS.
    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      uint64_t LHSZero, LHSOne;
      ComputeMaskedBits(Op.getOperand(0), DemandedMask,
                        LHSZero, LHSOne, Depth+1);
      // If the LHS already has zeros where RHSC does, this and is dead.
      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
        return TLO.CombineTo(Op, Op.getOperand(0));
      // If any of the set bits in the RHS are known zero on the LHS, shrink
      // the constant.
      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
        return true;
    }
    
    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
                             KnownOne, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
                             KnownZero2, KnownOne2, TLO, Depth+1))
      return true;
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
      
    // If all of the demanded bits are known one on one side, return the other.
    // These bits cannot contribute to the result of the 'and'.
    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
      return TLO.CombineTo(Op, Op.getOperand(0));
    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
      return TLO.CombineTo(Op, Op.getOperand(1));
    // If all of the demanded bits in the inputs are known zeros, return zero.
    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
    // If the RHS is a constant, see if we can simplify it.
    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
      return true;
      
    // Output known-1 bits are only known if set in both the LHS & RHS.
    KnownOne &= KnownOne2;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    KnownZero |= KnownZero2;
    break;
  case ISD::OR:
    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, 
                             KnownOne, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, 
                             KnownZero2, KnownOne2, TLO, Depth+1))
      return true;
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'or'.
    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
      return TLO.CombineTo(Op, Op.getOperand(0));
    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
      return TLO.CombineTo(Op, Op.getOperand(1));
    // If all of the potentially set bits on one side are known to be set on
    // the other side, just use the 'other' side.
    if ((DemandedMask & (~KnownZero) & KnownOne2) == 
        (DemandedMask & (~KnownZero)))
      return TLO.CombineTo(Op, Op.getOperand(0));
    if ((DemandedMask & (~KnownZero2) & KnownOne) == 
        (DemandedMask & (~KnownZero2)))
      return TLO.CombineTo(Op, Op.getOperand(1));
    // If the RHS is a constant, see if we can simplify it.
    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
      return true;
          
    // Output known-0 bits are only known if clear in both the LHS & RHS.
    KnownZero &= KnownZero2;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    KnownOne |= KnownOne2;
    break;
  case ISD::XOR:
    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, 
                             KnownOne, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
                             KnownOne2, TLO, Depth+1))
      return true;
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'xor'.
    if ((DemandedMask & KnownZero) == DemandedMask)
      return TLO.CombineTo(Op, Op.getOperand(0));
    if ((DemandedMask & KnownZero2) == DemandedMask)
      return TLO.CombineTo(Op, Op.getOperand(1));
    
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    
    // If all of the unknown bits are known to be zero on one side or the other
    // (but not both) turn this into an *inclusive* or.
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
      if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
                                                 Op.getOperand(0),
                                                 Op.getOperand(1)));
    // If all of the demanded bits on one side are known, and all of the set
    // bits on that side are also known to be set on the other side, turn this
    // into an AND, as we know the bits will be cleared.
    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
      if ((KnownOne & KnownOne2) == KnownOne) {
        MVT::ValueType VT = Op.getValueType();
        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
                                                 ANDC));
      }
    }
    
    // If the RHS is a constant, see if we can simplify it.
    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
      return true;
    
    KnownZero = KnownZeroOut;
    KnownOne  = KnownOneOut;
    break;
  case ISD::SETCC:
    // If we know the result of a setcc has the top bits zero, use this info.
    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
    break;
  case ISD::SELECT:
    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, 
                             KnownOne, TLO, Depth+1))
      return true;
    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
                             KnownOne2, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // If the operands are constants, see if we can simplify them.
    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
      return true;
    
    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    break;
  case ISD::SELECT_CC:
    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, 
                             KnownOne, TLO, Depth+1))
      return true;
    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
                             KnownOne2, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // If the operands are constants, see if we can simplify them.
    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
      return true;
      
    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    break;
  case ISD::SHL:
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
                               KnownZero, KnownOne, TLO, Depth+1))
        return true;
      KnownZero <<= SA->getValue();
      KnownOne  <<= SA->getValue();
      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
    }
    break;
  case ISD::SRL:
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      MVT::ValueType VT = Op.getValueType();
      unsigned ShAmt = SA->getValue();
      
      // Compute the new bits that are at the top now.
      uint64_t HighBits = (1ULL << ShAmt)-1;
      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
      
      if (SimplifyDemandedBits(Op.getOperand(0), 
                               (DemandedMask << ShAmt) & TypeMask,
                               KnownZero, KnownOne, TLO, Depth+1))
        return true;
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
      KnownZero &= TypeMask;
      KnownOne  &= TypeMask;
      KnownZero >>= ShAmt;
      KnownOne  >>= ShAmt;
      KnownZero |= HighBits;  // high bits known zero.
    }
    break;
  case ISD::SRA:
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      MVT::ValueType VT = Op.getValueType();
      unsigned ShAmt = SA->getValue();
      
      // Compute the new bits that are at the top now.
      uint64_t HighBits = (1ULL << ShAmt)-1;
      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
      
      if (SimplifyDemandedBits(Op.getOperand(0),
                               (DemandedMask << ShAmt) & TypeMask,
                               KnownZero, KnownOne, TLO, Depth+1))
        return true;
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
      KnownZero &= TypeMask;
      KnownOne  &= TypeMask;
      KnownZero >>= SA->getValue();
      KnownOne  >>= SA->getValue();
      
      // Handle the sign bits.
      uint64_t SignBit = MVT::getIntVTSignBit(VT);
      SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
      
      // If the input sign bit is known to be zero, or if none of the top bits
      // are demanded, turn this into an unsigned shift right.
      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
                                                 Op.getOperand(1)));
      } else if (KnownOne & SignBit) { // New bits are known one.
        KnownOne |= HighBits;
      }
    }
    break;
  case ISD::SIGN_EXTEND_INREG: {
    MVT::ValueType  VT = Op.getValueType();
    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();

    // Sign extension.  Compute the demanded bits in the result that are not 
    // present in the input.
    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
    
    // If none of the extended bits are demanded, eliminate the sextinreg.
    if (NewBits == 0)
      return TLO.CombineTo(Op, Op.getOperand(0));

    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
    
    // Since the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    InputDemandedBits |= InSignBit;

    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
                             KnownZero, KnownOne, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 

    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    
    // If the input sign bit is known zero, convert this into a zero extension.
    if (KnownZero & InSignBit)
      return TLO.CombineTo(Op, 
                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
    
    if (KnownOne & InSignBit) {    // Input sign bit known set
      KnownOne |= NewBits;
      KnownZero &= ~NewBits;
    } else {                       // Input sign bit unknown
      KnownZero &= ~NewBits;
      KnownOne &= ~NewBits;
    }
    break;
  }
  case ISD::CTTZ:
  case ISD::CTLZ:
  case ISD::CTPOP: {
    MVT::ValueType VT = Op.getValueType();
    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
    KnownOne  = 0;
    break;
  }
  case ISD::ZEXTLOAD: {
    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
    KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
    break;
  }
  case ISD::ZERO_EXTEND: {
    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
    
    // If none of the top bits are demanded, convert this into an any_extend.
    uint64_t NewBits = (~InMask) & DemandedMask;
    if (NewBits == 0)
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, 
                                               Op.getValueType(), 
                                               Op.getOperand(0)));
    
    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
                             KnownZero, KnownOne, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    KnownZero |= NewBits;
    break;
  }
  case ISD::SIGN_EXTEND: {
    MVT::ValueType InVT = Op.getOperand(0).getValueType();
    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
    uint64_t NewBits   = (~InMask) & DemandedMask;
    
    // If none of the top bits are demanded, convert this into an any_extend.
    if (NewBits == 0)
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
                                           Op.getOperand(0)));
    
    // Since some of the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    uint64_t InDemandedBits = DemandedMask & InMask;
    InDemandedBits |= InSignBit;
    
    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
                             KnownOne, TLO, Depth+1))
      return true;
    
    // If the sign bit is known zero, convert this to a zero extend.
    if (KnownZero & InSignBit)
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, 
                                               Op.getValueType(), 
                                               Op.getOperand(0)));
    
    // If the sign bit is known one, the top bits match.
    if (KnownOne & InSignBit) {
      KnownOne  |= NewBits;
      KnownZero &= ~NewBits;
    } else {   // Otherwise, top bits aren't known.
      KnownOne  &= ~NewBits;
      KnownZero &= ~NewBits;
    }
    break;
  }
  case ISD::ANY_EXTEND: {
    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
                             KnownZero, KnownOne, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    break;
  }
  case ISD::TRUNCATE: {
    // Simplify the input, using demanded bit information, and compute the known
    // zero/one bits live out.
    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
                             KnownZero, KnownOne, TLO, Depth+1))
      return true;
    
    // If the input is only used by this truncate, see if we can shrink it based
    // on the known demanded bits.
    if (Op.getOperand(0).Val->hasOneUse()) {
      SDOperand In = Op.getOperand(0);
      switch (In.getOpcode()) {
      default: break;
      case ISD::SRL:
        // Shrink SRL by a constant if none of the high bits shifted in are
        // demanded.
        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
          HighBits >>= ShAmt->getValue();
          
          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
              (DemandedMask & HighBits) == 0) {
            // None of the shifted in bits are needed.  Add a truncate of the
            // shift input, then shift it.
            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, 
                                                 Op.getValueType(), 
                                                 In.getOperand(0));
            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
                                                   NewTrunc, In.getOperand(1)));
          }
        }
        break;
      }
    }
    
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
    KnownZero &= OutMask;
    KnownOne &= OutMask;
    break;
  }
  case ISD::AssertZext: {
    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    uint64_t InMask = MVT::getIntVTBitMask(VT);
    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
                             KnownZero, KnownOne, TLO, Depth+1))
      return true;
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    KnownZero |= ~InMask & DemandedMask;
    break;
  }
  case ISD::ADD:
  case ISD::SUB:
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_W_CHAIN:
  case ISD::INTRINSIC_VOID:
    // Just use ComputeMaskedBits to compute output bits.
    ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
    break;
  }
  
  // If we know the value of all of the demanded bits, return this as a
  // constant.
  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
  
  return false;
}

/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
/// this predicate to simplify operations downstream.  Mask is known to be zero
/// for bits that V cannot have.
bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, 
                                       unsigned Depth) const {
  uint64_t KnownZero, KnownOne;
  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
  return (KnownZero & Mask) == Mask;
}

/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
/// processing.
void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, 
                                       uint64_t &KnownZero, uint64_t &KnownOne,
                                       unsigned Depth) const {
  KnownZero = KnownOne = 0;   // Don't know anything.
  if (Depth == 6 || Mask == 0)
    return;  // Limit search depth.
  
  uint64_t KnownZero2, KnownOne2;

  switch (Op.getOpcode()) {
  case ISD::Constant:
    // We know all of the bits for a constant!
    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
    KnownZero = ~KnownOne & Mask;
    return;
  case ISD::AND:
    // If either the LHS or the RHS are Zero, the result is zero.
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    Mask &= ~KnownZero;
    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 

    // Output known-1 bits are only known if set in both the LHS & RHS.
    KnownOne &= KnownOne2;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    KnownZero |= KnownZero2;
    return;
  case ISD::OR:
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    Mask &= ~KnownOne;
    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Output known-0 bits are only known if clear in both the LHS & RHS.
    KnownZero &= KnownZero2;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    KnownOne |= KnownOne2;
    return;
  case ISD::XOR: {
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    KnownZero = KnownZeroOut;
    return;
  }
  case ISD::SELECT:
    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    return;
  case ISD::SELECT_CC:
    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    return;
  case ISD::SETCC:
    // If we know the result of a setcc has the top bits zero, use this info.
    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
    return;
  case ISD::SHL:
    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      Mask >>= SA->getValue();
      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
      KnownZero <<= SA->getValue();
      KnownOne  <<= SA->getValue();
      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
    }
    return;
  case ISD::SRL:
    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      uint64_t HighBits = (1ULL << SA->getValue())-1;
      HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
      Mask <<= SA->getValue();
      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
      KnownZero >>= SA->getValue();
      KnownOne  >>= SA->getValue();
      KnownZero |= HighBits;  // high bits known zero.
    }
    return;
  case ISD::SRA:
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      uint64_t HighBits = (1ULL << SA->getValue())-1;
      HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
      Mask <<= SA->getValue();
      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
      KnownZero >>= SA->getValue();
      KnownOne  >>= SA->getValue();
      
      // Handle the sign bits.
      uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
      SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
      
      if (KnownZero & SignBit) {       // New bits are known zero.
        KnownZero |= HighBits;
      } else if (KnownOne & SignBit) { // New bits are known one.
        KnownOne |= HighBits;
      }
    }
    return;
  case ISD::SIGN_EXTEND_INREG: {
    MVT::ValueType  VT = Op.getValueType();
    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    
    // Sign extension.  Compute the demanded bits in the result that are not 
    // present in the input.
    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;

    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
    
    // If the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    if (NewBits)
      InputDemandedBits |= InSignBit;
    
    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
                      KnownZero, KnownOne, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    
    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    if (KnownZero & InSignBit) {          // Input sign bit known clear
      KnownZero |= NewBits;
      KnownOne  &= ~NewBits;
    } else if (KnownOne & InSignBit) {    // Input sign bit known set
      KnownOne  |= NewBits;
      KnownZero &= ~NewBits;
    } else {                              // Input sign bit unknown
      KnownZero &= ~NewBits;
      KnownOne  &= ~NewBits;
    }
    return;
  }
  case ISD::CTTZ:
  case ISD::CTLZ:
  case ISD::CTPOP: {
    MVT::ValueType VT = Op.getValueType();
    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
    KnownOne  = 0;
    return;
  }
  case ISD::ZEXTLOAD: {
    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
    KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
    return;
  }
  case ISD::ZERO_EXTEND: {
    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
    uint64_t NewBits = (~InMask) & Mask;
    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
                      KnownOne, Depth+1);
    KnownZero |= NewBits & Mask;
    KnownOne  &= ~NewBits;
    return;
  }
  case ISD::SIGN_EXTEND: {
    MVT::ValueType InVT = Op.getOperand(0).getValueType();
    unsigned InBits    = MVT::getSizeInBits(InVT);
    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
    uint64_t InSignBit = 1ULL << (InBits-1);
    uint64_t NewBits   = (~InMask) & Mask;
    uint64_t InDemandedBits = Mask & InMask;

    // If any of the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    if (NewBits & Mask)
      InDemandedBits |= InSignBit;
    
    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
                      KnownOne, Depth+1);
    // If the sign bit is known zero or one, the  top bits match.
    if (KnownZero & InSignBit) {
      KnownZero |= NewBits;
      KnownOne  &= ~NewBits;
    } else if (KnownOne & InSignBit) {
      KnownOne  |= NewBits;
      KnownZero &= ~NewBits;
    } else {   // Otherwise, top bits aren't known.
      KnownOne  &= ~NewBits;
      KnownZero &= ~NewBits;
    }
    return;
  }
  case ISD::ANY_EXTEND: {
    MVT::ValueType VT = Op.getOperand(0).getValueType();
    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
                      KnownZero, KnownOne, Depth+1);
    return;
  }
  case ISD::TRUNCATE: {
    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
    KnownZero &= OutMask;
    KnownOne &= OutMask;
    break;
  }
  case ISD::AssertZext: {
    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    uint64_t InMask = MVT::getIntVTBitMask(VT);
    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
                      KnownOne, Depth+1);
    KnownZero |= (~InMask) & Mask;
    return;
  }
  case ISD::ADD: {
    // If either the LHS or the RHS are Zero, the result is zero.
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Output known-0 bits are known if clear or set in both the low clear bits
    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
    // low 3 bits clear.
    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), 
                                     CountTrailingZeros_64(~KnownZero2));
    
    KnownZero = (1ULL << KnownZeroOut) - 1;
    KnownOne = 0;
    return;
  }
  case ISD::SUB: {
    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
    if (!CLHS) return;

    // We know that the top bits of C-X are clear if X contains less bits
    // than C (i.e. no wrap-around can happen).  For example, 20-X is
    // positive if we can prove that X is >= 0 and < 16.
    MVT::ValueType VT = CLHS->getValueType(0);
    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);

      // If all of the MaskV bits are known to be zero, then we know the output
      // top bits are zero, because we now know that the output is from [0-C].
      if ((KnownZero & MaskV) == MaskV) {
        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
        KnownOne = 0;   // No one bits known.
      } else {
        KnownOne = KnownOne = 0;  // Otherwise, nothing known.
      }
    }
    return;
  }
  default:
    // Allow the target to implement this method for its nodes.
    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_W_CHAIN:
  case ISD::INTRINSIC_VOID:
      computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
    }
    return;
  }
}

/// computeMaskedBitsForTargetNode - Determine which of the bits specified 
/// in Mask are known to be either zero or one and return them in the 
/// KnownZero/KnownOne bitsets.
void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, 
                                                    uint64_t Mask,
                                                    uint64_t &KnownZero, 
                                                    uint64_t &KnownOne,
                                                    unsigned Depth) const {
  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
         "Should use MaskedValueIsZero if you don't know whether Op"
         " is a target node!");
  KnownZero = 0;
  KnownOne = 0;
}

/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits.  We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information.  For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
  MVT::ValueType VT = Op.getValueType();
  assert(MVT::isInteger(VT) && "Invalid VT!");
  unsigned VTBits = MVT::getSizeInBits(VT);
  unsigned Tmp, Tmp2;
  
  if (Depth == 6)
    return 1;  // Limit search depth.

  switch (Op.getOpcode()) {
  default: break;
  case ISD::AssertSext:
    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
    return VTBits-Tmp+1;
  case ISD::AssertZext:
    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
    return VTBits-Tmp;

  case ISD::SEXTLOAD:    // '17' bits known
    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
    return VTBits-Tmp+1;
  case ISD::ZEXTLOAD:    // '16' bits known
    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
    return VTBits-Tmp;
    
  case ISD::Constant: {
    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
    // If negative, invert the bits, then look at it.
    if (Val & MVT::getIntVTSignBit(VT))
      Val = ~Val;
    
    // Shift the bits so they are the leading bits in the int64_t.
    Val <<= 64-VTBits;
    
    // Return # leading zeros.  We use 'min' here in case Val was zero before
    // shifting.  We don't want to return '64' as for an i32 "0".
    return std::min(VTBits, CountLeadingZeros_64(Val));
  }
    
  case ISD::SIGN_EXTEND:
    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
    
  case ISD::SIGN_EXTEND_INREG:
    // Max of the input and what this extends.
    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
    Tmp = VTBits-Tmp+1;
    
    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    return std::max(Tmp, Tmp2);

  case ISD::SRA:
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    // SRA X, C   -> adds C sign bits.
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      Tmp += C->getValue();
      if (Tmp > VTBits) Tmp = VTBits;
    }
    return Tmp;
  case ISD::SHL:
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      // shl destroys sign bits.
      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
      if (C->getValue() >= VTBits ||      // Bad shift.
          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
      return Tmp - C->getValue();
    }
    break;
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:    // NOT is handled here.
    // Logical binary ops preserve the number of sign bits.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    return std::min(Tmp, Tmp2);

  case ISD::SELECT:
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    return std::min(Tmp, Tmp2);
    
  case ISD::SETCC:
    // If setcc returns 0/-1, all bits are sign bits.
    if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
      return VTBits;
    break;
  case ISD::ROTL:
  case ISD::ROTR:
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned RotAmt = C->getValue() & (VTBits-1);
      
      // Handle rotate right by N like a rotate left by 32-N.
      if (Op.getOpcode() == ISD::ROTR)
        RotAmt = (VTBits-RotAmt) & (VTBits-1);

      // If we aren't rotating out all of the known-in sign bits, return the
      // number that are left.  This handles rotl(sext(x), 1) for example.
      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
      if (Tmp > RotAmt+1) return Tmp-RotAmt;
    }
    break;
  case ISD::ADD:
    // Add can have at most one carry bit.  Thus we know that the output
    // is, at worst, one more bit than the inputs.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
      
    // Special case decrementing a value (ADD X, -1):
    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
      if (CRHS->isAllOnesValue()) {
        uint64_t KnownZero, KnownOne;
        uint64_t Mask = MVT::getIntVTBitMask(VT);
        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
        
        // If the input is known to be 0 or 1, the output is 0/-1, which is all
        // sign bits set.
        if ((KnownZero|1) == Mask)
          return VTBits;
        
        // If we are subtracting one from a positive number, there is no carry
        // out of the result.
        if (KnownZero & MVT::getIntVTSignBit(VT))
          return Tmp;
      }
      
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    if (Tmp2 == 1) return 1;
      return std::min(Tmp, Tmp2)-1;
    break;
    
  case ISD::SUB:
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    if (Tmp2 == 1) return 1;
      
    // Handle NEG.
    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
      if (CLHS->getValue() == 0) {
        uint64_t KnownZero, KnownOne;
        uint64_t Mask = MVT::getIntVTBitMask(VT);
        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
        // If the input is known to be 0 or 1, the output is 0/-1, which is all
        // sign bits set.
        if ((KnownZero|1) == Mask)
          return VTBits;
        
        // If the input is known to be positive (the sign bit is known clear),
        // the output of the NEG has the same number of sign bits as the input.
        if (KnownZero & MVT::getIntVTSignBit(VT))
          return Tmp2;
        
        // Otherwise, we treat this like a SUB.
      }
    
    // Sub can have at most one carry bit.  Thus we know that the output
    // is, at worst, one more bit than the inputs.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
      return std::min(Tmp, Tmp2)-1;
    break;
  case ISD::TRUNCATE:
    // FIXME: it's tricky to do anything useful for this, but it is an important
    // case for targets like X86.
    break;
  }
  
  // Allow the target to implement this method for its nodes.
  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 
      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
      Op.getOpcode() == ISD::INTRINSIC_VOID) {
    unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
    if (NumBits > 1) return NumBits;
  }
  
  // FIXME: Should use computemaskedbits to look at the top bits.
  return 1;
}



/// ComputeNumSignBitsForTargetNode - This method can be implemented by
/// targets that want to expose additional information about sign bits to the
/// DAG Combiner.
unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
                                                         unsigned Depth) const {
  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
         "Should use ComputeNumSignBits if you don't know whether Op"
         " is a target node!");
  return 1;
}


SDOperand TargetLowering::
PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
  // Default implementation: no optimization.
  return SDOperand();
}

//===----------------------------------------------------------------------===//
//  Inline Assembler Implementation Methods
//===----------------------------------------------------------------------===//

TargetLowering::ConstraintType
TargetLowering::getConstraintType(char ConstraintLetter) const {
  // FIXME: lots more standard ones to handle.
  switch (ConstraintLetter) {
  default: return C_Unknown;
  case 'r': return C_RegisterClass;
  case 'm':    // memory
  case 'o':    // offsetable
  case 'V':    // not offsetable
    return C_Memory;
  case 'i':    // Simple Integer or Relocatable Constant
  case 'n':    // Simple Integer
  case 's':    // Relocatable Constant
  case 'I':    // Target registers.
  case 'J':
  case 'K':
  case 'L':
  case 'M':
  case 'N':
  case 'O':
  case 'P':
    return C_Other;
  }
}

bool TargetLowering::isOperandValidForConstraint(SDOperand Op, 
                                                 char ConstraintLetter) {
  switch (ConstraintLetter) {
  default: return false;
  case 'i':    // Simple Integer or Relocatable Constant
  case 'n':    // Simple Integer
  case 's':    // Relocatable Constant
    return true;   // FIXME: not right.
  }
}


std::vector<unsigned> TargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                  MVT::ValueType VT) const {
  return std::vector<unsigned>();
}


std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint,
                             MVT::ValueType VT) const {
  if (Constraint[0] != '{')
    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");

  // Remove the braces from around the name.
  std::string RegName(Constraint.begin()+1, Constraint.end()-1);

  // Figure out which register class contains this reg.
  const MRegisterInfo *RI = TM.getRegisterInfo();
  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
       E = RI->regclass_end(); RCI != E; ++RCI) {
    const TargetRegisterClass *RC = *RCI;
    
    // If none of the the value types for this register class are valid, we 
    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
    bool isLegal = false;
    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
         I != E; ++I) {
      if (isTypeLegal(*I)) {
        isLegal = true;
        break;
      }
    }
    
    if (!isLegal) continue;
    
    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 
         I != E; ++I) {
      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
        return std::make_pair(*I, RC);
    }
  }
  
  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
}

//===----------------------------------------------------------------------===//
//  Loop Strength Reduction hooks
//===----------------------------------------------------------------------===//

/// isLegalAddressImmediate - Return true if the integer value or
/// GlobalValue can be used as the offset of the target addressing mode.
bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
  return false;
}
bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
  return false;
}