aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SimpleRegisterCoalescing.cpp
blob: 1f68a6f276f7d41899369ca8f089bb747dead179 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple register coalescing pass that attempts to
// aggressively coalesce every register copy that it can.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regcoalescing"
#include "SimpleRegisterCoalescing.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;

STATISTIC(numJoins    , "Number of interval joins performed");
STATISTIC(numCrossRCs , "Number of cross class joins performed");
STATISTIC(numCommutes , "Number of instruction commuting performed");
STATISTIC(numExtends  , "Number of copies extended");
STATISTIC(NumReMats   , "Number of instructions re-materialized");
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
STATISTIC(numAborts   , "Number of times interval joining aborted");
STATISTIC(numDeadValNo, "Number of valno def marked dead");

char SimpleRegisterCoalescing::ID = 0;
static cl::opt<bool>
EnableJoining("join-liveintervals",
              cl::desc("Coalesce copies (default=true)"),
              cl::init(true));

static cl::opt<bool>
DisableCrossClassJoin("disable-cross-class-join",
               cl::desc("Avoid coalescing cross register class copies"),
               cl::init(false), cl::Hidden);

static RegisterPass<SimpleRegisterCoalescing>
X("simple-register-coalescing", "Simple Register Coalescing");

// Declare that we implement the RegisterCoalescer interface
static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);

const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;

void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<LiveIntervals>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addPreservedID(MachineDominatorsID);
  if (StrongPHIElim)
    AU.addPreservedID(StrongPHIEliminationID);
  else
    AU.addPreservedID(PHIEliminationID);
  AU.addPreservedID(TwoAddressInstructionPassID);
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy.  For example:
///
///  A3 = B0
///    ...
///  B1 = A3      <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
                                                    LiveInterval &IntB,
                                                    MachineInstr *CopyMI) {
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();

  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  assert(BLR != IntB.end() && "Live range not found!");
  VNInfo *BValNo = BLR->valno;

  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
  // can't process it.
  if (!BValNo->getCopy()) return false;
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");

  // AValNo is the value number in A that defines the copy, A3 in the example.
  SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
  assert(ALR != IntA.end() && "Live range not found!");
  VNInfo *AValNo = ALR->valno;
  // If it's re-defined by an early clobber somewhere in the live range, then
  // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
  // See PR3149:
  // 172     %ECX<def> = MOV32rr %reg1039<kill>
  // 180     INLINEASM <es:subl $5,$1
  //         sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
  //         %EAX<kill>,
  // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
  // 188     %EAX<def> = MOV32rr %EAX<kill>
  // 196     %ECX<def> = MOV32rr %ECX<kill>
  // 204     %ECX<def> = MOV32rr %ECX<kill>
  // 212     %EAX<def> = MOV32rr %EAX<kill>
  // 220     %EAX<def> = MOV32rr %EAX
  // 228     %reg1039<def> = MOV32rr %ECX<kill>
  // The early clobber operand ties ECX input to the ECX def.
  //
  // The live interval of ECX is represented as this:
  // %reg20,inf = [46,47:1)[174,230:0)  0@174-(230) 1@46-(47)
  // The coalescer has no idea there was a def in the middle of [174,230].
  if (AValNo->hasRedefByEC())
    return false;

  // If AValNo is defined as a copy from IntB, we can potentially process this.
  // Get the instruction that defines this value number.
  unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
  if (!SrcReg) return false;  // Not defined by a copy.

  // If the value number is not defined by a copy instruction, ignore it.

  // If the source register comes from an interval other than IntB, we can't
  // handle this.
  if (SrcReg != IntB.reg) return false;

  // Get the LiveRange in IntB that this value number starts with.
  LiveInterval::iterator ValLR =
    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
  assert(ValLR != IntB.end() && "Live range not found!");

  // Make sure that the end of the live range is inside the same block as
  // CopyMI.
  MachineInstr *ValLREndInst =
    li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
  if (!ValLREndInst ||
      ValLREndInst->getParent() != CopyMI->getParent()) return false;

  // Okay, we now know that ValLR ends in the same block that the CopyMI
  // live-range starts.  If there are no intervening live ranges between them in
  // IntB, we can merge them.
  if (ValLR+1 != BLR) return false;

  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
      *tri_->getSubRegisters(IntB.reg)) {
    for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
        DEBUG({
            dbgs() << "\t\tInterfere with sub-register ";
            li_->getInterval(*SR).print(dbgs(), tri_);
          });
        return false;
      }
  }

  DEBUG({
      dbgs() << "Extending: ";
      IntB.print(dbgs(), tri_);
    });

  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
  // We are about to delete CopyMI, so need to remove it as the 'instruction
  // that defines this value #'. Update the valnum with the new defining
  // instruction #.
  BValNo->def  = FillerStart;
  BValNo->setCopy(0);

  // Okay, we can merge them.  We need to insert a new liverange:
  // [ValLR.end, BLR.begin) of either value number, then we merge the
  // two value numbers.
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));

  // If the IntB live range is assigned to a physical register, and if that
  // physreg has sub-registers, update their live intervals as well.
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
    for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
      LiveInterval &SRLI = li_->getInterval(*SR);
      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
                              SRLI.getNextValue(FillerStart, 0, true,
                                                li_->getVNInfoAllocator())));
    }
  }

  // Okay, merge "B1" into the same value number as "B0".
  if (BValNo != ValLR->valno) {
    IntB.addKills(ValLR->valno, BValNo->kills);
    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
  }
  DEBUG({
      dbgs() << "   result = ";
      IntB.print(dbgs(), tri_);
      dbgs() << "\n";
    });

  // If the source instruction was killing the source register before the
  // merge, unset the isKill marker given the live range has been extended.
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
  if (UIdx != -1) {
    ValLREndInst->getOperand(UIdx).setIsKill(false);
    ValLR->valno->removeKill(FillerStart);
  }

  // If the copy instruction was killing the destination register before the
  // merge, find the last use and trim the live range. That will also add the
  // isKill marker.
  if (ALR->valno->isKill(CopyIdx))
    TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);

  ++numExtends;
  return true;
}

/// HasOtherReachingDefs - Return true if there are definitions of IntB
/// other than BValNo val# that can reach uses of AValno val# of IntA.
bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
                                                    LiveInterval &IntB,
                                                    VNInfo *AValNo,
                                                    VNInfo *BValNo) {
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
       AI != AE; ++AI) {
    if (AI->valno != AValNo) continue;
    LiveInterval::Ranges::iterator BI =
      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
    if (BI != IntB.ranges.begin())
      --BI;
    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
      if (BI->valno == BValNo)
        continue;
      // When BValNo is null, we're looking for a dummy clobber-value for a subreg.
      if (!BValNo && !BI->valno->isDefAccurate() && !BI->valno->getCopy())
        continue;
      if (BI->start <= AI->start && BI->end > AI->start)
        return true;
      if (BI->start > AI->start && BI->start < AI->end)
        return true;
    }
  }
  return false;
}

static void
TransferImplicitOps(MachineInstr *MI, MachineInstr *NewMI) {
  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
       i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isImplicit())
      NewMI->addOperand(MO);
  }
}

/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
/// IntA being the source and IntB being the dest, thus this defines a value
/// number in IntB.  If the source value number (in IntA) is defined by a
/// commutable instruction and its other operand is coalesced to the copy dest
/// register, see if we can transform the copy into a noop by commuting the
/// definition. For example,
///
///  A3 = op A2 B0<kill>
///    ...
///  B1 = A3      <- this copy
///    ...
///     = op A3   <- more uses
///
/// ==>
///
///  B2 = op B0 A2<kill>
///    ...
///  B1 = B2      <- now an identify copy
///    ...
///     = op B2   <- more uses
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
                                                        LiveInterval &IntB,
                                                        MachineInstr *CopyMI) {
  SlotIndex CopyIdx =
    li_->getInstructionIndex(CopyMI).getDefIndex();

  // FIXME: For now, only eliminate the copy by commuting its def when the
  // source register is a virtual register. We want to guard against cases
  // where the copy is a back edge copy and commuting the def lengthen the
  // live interval of the source register to the entire loop.
  if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
    return false;

  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  assert(BLR != IntB.end() && "Live range not found!");
  VNInfo *BValNo = BLR->valno;

  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
  // can't process it.
  if (!BValNo->getCopy()) return false;
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");

  // AValNo is the value number in A that defines the copy, A3 in the example.
  LiveInterval::iterator ALR =
    IntA.FindLiveRangeContaining(CopyIdx.getUseIndex()); // 

  assert(ALR != IntA.end() && "Live range not found!");
  VNInfo *AValNo = ALR->valno;
  // If other defs can reach uses of this def, then it's not safe to perform
  // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
  // tested?
  if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
      AValNo->isUnused() || AValNo->hasPHIKill())
    return false;
  MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
  const TargetInstrDesc &TID = DefMI->getDesc();
  if (!TID.isCommutable())
    return false;
  // If DefMI is a two-address instruction then commuting it will change the
  // destination register.
  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
  assert(DefIdx != -1);
  unsigned UseOpIdx;
  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    return false;
  unsigned Op1, Op2, NewDstIdx;
  if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
    return false;
  if (Op1 == UseOpIdx)
    NewDstIdx = Op2;
  else if (Op2 == UseOpIdx)
    NewDstIdx = Op1;
  else
    return false;

  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
  unsigned NewReg = NewDstMO.getReg();
  if (NewReg != IntB.reg || !NewDstMO.isKill())
    return false;

  // Make sure there are no other definitions of IntB that would reach the
  // uses which the new definition can reach.
  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    return false;

  bool BHasSubRegs = false;
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
    BHasSubRegs = *tri_->getSubRegisters(IntB.reg);

  // Abort if the subregisters of IntB.reg have values that are not simply the
  // clobbers from the superreg.
  if (BHasSubRegs)
    for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
      if (HasOtherReachingDefs(IntA, li_->getInterval(*SR), AValNo, 0))
        return false;

  // If some of the uses of IntA.reg is already coalesced away, return false.
  // It's not possible to determine whether it's safe to perform the coalescing.
  for (MachineRegisterInfo::use_nodbg_iterator UI = 
         mri_->use_nodbg_begin(IntA.reg), 
       UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
    MachineInstr *UseMI = &*UI;
    SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    if (ULR == IntA.end())
      continue;
    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
      return false;
  }

  // At this point we have decided that it is legal to do this
  // transformation.  Start by commuting the instruction.
  MachineBasicBlock *MBB = DefMI->getParent();
  MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
  if (!NewMI)
    return false;
  if (NewMI != DefMI) {
    li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
    MBB->insert(DefMI, NewMI);
    MBB->erase(DefMI);
  }
  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
  NewMI->getOperand(OpIdx).setIsKill();

  bool BHasPHIKill = BValNo->hasPHIKill();
  SmallVector<VNInfo*, 4> BDeadValNos;
  VNInfo::KillSet BKills;
  std::map<SlotIndex, SlotIndex> BExtend;

  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
  // A = or A, B
  // ...
  // B = A
  // ...
  // C = A<kill>
  // ...
  //   = B
  //
  // then do not add kills of A to the newly created B interval.
  bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
  if (Extended)
    BExtend[ALR->end] = BLR->end;

  // Update uses of IntA of the specific Val# with IntB.
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
         UE = mri_->use_end(); UI != UE;) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = &*UI;
    ++UI;
    if (JoinedCopies.count(UseMI))
      continue;
    if (UseMI->isDebugValue()) {
      // FIXME These don't have an instruction index.  Not clear we have enough
      // info to decide whether to do this replacement or not.  For now do it.
      UseMO.setReg(NewReg);
      continue;
    }
    SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    if (ULR == IntA.end() || ULR->valno != AValNo)
      continue;
    UseMO.setReg(NewReg);
    if (UseMI == CopyMI)
      continue;
    if (UseMO.isKill()) {
      if (Extended)
        UseMO.setIsKill(false);
      else
        BKills.push_back(UseIdx.getDefIndex());
    }
    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
    if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
      continue;
    if (DstReg == IntB.reg) {
      // This copy will become a noop. If it's defining a new val#,
      // remove that val# as well. However this live range is being
      // extended to the end of the existing live range defined by the copy.
      SlotIndex DefIdx = UseIdx.getDefIndex();
      const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
      BHasPHIKill |= DLR->valno->hasPHIKill();
      assert(DLR->valno->def == DefIdx);
      BDeadValNos.push_back(DLR->valno);
      BExtend[DLR->start] = DLR->end;
      JoinedCopies.insert(UseMI);
      // If this is a kill but it's going to be removed, the last use
      // of the same val# is the new kill.
      if (UseMO.isKill())
        BKills.pop_back();
    }
  }

  // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
  // simply extend BLR if CopyMI doesn't end the range.
  DEBUG({
      dbgs() << "Extending: ";
      IntB.print(dbgs(), tri_);
    });

  // Remove val#'s defined by copies that will be coalesced away.
  for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
    VNInfo *DeadVNI = BDeadValNos[i];
    if (BHasSubRegs) {
      for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
        LiveInterval &SRLI = li_->getInterval(*SR);
        const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
        SRLI.removeValNo(SRLR->valno);
      }
    }
    IntB.removeValNo(BDeadValNos[i]);
  }

  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
  // is updated. Kills are also updated.
  VNInfo *ValNo = BValNo;
  ValNo->def = AValNo->def;
  ValNo->setCopy(0);
  for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
    if (ValNo->kills[j] != BLR->end)
      BKills.push_back(ValNo->kills[j]);
  }
  ValNo->kills.clear();
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
       AI != AE; ++AI) {
    if (AI->valno != AValNo) continue;
    SlotIndex End = AI->end;
    std::map<SlotIndex, SlotIndex>::iterator
      EI = BExtend.find(End);
    if (EI != BExtend.end())
      End = EI->second;
    IntB.addRange(LiveRange(AI->start, End, ValNo));

    // If the IntB live range is assigned to a physical register, and if that
    // physreg has sub-registers, update their live intervals as well.
    if (BHasSubRegs) {
      for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
        LiveInterval &SRLI = li_->getInterval(*SR);
        SRLI.MergeInClobberRange(*li_, AI->start, End,
                                 li_->getVNInfoAllocator());
      }
    }
  }
  IntB.addKills(ValNo, BKills);
  ValNo->setHasPHIKill(BHasPHIKill);

  DEBUG({
      dbgs() << "   result = ";
      IntB.print(dbgs(), tri_);
      dbgs() << "\nShortening: ";
      IntA.print(dbgs(), tri_);
    });

  IntA.removeValNo(AValNo);

  DEBUG({
      dbgs() << "   result = ";
      IntA.print(dbgs(), tri_);
      dbgs() << '\n';
    });

  ++numCommutes;
  return true;
}

/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
/// fallthoughs to SuccMBB.
static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
                                  MachineBasicBlock *SuccMBB,
                                  const TargetInstrInfo *tii_) {
  if (MBB == SuccMBB)
    return true;
  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
    MBB->isSuccessor(SuccMBB);
}

/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
/// from a physical register live interval as well as from the live intervals
/// of its sub-registers.
static void removeRange(LiveInterval &li,
                        SlotIndex Start, SlotIndex End,
                        LiveIntervals *li_, const TargetRegisterInfo *tri_) {
  li.removeRange(Start, End, true);
  if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
    for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
      if (!li_->hasInterval(*SR))
        continue;
      LiveInterval &sli = li_->getInterval(*SR);
      SlotIndex RemoveStart = Start;
      SlotIndex RemoveEnd = Start;

      while (RemoveEnd != End) {
        LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
        if (LR == sli.end())
          break;
        RemoveEnd = (LR->end < End) ? LR->end : End;
        sli.removeRange(RemoveStart, RemoveEnd, true);
        RemoveStart = RemoveEnd;
      }
    }
  }
}

/// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
/// as the copy instruction, trim the live interval to the last use and return
/// true.
bool
SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx,
                                                    MachineBasicBlock *CopyMBB,
                                                    LiveInterval &li,
                                                    const LiveRange *LR) {
  SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
  SlotIndex LastUseIdx;
  MachineOperand *LastUse =
    lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx);
  if (LastUse) {
    MachineInstr *LastUseMI = LastUse->getParent();
    if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
      // r1024 = op
      // ...
      // BB1:
      //       = r1024
      //
      // BB2:
      // r1025<dead> = r1024<kill>
      if (MBBStart < LR->end)
        removeRange(li, MBBStart, LR->end, li_, tri_);
      return true;
    }

    // There are uses before the copy, just shorten the live range to the end
    // of last use.
    LastUse->setIsKill();
    removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_);
    LR->valno->addKill(LastUseIdx.getDefIndex());
    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
    if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
        DstReg == li.reg) {
      // Last use is itself an identity code.
      int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
      LastUseMI->getOperand(DeadIdx).setIsDead();
    }
    return true;
  }

  // Is it livein?
  if (LR->start <= MBBStart && LR->end > MBBStart) {
    if (LR->start == li_->getZeroIndex()) {
      assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
      // Live-in to the function but dead. Remove it from entry live-in set.
      mf_->begin()->removeLiveIn(li.reg);
    }
    // FIXME: Shorten intervals in BBs that reaches this BB.
  }

  return false;
}

/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
/// computation, replace the copy by rematerialize the definition.
bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
                                                       unsigned DstReg,
                                                       unsigned DstSubIdx,
                                                       MachineInstr *CopyMI) {
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
  assert(SrcLR != SrcInt.end() && "Live range not found!");
  VNInfo *ValNo = SrcLR->valno;
  // If other defs can reach uses of this def, then it's not safe to perform
  // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
  // tested?
  if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
      ValNo->isUnused() || ValNo->hasPHIKill())
    return false;
  MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
  const TargetInstrDesc &TID = DefMI->getDesc();
  if (!TID.isAsCheapAsAMove())
    return false;
  if (!tii_->isTriviallyReMaterializable(DefMI, AA))
    return false;
  bool SawStore = false;
  if (!DefMI->isSafeToMove(tii_, AA, SawStore))
    return false;
  if (TID.getNumDefs() != 1)
    return false;
  if (!DefMI->isImplicitDef()) {
    // Make sure the copy destination register class fits the instruction
    // definition register class. The mismatch can happen as a result of earlier
    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
    const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
      if (mri_->getRegClass(DstReg) != RC)
        return false;
    } else if (!RC->contains(DstReg))
      return false;
  }

  // If destination register has a sub-register index on it, make sure it mtches
  // the instruction register class.
  if (DstSubIdx) {
    const TargetInstrDesc &TID = DefMI->getDesc();
    if (TID.getNumDefs() != 1)
      return false;
    const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
    const TargetRegisterClass *DstSubRC =
      DstRC->getSubRegisterRegClass(DstSubIdx);
    const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
    if (DefRC == DstRC)
      DstSubIdx = 0;
    else if (DefRC != DstSubRC)
      return false;
  }

  SlotIndex DefIdx = CopyIdx.getDefIndex();
  const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
  DLR->valno->setCopy(0);
  // Don't forget to update sub-register intervals.
  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
      if (!li_->hasInterval(*SR))
        continue;
      const LiveRange *DLR =
          li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
      if (DLR && DLR->valno->getCopy() == CopyMI)
        DLR->valno->setCopy(0);
    }
  }

  // If copy kills the source register, find the last use and propagate
  // kill.
  bool checkForDeadDef = false;
  MachineBasicBlock *MBB = CopyMI->getParent();
  if (SrcLR->valno->isKill(DefIdx))
    if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
      checkForDeadDef = true;
    }

  MachineBasicBlock::iterator MII =
    llvm::next(MachineBasicBlock::iterator(CopyMI));
  tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, tri_);
  MachineInstr *NewMI = prior(MII);

  if (checkForDeadDef) {
    // PR4090 fix: Trim interval failed because there was no use of the
    // source interval in this MBB. If the def is in this MBB too then we
    // should mark it dead:
    if (DefMI->getParent() == MBB) {
      DefMI->addRegisterDead(SrcInt.reg, tri_);
      SrcLR->end = SrcLR->start.getNextSlot();
    }
  }

  // CopyMI may have implicit operands, transfer them over to the newly
  // rematerialized instruction. And update implicit def interval valnos.
  for (unsigned i = CopyMI->getDesc().getNumOperands(),
         e = CopyMI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = CopyMI->getOperand(i);
    if (MO.isReg() && MO.isImplicit())
      NewMI->addOperand(MO);
    if (MO.isDef() && li_->hasInterval(MO.getReg())) {
      unsigned Reg = MO.getReg();
      const LiveRange *DLR =
          li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
      if (DLR && DLR->valno->getCopy() == CopyMI)
        DLR->valno->setCopy(0);
      // Handle subregs as well
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        for (const unsigned* SR = tri_->getSubRegisters(Reg); *SR; ++SR) {
          if (!li_->hasInterval(*SR))
            continue;
          const LiveRange *DLR =
              li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
          if (DLR && DLR->valno->getCopy() == CopyMI)
            DLR->valno->setCopy(0);
        }
      }
    }
  }

  TransferImplicitOps(CopyMI, NewMI);
  li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
  CopyMI->eraseFromParent();
  ReMatCopies.insert(CopyMI);
  ReMatDefs.insert(DefMI);
  DEBUG(dbgs() << "Remat: " << *NewMI);
  ++NumReMats;
  return true;
}

/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
/// update the subregister number if it is not zero. If DstReg is a
/// physical register and the existing subregister number of the def / use
/// being updated is not zero, make sure to set it to the correct physical
/// subregister.
void
SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
                                            unsigned SubIdx) {
  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
  if (DstIsPhys && SubIdx) {
    // Figure out the real physical register we are updating with.
    DstReg = tri_->getSubReg(DstReg, SubIdx);
    SubIdx = 0;
  }

  // Copy the register use-list before traversing it. We may be adding operands
  // and invalidating pointers.
  SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
         E = mri_->reg_end(); I != E; ++I)
    reglist.push_back(std::make_pair(&*I, I.getOperandNo()));

  for (unsigned N=0; N != reglist.size(); ++N) {
    MachineInstr *UseMI = reglist[N].first;
    MachineOperand &O = UseMI->getOperand(reglist[N].second);
    unsigned OldSubIdx = O.getSubReg();
    if (DstIsPhys) {
      unsigned UseDstReg = DstReg;
      if (OldSubIdx)
          UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);

      unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
      if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
                            CopySrcSubIdx, CopyDstSubIdx) &&
          CopySrcReg != CopyDstReg &&
          CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
        // If the use is a copy and it won't be coalesced away, and its source
        // is defined by a trivial computation, try to rematerialize it instead.
        if (!JoinedCopies.count(UseMI) &&
            ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
                                    CopyDstSubIdx, UseMI))
          continue;
      }

      O.setReg(UseDstReg);
      O.setSubReg(0);
      if (OldSubIdx) {
        // Def and kill of subregister of a virtual register actually defs and
        // kills the whole register. Add imp-defs and imp-kills as needed.
        if (O.isDef()) {
          if(O.isDead())
            UseMI->addRegisterDead(DstReg, tri_, true);
          else
            UseMI->addRegisterDefined(DstReg, tri_);
        } else if (!O.isUndef() &&
                   (O.isKill() ||
                    UseMI->isRegTiedToDefOperand(&O-&UseMI->getOperand(0))))
          UseMI->addRegisterKilled(DstReg, tri_, true);
      }
      DEBUG(dbgs() << "\t\tupdated: " << li_->getInstructionIndex(UseMI)
                   << "\t" << *UseMI);
      continue;
    }

    // Sub-register indexes goes from small to large. e.g.
    // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
    // EAX: 1 -> AL, 2 -> AX
    // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
    // sub-register 2 is also AX.
    if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
      assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
    else if (SubIdx)
      O.setSubReg(SubIdx);
    O.setReg(DstReg);

    DEBUG(dbgs() << "\t\tupdated: " << li_->getInstructionIndex(UseMI)
                 << "\t" << *UseMI);

    // After updating the operand, check if the machine instruction has
    // become a copy. If so, update its val# information.
    if (JoinedCopies.count(UseMI))
      continue;

    const TargetInstrDesc &TID = UseMI->getDesc();
    unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
    if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
        tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
                          CopySrcSubIdx, CopyDstSubIdx) &&
        CopySrcReg != CopyDstReg &&
        (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
         allocatableRegs_[CopyDstReg])) {
      LiveInterval &LI = li_->getInterval(CopyDstReg);
      SlotIndex DefIdx =
        li_->getInstructionIndex(UseMI).getDefIndex();
      if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
        if (DLR->valno->def == DefIdx)
          DLR->valno->setCopy(UseMI);
      }
    }
  }
}

/// removeIntervalIfEmpty - Check if the live interval of a physical register
/// is empty, if so remove it and also remove the empty intervals of its
/// sub-registers. Return true if live interval is removed.
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
                                  const TargetRegisterInfo *tri_) {
  if (li.empty()) {
    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
      for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
        if (!li_->hasInterval(*SR))
          continue;
        LiveInterval &sli = li_->getInterval(*SR);
        if (sli.empty())
          li_->removeInterval(*SR);
      }
    li_->removeInterval(li.reg);
    return true;
  }
  return false;
}

/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
/// Return true if live interval is removed.
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
                                                        MachineInstr *CopyMI) {
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
  LiveInterval::iterator MLR =
    li.FindLiveRangeContaining(CopyIdx.getDefIndex());
  if (MLR == li.end())
    return false;  // Already removed by ShortenDeadCopySrcLiveRange.
  SlotIndex RemoveStart = MLR->start;
  SlotIndex RemoveEnd = MLR->end;
  SlotIndex DefIdx = CopyIdx.getDefIndex();
  // Remove the liverange that's defined by this.
  if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) {
    removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
    return removeIntervalIfEmpty(li, li_, tri_);
  }
  return false;
}

/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
/// the val# it defines. If the live interval becomes empty, remove it as well.
bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
                                             MachineInstr *DefMI) {
  SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
  if (DefIdx != MLR->valno->def)
    return false;
  li.removeValNo(MLR->valno);
  return removeIntervalIfEmpty(li, li_, tri_);
}

/// PropagateDeadness - Propagate the dead marker to the instruction which
/// defines the val#.
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
                              SlotIndex &LRStart, LiveIntervals *li_,
                              const TargetRegisterInfo* tri_) {
  MachineInstr *DefMI =
    li_->getInstructionFromIndex(LRStart.getDefIndex());
  if (DefMI && DefMI != CopyMI) {
    int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false);
    if (DeadIdx != -1)
      DefMI->getOperand(DeadIdx).setIsDead();
    else
      DefMI->addOperand(MachineOperand::CreateReg(li.reg,
                   /*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
    LRStart = LRStart.getNextSlot();
  }
}

/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
/// ends the live range there. If there isn't another use, then this live range
/// is dead. Return true if live interval is removed.
bool
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
                                                      MachineInstr *CopyMI) {
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
  if (CopyIdx == SlotIndex()) {
    // FIXME: special case: function live in. It can be a general case if the
    // first instruction index starts at > 0 value.
    assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
    // Live-in to the function but dead. Remove it from entry live-in set.
    if (mf_->begin()->isLiveIn(li.reg))
      mf_->begin()->removeLiveIn(li.reg);
    const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
    removeRange(li, LR->start, LR->end, li_, tri_);
    return removeIntervalIfEmpty(li, li_, tri_);
  }

  LiveInterval::iterator LR =
    li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex());
  if (LR == li.end())
    // Livein but defined by a phi.
    return false;

  SlotIndex RemoveStart = LR->start;
  SlotIndex RemoveEnd = CopyIdx.getStoreIndex();
  if (LR->end > RemoveEnd)
    // More uses past this copy? Nothing to do.
    return false;

  // If there is a last use in the same bb, we can't remove the live range.
  // Shorten the live interval and return.
  MachineBasicBlock *CopyMBB = CopyMI->getParent();
  if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
    return false;

  // There are other kills of the val#. Nothing to do.
  if (!li.isOnlyLROfValNo(LR))
    return false;

  MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
  if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
    // If the live range starts in another mbb and the copy mbb is not a fall
    // through mbb, then we can only cut the range from the beginning of the
    // copy mbb.
    RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex();

  if (LR->valno->def == RemoveStart) {
    // If the def MI defines the val# and this copy is the only kill of the
    // val#, then propagate the dead marker.
    PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
    ++numDeadValNo;

    if (LR->valno->isKill(RemoveEnd))
      LR->valno->removeKill(RemoveEnd);
  }

  removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
  return removeIntervalIfEmpty(li, li_, tri_);
}

/// CanCoalesceWithImpDef - Returns true if the specified copy instruction
/// from an implicit def to another register can be coalesced away.
bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
                                                     LiveInterval &li,
                                                     LiveInterval &ImpLi) const{
  if (!CopyMI->killsRegister(ImpLi.reg))
    return false;
  // Make sure this is the only use.
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
         UE = mri_->use_end(); UI != UE;) {
    MachineInstr *UseMI = &*UI;
    ++UI;
    if (CopyMI == UseMI || JoinedCopies.count(UseMI))
      continue;
    return false;
  }
  return true;
}


/// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
/// a virtual destination register with physical source register.
bool
SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
                                                     MachineBasicBlock *CopyMBB,
                                                     LiveInterval &DstInt,
                                                     LiveInterval &SrcInt) {
  // If the virtual register live interval is long but it has low use desity,
  // do not join them, instead mark the physical register as its allocation
  // preference.
  const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
  unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
  unsigned Length = li_->getApproximateInstructionCount(DstInt);
  if (Length > Threshold &&
      std::distance(mri_->use_nodbg_begin(DstInt.reg),
                    mri_->use_nodbg_end()) * Threshold < Length)
    return false;

  // If the virtual register live interval extends into a loop, turn down
  // aggressiveness.
  SlotIndex CopyIdx =
    li_->getInstructionIndex(CopyMI).getDefIndex();
  const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
  if (!L) {
    // Let's see if the virtual register live interval extends into the loop.
    LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
    assert(DLR != DstInt.end() && "Live range not found!");
    DLR = DstInt.FindLiveRangeContaining(DLR->end.getNextSlot());
    if (DLR != DstInt.end()) {
      CopyMBB = li_->getMBBFromIndex(DLR->start);
      L = loopInfo->getLoopFor(CopyMBB);
    }
  }

  if (!L || Length <= Threshold)
    return true;

  SlotIndex UseIdx = CopyIdx.getUseIndex();
  LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
  MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
  if (loopInfo->getLoopFor(SMBB) != L) {
    if (!loopInfo->isLoopHeader(CopyMBB))
      return false;
    // If vr's live interval extends pass the loop header, do not join.
    for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
           SE = CopyMBB->succ_end(); SI != SE; ++SI) {
      MachineBasicBlock *SuccMBB = *SI;
      if (SuccMBB == CopyMBB)
        continue;
      if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
                          li_->getMBBEndIdx(SuccMBB)))
        return false;
    }
  }
  return true;
}

/// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
/// copy from a virtual source register to a physical destination register.
bool
SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
                                                     MachineBasicBlock *CopyMBB,
                                                     LiveInterval &DstInt,
                                                     LiveInterval &SrcInt) {
  // If the virtual register live interval is long but it has low use density,
  // do not join them, instead mark the physical register as its allocation
  // preference.
  const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
  unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
  unsigned Length = li_->getApproximateInstructionCount(SrcInt);
  if (Length > Threshold &&
      std::distance(mri_->use_nodbg_begin(SrcInt.reg),
                    mri_->use_nodbg_end()) * Threshold < Length)
    return false;

  if (SrcInt.empty())
    // Must be implicit_def.
    return false;

  // If the virtual register live interval is defined or cross a loop, turn
  // down aggressiveness.
  SlotIndex CopyIdx =
    li_->getInstructionIndex(CopyMI).getDefIndex();
  SlotIndex UseIdx = CopyIdx.getUseIndex();
  LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
  assert(SLR != SrcInt.end() && "Live range not found!");
  SLR = SrcInt.FindLiveRangeContaining(SLR->start.getPrevSlot());
  if (SLR == SrcInt.end())
    return true;
  MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
  const MachineLoop *L = loopInfo->getLoopFor(SMBB);

  if (!L || Length <= Threshold)
    return true;

  if (loopInfo->getLoopFor(CopyMBB) != L) {
    if (SMBB != L->getLoopLatch())
      return false;
    // If vr's live interval is extended from before the loop latch, do not
    // join.
    for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
           PE = SMBB->pred_end(); PI != PE; ++PI) {
      MachineBasicBlock *PredMBB = *PI;
      if (PredMBB == SMBB)
        continue;
      if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
                          li_->getMBBEndIdx(PredMBB)))
        return false;
    }
  }
  return true;
}

/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
/// two virtual registers from different register classes.
bool
SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
                                                unsigned DstReg,
                                             const TargetRegisterClass *SrcRC,
                                             const TargetRegisterClass *DstRC,
                                             const TargetRegisterClass *NewRC) {
  unsigned NewRCCount = allocatableRCRegs_[NewRC].count();
  // This heuristics is good enough in practice, but it's obviously not *right*.
  // 4 is a magic number that works well enough for x86, ARM, etc. It filter
  // out all but the most restrictive register classes.
  if (NewRCCount > 4 ||
      // Early exit if the function is fairly small, coalesce aggressively if
      // that's the case. For really special register classes with 3 or
      // fewer registers, be a bit more careful.
      (li_->getFuncInstructionCount() / NewRCCount) < 8)
    return true;
  LiveInterval &SrcInt = li_->getInterval(SrcReg);
  LiveInterval &DstInt = li_->getInterval(DstReg);
  unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
  unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
  if (SrcSize <= NewRCCount && DstSize <= NewRCCount)
    return true;
  // Estimate *register use density*. If it doubles or more, abort.
  unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
                                   mri_->use_nodbg_end());
  unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
                                   mri_->use_nodbg_end());
  unsigned NewUses = SrcUses + DstUses;
  unsigned NewSize = SrcSize + DstSize;
  if (SrcRC != NewRC && SrcSize > NewRCCount) {
    unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count();
    if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
      return false;
  }
  if (DstRC != NewRC && DstSize > NewRCCount) {
    unsigned DstRCCount = allocatableRCRegs_[DstRC].count();
    if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
      return false;
  }
  return true;
}

/// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
/// register with a physical register, check if any of the virtual register
/// operand is a sub-register use or def. If so, make sure it won't result
/// in an illegal extract_subreg or insert_subreg instruction. e.g.
/// vr1024 = extract_subreg vr1025, 1
/// ...
/// vr1024 = mov8rr AH
/// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
/// AH does not have a super-reg whose sub-register 1 is AH.
bool
SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
                                                      unsigned VirtReg,
                                                      unsigned PhysReg) {
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
         E = mri_->reg_end(); I != E; ++I) {
    MachineOperand &O = I.getOperand();
    if (O.isDebug())
      continue;
    MachineInstr *MI = &*I;
    if (MI == CopyMI || JoinedCopies.count(MI))
      continue;
    unsigned SubIdx = O.getSubReg();
    if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
      return true;
    if (MI->isExtractSubreg()) {
      SubIdx = MI->getOperand(2).getImm();
      if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
        return true;
      if (O.isDef()) {
        unsigned SrcReg = MI->getOperand(1).getReg();
        const TargetRegisterClass *RC =
          TargetRegisterInfo::isPhysicalRegister(SrcReg)
          ? tri_->getPhysicalRegisterRegClass(SrcReg)
          : mri_->getRegClass(SrcReg);
        if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
          return true;
      }
    }
    if (MI->isInsertSubreg() || MI->isSubregToReg()) {
      SubIdx = MI->getOperand(3).getImm();
      if (VirtReg == MI->getOperand(0).getReg()) {
        if (!tri_->getSubReg(PhysReg, SubIdx))
          return true;
      } else {
        unsigned DstReg = MI->getOperand(0).getReg();
        const TargetRegisterClass *RC =
          TargetRegisterInfo::isPhysicalRegister(DstReg)
          ? tri_->getPhysicalRegisterRegClass(DstReg)
          : mri_->getRegClass(DstReg);
        if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
          return true;
      }
    }
  }
  return false;
}


/// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
/// an extract_subreg where dst is a physical register, e.g.
/// cl = EXTRACT_SUBREG reg1024, 1
bool
SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
                                               unsigned SrcReg, unsigned SubIdx,
                                               unsigned &RealDstReg) {
  const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
  RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
  assert(RealDstReg && "Invalid extract_subreg instruction!");

  LiveInterval &RHS = li_->getInterval(SrcReg);
  // For this type of EXTRACT_SUBREG, conservatively
  // check if the live interval of the source register interfere with the
  // actual super physical register we are trying to coalesce with.
  if (li_->hasInterval(RealDstReg) &&
      RHS.overlaps(li_->getInterval(RealDstReg))) {
    DEBUG({
        dbgs() << "\t\tInterfere with register ";
        li_->getInterval(RealDstReg).print(dbgs(), tri_);
      });
    return false; // Not coalescable
  }
  for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
    // Do not check DstReg or its sub-register. JoinIntervals() will take care
    // of that.
    if (*SR != DstReg &&
        !tri_->isSubRegister(DstReg, *SR) &&
        li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
      DEBUG({
          dbgs() << "\t\tInterfere with sub-register ";
          li_->getInterval(*SR).print(dbgs(), tri_);
        });
      return false; // Not coalescable
    }
  return true;
}

/// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
/// an insert_subreg where src is a physical register, e.g.
/// reg1024 = INSERT_SUBREG reg1024, c1, 0
bool
SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
                                               unsigned SrcReg, unsigned SubIdx,
                                               unsigned &RealSrcReg) {
  const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
  RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
  assert(RealSrcReg && "Invalid extract_subreg instruction!");

  LiveInterval &LHS = li_->getInterval(DstReg);
  if (li_->hasInterval(RealSrcReg) &&
      LHS.overlaps(li_->getInterval(RealSrcReg))) {
    DEBUG({
        dbgs() << "\t\tInterfere with register ";
        li_->getInterval(RealSrcReg).print(dbgs(), tri_);
      });
    return false; // Not coalescable
  }
  for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
    // Do not check SrcReg or its sub-register. JoinIntervals() will take care
    // of that.
    if (*SR != SrcReg &&
        !tri_->isSubRegister(SrcReg, *SR) &&
        li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
      DEBUG({
          dbgs() << "\t\tInterfere with sub-register ";
          li_->getInterval(*SR).print(dbgs(), tri_);
        });
      return false; // Not coalescable
    }
  return true;
}

/// getRegAllocPreference - Return register allocation preference register.
///
static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF,
                                      MachineRegisterInfo *MRI,
                                      const TargetRegisterInfo *TRI) {
  if (TargetRegisterInfo::isPhysicalRegister(Reg))
    return 0;
  std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
  return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF);
}

/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI.  This returns true
/// if the copy was successfully coalesced away. If it is not currently
/// possible to coalesce this interval, but it may be possible if other
/// things get coalesced, then it returns true by reference in 'Again'.
bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
  MachineInstr *CopyMI = TheCopy.MI;

  Again = false;
  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
    return false; // Already done.

  DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);

  unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
  bool isExtSubReg = CopyMI->isExtractSubreg();
  bool isInsSubReg = CopyMI->isInsertSubreg();
  bool isSubRegToReg = CopyMI->isSubregToReg();
  unsigned SubIdx = 0;
  if (isExtSubReg) {
    DstReg    = CopyMI->getOperand(0).getReg();
    DstSubIdx = CopyMI->getOperand(0).getSubReg();
    SrcReg    = CopyMI->getOperand(1).getReg();
    SrcSubIdx = CopyMI->getOperand(2).getImm();
  } else if (isInsSubReg || isSubRegToReg) {
    DstReg    = CopyMI->getOperand(0).getReg();
    DstSubIdx = CopyMI->getOperand(3).getImm();
    SrcReg    = CopyMI->getOperand(2).getReg();
    SrcSubIdx = CopyMI->getOperand(2).getSubReg();
    if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
      // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
      // coalesced to a larger register so the subreg indices cancel out.
      DEBUG(dbgs() << "\tSource of insert_subreg or subreg_to_reg is already "
                      "coalesced to another register.\n");
      return false;  // Not coalescable.
    }
  } else if (tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
    if (SrcSubIdx && DstSubIdx && SrcSubIdx != DstSubIdx) {
      // e.g. %reg16404:1<def> = MOV8rr %reg16412:2<kill>
      Again = true;
      return false;  // Not coalescable.
    }
  } else {
    llvm_unreachable("Unrecognized copy instruction!");
  }

  // If they are already joined we continue.
  if (SrcReg == DstReg) {
    DEBUG(dbgs() << "\tCopy already coalesced.\n");
    return false;  // Not coalescable.
  }

  bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);

  // If they are both physical registers, we cannot join them.
  if (SrcIsPhys && DstIsPhys) {
    DEBUG(dbgs() << "\tCan not coalesce physregs.\n");
    return false;  // Not coalescable.
  }

  // We only join virtual registers with allocatable physical registers.
  if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
    DEBUG(dbgs() << "\tSrc reg is unallocatable physreg.\n");
    return false;  // Not coalescable.
  }
  if (DstIsPhys && !allocatableRegs_[DstReg]) {
    DEBUG(dbgs() << "\tDst reg is unallocatable physreg.\n");
    return false;  // Not coalescable.
  }

  // We cannot handle dual subreg indices and mismatched classes at the same
  // time.
  if (SrcSubIdx && DstSubIdx && differingRegisterClasses(SrcReg, DstReg)) {
    DEBUG(dbgs() << "\tCannot handle subreg indices and mismatched classes.\n");
    return false;
  }

  // Check that a physical source register is compatible with dst regclass
  if (SrcIsPhys) {
    unsigned SrcSubReg = SrcSubIdx ?
      tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
    const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
    const TargetRegisterClass *DstSubRC = DstRC;
    if (DstSubIdx)
      DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
    assert(DstSubRC && "Illegal subregister index");
    if (!DstSubRC->contains(SrcSubReg)) {
      DEBUG(dbgs() << "\tIncompatible destination regclass: "
                   << tri_->getName(SrcSubReg) << " not in "
                   << DstSubRC->getName() << ".\n");
      return false;             // Not coalescable.
    }
  }

  // Check that a physical dst register is compatible with source regclass
  if (DstIsPhys) {
    unsigned DstSubReg = DstSubIdx ?
      tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
    const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
    const TargetRegisterClass *SrcSubRC = SrcRC;
    if (SrcSubIdx)
      SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
    assert(SrcSubRC && "Illegal subregister index");
    if (!SrcSubRC->contains(DstSubReg)) {
      DEBUG(dbgs() << "\tIncompatible source regclass: "
                   << tri_->getName(DstSubReg) << " not in "
                   << SrcSubRC->getName() << ".\n");
      (void)DstSubReg;
      return false;             // Not coalescable.
    }
  }

  // Should be non-null only when coalescing to a sub-register class.
  bool CrossRC = false;
  const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
  const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
  const TargetRegisterClass *NewRC = NULL;
  unsigned RealDstReg = 0;
  unsigned RealSrcReg = 0;
  if (isExtSubReg || isInsSubReg || isSubRegToReg) {
    SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
    if (SrcIsPhys && isExtSubReg) {
      // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
      // coalesced with AX.
      unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
      if (DstSubIdx) {
        // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
        // coalesced to a larger register so the subreg indices cancel out.
        if (DstSubIdx != SubIdx) {
          DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
          return false; // Not coalescable.
        }
      } else
        SrcReg = tri_->getSubReg(SrcReg, SubIdx);
      SubIdx = 0;
    } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
      // EAX = INSERT_SUBREG EAX, r1024, 0
      unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
      if (SrcSubIdx) {
        // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
        // coalesced to a larger register so the subreg indices cancel out.
        if (SrcSubIdx != SubIdx) {
          DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
          return false; // Not coalescable.
        }
      } else
        DstReg = tri_->getSubReg(DstReg, SubIdx);
      SubIdx = 0;
    } else if ((DstIsPhys && isExtSubReg) ||
               (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
      if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
        DEBUG(dbgs() << "\tSrc of extract_subreg already coalesced with reg"
                     << " of a super-class.\n");
        return false; // Not coalescable.
      }

      // FIXME: The following checks are somewhat conservative. Perhaps a better
      // way to implement this is to treat this as coalescing a vr with the
      // super physical register.
      if (isExtSubReg) {
        if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
          return false; // Not coalescable
      } else {
        if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
          return false; // Not coalescable
      }
      SubIdx = 0;
    } else {
      unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
        : CopyMI->getOperand(2).getSubReg();
      if (OldSubIdx) {
        if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
          // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
          // coalesced to a larger register so the subreg indices cancel out.
          // Also check if the other larger register is of the same register
          // class as the would be resulting register.
          SubIdx = 0;
        else {
          DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
          return false; // Not coalescable.
        }
      }
      if (SubIdx) {
        if (!DstIsPhys && !SrcIsPhys) {
          if (isInsSubReg || isSubRegToReg) {
            NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
          } else // extract_subreg {
            NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
          }
        if (!NewRC) {
          DEBUG(dbgs() << "\t Conflicting sub-register indices.\n");
          return false;  // Not coalescable
        }

        if (!isWinToJoinCrossClass(SrcReg, DstReg, SrcRC, DstRC, NewRC)) {
          DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
                       << SrcRC->getName() << "/"
                       << DstRC->getName() << " -> "
                       << NewRC->getName() << ".\n");
          Again = true;  // May be possible to coalesce later.
          return false;
        }
      }
    }
  } else if (differingRegisterClasses(SrcReg, DstReg)) {
    if (DisableCrossClassJoin)
      return false;
    CrossRC = true;

    // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
    // with another? If it's the resulting destination register, then
    // the subidx must be propagated to uses (but only those defined
    // by the EXTRACT_SUBREG). If it's being coalesced into another
    // register, it should be safe because register is assumed to have
    // the register class of the super-register.

    // Process moves where one of the registers have a sub-register index.
    MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
    MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
    SubIdx = DstMO->getSubReg();
    if (SubIdx) {
      if (SrcMO->getSubReg())
        // FIXME: can we handle this?
        return false;
      // This is not an insert_subreg but it looks like one.
      // e.g. %reg1024:4 = MOV32rr %EAX
      isInsSubReg = true;
      if (SrcIsPhys) {
        if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
          return false; // Not coalescable
        SubIdx = 0;
      }
    } else {
      SubIdx = SrcMO->getSubReg();
      if (SubIdx) {
        // This is not a extract_subreg but it looks like one.
        // e.g. %cl = MOV16rr %reg1024:1
        isExtSubReg = true;
        if (DstIsPhys) {
          if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
            return false; // Not coalescable
          SubIdx = 0;
        }
      }
    }

    // Now determine the register class of the joined register.
    if (!SrcIsPhys && !DstIsPhys) {
      if (isExtSubReg) {
        NewRC =
          SubIdx ? tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx) : SrcRC;
      } else if (isInsSubReg) {
        NewRC =
          SubIdx ? tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx) : DstRC;
      } else {
        NewRC = getCommonSubClass(SrcRC, DstRC);
      }

      if (!NewRC) {
        DEBUG(dbgs() << "\tDisjoint regclasses: "
                     << SrcRC->getName() << ", "
                     << DstRC->getName() << ".\n");
        return false;           // Not coalescable.
      }

      // If we are joining two virtual registers and the resulting register
      // class is more restrictive (fewer register, smaller size). Check if it's
      // worth doing the merge.
      if (!isWinToJoinCrossClass(SrcReg, DstReg, SrcRC, DstRC, NewRC)) {
        DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
                     << SrcRC->getName() << "/"
                     << DstRC->getName() << " -> "
                     << NewRC->getName() << ".\n");
        // Allow the coalescer to try again in case either side gets coalesced to
        // a physical register that's compatible with the other side. e.g.
        // r1024 = MOV32to32_ r1025
        // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
        Again = true;  // May be possible to coalesce later.
        return false;
      }
    }
  }

  // Will it create illegal extract_subreg / insert_subreg?
  if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
    return false;
  if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
    return false;

  LiveInterval &SrcInt = li_->getInterval(SrcReg);
  LiveInterval &DstInt = li_->getInterval(DstReg);
  assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
         "Register mapping is horribly broken!");

  DEBUG({
      dbgs() << "\t\tInspecting ";
      if (SrcRC) dbgs() << SrcRC->getName() << ": ";
      SrcInt.print(dbgs(), tri_);
      dbgs() << "\n\t\t       and ";
      if (DstRC) dbgs() << DstRC->getName() << ": ";
      DstInt.print(dbgs(), tri_);
      dbgs() << "\n";
    });

  // Save a copy of the virtual register live interval. We'll manually
  // merge this into the "real" physical register live interval this is
  // coalesced with.
  OwningPtr<LiveInterval> SavedLI;
  if (RealDstReg)
    SavedLI.reset(li_->dupInterval(&SrcInt));
  else if (RealSrcReg)
    SavedLI.reset(li_->dupInterval(&DstInt));

  if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
    // Check if it is necessary to propagate "isDead" property.
    MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
    bool isDead = mopd->isDead();

    // We need to be careful about coalescing a source physical register with a
    // virtual register. Once the coalescing is done, it cannot be broken and
    // these are not spillable! If the destination interval uses are far away,
    // think twice about coalescing them!
    if (!isDead && (SrcIsPhys || DstIsPhys)) {
      // If the virtual register live interval is long but it has low use
      // density, do not join them, instead mark the physical register as its
      // allocation preference.
      LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
      LiveInterval &JoinPInt = SrcIsPhys ? SrcInt : DstInt;
      unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
      unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;

      // Don't join with physregs that have a ridiculous number of live
      // ranges. The data structure performance is really bad when that
      // happens.
      if (JoinPInt.ranges.size() > 1000) {
        mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
        ++numAborts;
        DEBUG(dbgs()
              << "\tPhysical register live interval too complicated, abort!\n");
        return false;
      }

      const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
      unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
      unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
      if (Length > Threshold &&
          std::distance(mri_->use_nodbg_begin(JoinVReg),
                        mri_->use_nodbg_end()) * Threshold < Length) {
        // Before giving up coalescing, if definition of source is defined by
        // trivial computation, try rematerializing it.
        if (ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
          return true;

        mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
        ++numAborts;
        DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
        Again = true;  // May be possible to coalesce later.
        return false;
      }
    }
  }

  // Okay, attempt to join these two intervals.  On failure, this returns false.
  // Otherwise, if one of the intervals being joined is a physreg, this method
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
  // been modified, so we can use this information below to update aliases.
  bool Swapped = false;
  // If SrcInt is implicitly defined, it's safe to coalesce.
  if (SrcInt.empty()) {
    if (!CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
      // Only coalesce an empty interval (defined by implicit_def) with
      // another interval which has a valno defined by the CopyMI and the CopyMI
      // is a kill of the implicit def.
      DEBUG(dbgs() << "\tNot profitable!\n");
      return false;
    }
  } else if (!JoinIntervals(DstInt, SrcInt, Swapped)) {
    // Coalescing failed.

    // If definition of source is defined by trivial computation, try
    // rematerializing it.
    if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
        ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
      return true;

    // If we can eliminate the copy without merging the live ranges, do so now.
    if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
        (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
         RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
      JoinedCopies.insert(CopyMI);
      DEBUG(dbgs() << "\tTrivial!\n");
      return true;
    }

    // Otherwise, we are unable to join the intervals.
    DEBUG(dbgs() << "\tInterference!\n");
    Again = true;  // May be possible to coalesce later.
    return false;
  }

  LiveInterval *ResSrcInt = &SrcInt;
  LiveInterval *ResDstInt = &DstInt;
  if (Swapped) {
    std::swap(SrcReg, DstReg);
    std::swap(ResSrcInt, ResDstInt);
  }
  assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
         "LiveInterval::join didn't work right!");

  // If we're about to merge live ranges into a physical register live interval,
  // we have to update any aliased register's live ranges to indicate that they
  // have clobbered values for this range.
  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    // If this is a extract_subreg where dst is a physical register, e.g.
    // cl = EXTRACT_SUBREG reg1024, 1
    // then create and update the actual physical register allocated to RHS.
    if (RealDstReg || RealSrcReg) {
      LiveInterval &RealInt =
        li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
      for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
             E = SavedLI->vni_end(); I != E; ++I) {
        const VNInfo *ValNo = *I;
        VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(),
                                                false, // updated at *
                                                li_->getVNInfoAllocator());
        NewValNo->setFlags(ValNo->getFlags()); // * updated here.
        RealInt.addKills(NewValNo, ValNo->kills);
        RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
      }
      RealInt.weight += SavedLI->weight;
      DstReg = RealDstReg ? RealDstReg : RealSrcReg;
    }

    // Update the liveintervals of sub-registers.
    for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
      li_->getOrCreateInterval(*AS).MergeInClobberRanges(*li_, *ResSrcInt,
                                                 li_->getVNInfoAllocator());
  }

  // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
  // larger super-register.
  if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
      !SrcIsPhys && !DstIsPhys) {
    if ((isExtSubReg && !Swapped) ||
        ((isInsSubReg || isSubRegToReg) && Swapped)) {
      ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator());
      std::swap(SrcReg, DstReg);
      std::swap(ResSrcInt, ResDstInt);
    }
  }

  // Coalescing to a virtual register that is of a sub-register class of the
  // other. Make sure the resulting register is set to the right register class.
  if (CrossRC)
    ++numCrossRCs;

  // This may happen even if it's cross-rc coalescing. e.g.
  // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
  // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
  // be allocate a register from GR64_ABCD.
  if (NewRC)
    mri_->setRegClass(DstReg, NewRC);

  // Remember to delete the copy instruction.
  JoinedCopies.insert(CopyMI);

  UpdateRegDefsUses(SrcReg, DstReg, SubIdx);

  // If we have extended the live range of a physical register, make sure we
  // update live-in lists as well.
  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    const LiveInterval &VRegInterval = li_->getInterval(SrcReg);
    SmallVector<MachineBasicBlock*, 16> BlockSeq;
    for (LiveInterval::const_iterator I = VRegInterval.begin(),
           E = VRegInterval.end(); I != E; ++I ) {
      li_->findLiveInMBBs(I->start, I->end, BlockSeq);
      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
        MachineBasicBlock &block = *BlockSeq[idx];
        if (!block.isLiveIn(DstReg))
          block.addLiveIn(DstReg);
      }
      BlockSeq.clear();
    }
  }

  // SrcReg is guarateed to be the register whose live interval that is
  // being merged.
  li_->removeInterval(SrcReg);

  // Update regalloc hint.
  tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_);

  // Manually deleted the live interval copy.
  if (SavedLI) {
    SavedLI->clear();
    SavedLI.reset();
  }

  // If resulting interval has a preference that no longer fits because of subreg
  // coalescing, just clear the preference.
  unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
  if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
      TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
    const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
    if (!RC->contains(Preference))
      mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
  }

  DEBUG({
      dbgs() << "\t\tJoined. Result = ";
      ResDstInt->print(dbgs(), tri_);
      dbgs() << "\n";
    });

  ++numJoins;
  return true;
}

/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be.  This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve.  InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(VNInfo *VNI,
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
                                  SmallVector<int, 16> &ThisValNoAssignments,
                                  SmallVector<int, 16> &OtherValNoAssignments) {
  unsigned VN = VNI->id;

  // If the VN has already been computed, just return it.
  if (ThisValNoAssignments[VN] >= 0)
    return ThisValNoAssignments[VN];
  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");

  // If this val is not a copy from the other val, then it must be a new value
  // number in the destination.
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
  if (I == ThisFromOther.end()) {
    NewVNInfo.push_back(VNI);
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
  }
  VNInfo *OtherValNo = I->second;

  // Otherwise, this *is* a copy from the RHS.  If the other side has already
  // been computed, return it.
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];

  // Mark this value number as currently being computed, then ask what the
  // ultimate value # of the other value is.
  ThisValNoAssignments[VN] = -2;
  unsigned UltimateVN =
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
                      OtherValNoAssignments, ThisValNoAssignments);
  return ThisValNoAssignments[VN] = UltimateVN;
}

static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
  return std::find(V.begin(), V.end(), Val) != V.end();
}

static bool isValNoDefMove(const MachineInstr *MI, unsigned DR, unsigned SR,
                           const TargetInstrInfo *TII,
                           const TargetRegisterInfo *TRI) {
  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
  if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
    ;
  else if (MI->isExtractSubreg()) {
    DstReg = MI->getOperand(0).getReg();
    SrcReg = MI->getOperand(1).getReg();
  } else if (MI->isSubregToReg() ||
             MI->isInsertSubreg()) {
    DstReg = MI->getOperand(0).getReg();
    SrcReg = MI->getOperand(2).getReg();
  } else
    return false;
  return (SrcReg == SR || TRI->isSuperRegister(SR, SrcReg)) &&
         (DstReg == DR || TRI->isSuperRegister(DR, DstReg));
}

/// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
/// the specified live interval is defined by a copy from the specified
/// register.
bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
                                                           LiveRange *LR,
                                                           unsigned Reg) {
  unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
  if (SrcReg == Reg)
    return true;
  // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
  if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) &&
      TargetRegisterInfo::isPhysicalRegister(li.reg) &&
      *tri_->getSuperRegisters(li.reg)) {
    // It's a sub-register live interval, we may not have precise information.
    // Re-compute it.
    MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
    if (DefMI && isValNoDefMove(DefMI, li.reg, Reg, tii_, tri_)) {
      // Cache computed info.
      LR->valno->def = LR->start;
      LR->valno->setCopy(DefMI);
      return true;
    }
  }
  return false;
}


/// ValueLiveAt - Return true if the LiveRange pointed to by the given
/// iterator, or any subsequent range with the same value number,
/// is live at the given point.
bool SimpleRegisterCoalescing::ValueLiveAt(LiveInterval::iterator LRItr,
                                           LiveInterval::iterator LREnd,
                                           SlotIndex defPoint) const {
  for (const VNInfo *valno = LRItr->valno;
       (LRItr != LREnd) && (LRItr->valno == valno); ++LRItr) {
    if (LRItr->contains(defPoint))
      return true;
  }

  return false;
}


/// SimpleJoin - Attempt to joint the specified interval into this one. The
/// caller of this method must guarantee that the RHS only contains a single
/// value number and that the RHS is not defined by a copy from this
/// interval.  This returns false if the intervals are not joinable, or it
/// joins them and returns true.
bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
  assert(RHS.containsOneValue());

  // Some number (potentially more than one) value numbers in the current
  // interval may be defined as copies from the RHS.  Scan the overlapping
  // portions of the LHS and RHS, keeping track of this and looking for
  // overlapping live ranges that are NOT defined as copies.  If these exist, we
  // cannot coalesce.

  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();

  if (LHSIt->start < RHSIt->start) {
    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
    if (LHSIt != LHS.begin()) --LHSIt;
  } else if (RHSIt->start < LHSIt->start) {
    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
    if (RHSIt != RHS.begin()) --RHSIt;
  }

  SmallVector<VNInfo*, 8> EliminatedLHSVals;

  while (1) {
    // Determine if these live intervals overlap.
    bool Overlaps = false;
    if (LHSIt->start <= RHSIt->start)
      Overlaps = LHSIt->end > RHSIt->start;
    else
      Overlaps = RHSIt->end > LHSIt->start;

    // If the live intervals overlap, there are two interesting cases: if the
    // LHS interval is defined by a copy from the RHS, it's ok and we record
    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
    // coalesce these live ranges and we bail out.
    if (Overlaps) {
      // If we haven't already recorded that this value # is safe, check it.
      if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
        // If it's re-defined by an early clobber somewhere in the live range,
        // then conservatively abort coalescing.
        if (LHSIt->valno->hasRedefByEC())
          return false;
        // Copy from the RHS?
        if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
          return false;    // Nope, bail out.

        if (ValueLiveAt(LHSIt, LHS.end(), RHSIt->valno->def))
          // Here is an interesting situation:
          // BB1:
          //   vr1025 = copy vr1024
          //   ..
          // BB2:
          //   vr1024 = op
          //          = vr1025
          // Even though vr1025 is copied from vr1024, it's not safe to
          // coalesce them since the live range of vr1025 intersects the
          // def of vr1024. This happens because vr1025 is assigned the
          // value of the previous iteration of vr1024.
          return false;
        EliminatedLHSVals.push_back(LHSIt->valno);
      }

      // We know this entire LHS live range is okay, so skip it now.
      if (++LHSIt == LHSEnd) break;
      continue;
    }

    if (LHSIt->end < RHSIt->end) {
      if (++LHSIt == LHSEnd) break;
    } else {
      // One interesting case to check here.  It's possible that we have
      // something like "X3 = Y" which defines a new value number in the LHS,
      // and is the last use of this liverange of the RHS.  In this case, we
      // want to notice this copy (so that it gets coalesced away) even though
      // the live ranges don't actually overlap.
      if (LHSIt->start == RHSIt->end) {
        if (InVector(LHSIt->valno, EliminatedLHSVals)) {
          // We already know that this value number is going to be merged in
          // if coalescing succeeds.  Just skip the liverange.
          if (++LHSIt == LHSEnd) break;
        } else {
          // If it's re-defined by an early clobber somewhere in the live range,
          // then conservatively abort coalescing.
          if (LHSIt->valno->hasRedefByEC())
            return false;
          // Otherwise, if this is a copy from the RHS, mark it as being merged
          // in.
          if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
            if (ValueLiveAt(LHSIt, LHS.end(), RHSIt->valno->def))
              // Here is an interesting situation:
              // BB1:
              //   vr1025 = copy vr1024
              //   ..
              // BB2:
              //   vr1024 = op
              //          = vr1025
              // Even though vr1025 is copied from vr1024, it's not safe to
              // coalesced them since live range of vr1025 intersects the
              // def of vr1024. This happens because vr1025 is assigned the
              // value of the previous iteration of vr1024.
              return false;
            EliminatedLHSVals.push_back(LHSIt->valno);

            // We know this entire LHS live range is okay, so skip it now.
            if (++LHSIt == LHSEnd) break;
          }
        }
      }

      if (++RHSIt == RHSEnd) break;
    }
  }

  // If we got here, we know that the coalescing will be successful and that
  // the value numbers in EliminatedLHSVals will all be merged together.  Since
  // the most common case is that EliminatedLHSVals has a single number, we
  // optimize for it: if there is more than one value, we merge them all into
  // the lowest numbered one, then handle the interval as if we were merging
  // with one value number.
  VNInfo *LHSValNo = NULL;
  if (EliminatedLHSVals.size() > 1) {
    // Loop through all the equal value numbers merging them into the smallest
    // one.
    VNInfo *Smallest = EliminatedLHSVals[0];
    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
      if (EliminatedLHSVals[i]->id < Smallest->id) {
        // Merge the current notion of the smallest into the smaller one.
        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
        Smallest = EliminatedLHSVals[i];
      } else {
        // Merge into the smallest.
        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
      }
    }
    LHSValNo = Smallest;
  } else if (EliminatedLHSVals.empty()) {
    if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
        *tri_->getSuperRegisters(LHS.reg))
      // Imprecise sub-register information. Can't handle it.
      return false;
    llvm_unreachable("No copies from the RHS?");
  } else {
    LHSValNo = EliminatedLHSVals[0];
  }

  // Okay, now that there is a single LHS value number that we're merging the
  // RHS into, update the value number info for the LHS to indicate that the
  // value number is defined where the RHS value number was.
  const VNInfo *VNI = RHS.getValNumInfo(0);
  LHSValNo->def  = VNI->def;
  LHSValNo->setCopy(VNI->getCopy());

  // Okay, the final step is to loop over the RHS live intervals, adding them to
  // the LHS.
  if (VNI->hasPHIKill())
    LHSValNo->setHasPHIKill(true);
  LHS.addKills(LHSValNo, VNI->kills);
  LHS.MergeRangesInAsValue(RHS, LHSValNo);

  LHS.ComputeJoinedWeight(RHS);

  // Update regalloc hint if both are virtual registers.
  if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
      TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
    std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
    std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
    if (RHSPref != LHSPref)
      mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second);
  }

  // Update the liveintervals of sub-registers.
  if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
    for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
      li_->getOrCreateInterval(*AS).MergeInClobberRanges(*li_, LHS,
                                                    li_->getVNInfoAllocator());

  return true;
}

/// JoinIntervals - Attempt to join these two intervals.  On failure, this
/// returns false.  Otherwise, if one of the intervals being joined is a
/// physreg, this method always canonicalizes LHS to be it.  The output
/// "RHS" will not have been modified, so we can use this information
/// below to update aliases.
bool
SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
                                        bool &Swapped) {
  // Compute the final value assignment, assuming that the live ranges can be
  // coalesced.
  SmallVector<int, 16> LHSValNoAssignments;
  SmallVector<int, 16> RHSValNoAssignments;
  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
  SmallVector<VNInfo*, 16> NewVNInfo;

  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
      *tri_->getSubRegisters(LHS.reg)) {
    // If it's coalescing a virtual register to a physical register, estimate
    // its live interval length. This is the *cost* of scanning an entire live
    // interval. If the cost is low, we'll do an exhaustive check instead.

    // If this is something like this:
    // BB1:
    // v1024 = op
    // ...
    // BB2:
    // ...
    // RAX   = v1024
    //
    // That is, the live interval of v1024 crosses a bb. Then we can't rely on
    // less conservative check. It's possible a sub-register is defined before
    // v1024 (or live in) and live out of BB1.
    if (RHS.containsOneValue() &&
        li_->intervalIsInOneMBB(RHS) &&
        li_->getApproximateInstructionCount(RHS) <= 10) {
      // Perform a more exhaustive check for some common cases.
      if (li_->conflictsWithSubPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
        return false;
    } else {
      for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
        if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
          DEBUG({
              dbgs() << "\tInterfere with sub-register ";
              li_->getInterval(*SR).print(dbgs(), tri_);
            });
          return false;
        }
    }
  } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
             *tri_->getSubRegisters(RHS.reg)) {
    if (LHS.containsOneValue() &&
        li_->getApproximateInstructionCount(LHS) <= 10) {
      // Perform a more exhaustive check for some common cases.
      if (li_->conflictsWithSubPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
        return false;
    } else {
      for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
        if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
          DEBUG({
              dbgs() << "\tInterfere with sub-register ";
              li_->getInterval(*SR).print(dbgs(), tri_);
            });
          return false;
        }
    }
  }

  // Compute ultimate value numbers for the LHS and RHS values.
  if (RHS.containsOneValue()) {
    // Copies from a liveinterval with a single value are simple to handle and
    // very common, handle the special case here.  This is important, because
    // often RHS is small and LHS is large (e.g. a physreg).

    // Find out if the RHS is defined as a copy from some value in the LHS.
    int RHSVal0DefinedFromLHS = -1;
    int RHSValID = -1;
    VNInfo *RHSValNoInfo = NULL;
    VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
    unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
    if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
      // If RHS is not defined as a copy from the LHS, we can use simpler and
      // faster checks to see if the live ranges are coalescable.  This joiner
      // can't swap the LHS/RHS intervals though.
      if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
        return SimpleJoin(LHS, RHS);
      } else {
        RHSValNoInfo = RHSValNoInfo0;
      }
    } else {
      // It was defined as a copy from the LHS, find out what value # it is.
      RHSValNoInfo =
        LHS.getLiveRangeContaining(RHSValNoInfo0->def.getPrevSlot())->valno;
      RHSValID = RHSValNoInfo->id;
      RHSVal0DefinedFromLHS = RHSValID;
    }

    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    NewVNInfo.resize(LHS.getNumValNums(), NULL);

    // Okay, *all* of the values in LHS that are defined as a copy from RHS
    // should now get updated.
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
        if (LHSSrcReg != RHS.reg) {
          // If this is not a copy from the RHS, its value number will be
          // unmodified by the coalescing.
          NewVNInfo[VN] = VNI;
          LHSValNoAssignments[VN] = VN;
        } else if (RHSValID == -1) {
          // Otherwise, it is a copy from the RHS, and we don't already have a
          // value# for it.  Keep the current value number, but remember it.
          LHSValNoAssignments[VN] = RHSValID = VN;
          NewVNInfo[VN] = RHSValNoInfo;
          LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
        } else {
          // Otherwise, use the specified value #.
          LHSValNoAssignments[VN] = RHSValID;
          if (VN == (unsigned)RHSValID) {  // Else this val# is dead.
            NewVNInfo[VN] = RHSValNoInfo;
            LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
          }
        }
      } else {
        NewVNInfo[VN] = VNI;
        LHSValNoAssignments[VN] = VN;
      }
    }

    assert(RHSValID != -1 && "Didn't find value #?");
    RHSValNoAssignments[0] = RHSValID;
    if (RHSVal0DefinedFromLHS != -1) {
      // This path doesn't go through ComputeUltimateVN so just set
      // it to anything.
      RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
    }
  } else {
    // Loop over the value numbers of the LHS, seeing if any are defined from
    // the RHS.
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      if (VNI->isUnused() || VNI->getCopy() == 0)  // Src not defined by a copy?
        continue;

      // DstReg is known to be a register in the LHS interval.  If the src is
      // from the RHS interval, we can use its value #.
      if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
        continue;

      // Figure out the value # from the RHS.
      LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
      assert(lr && "Cannot find live range");
      LHSValsDefinedFromRHS[VNI] = lr->valno;
    }

    // Loop over the value numbers of the RHS, seeing if any are defined from
    // the LHS.
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      if (VNI->isUnused() || VNI->getCopy() == 0)  // Src not defined by a copy?
        continue;

      // DstReg is known to be a register in the RHS interval.  If the src is
      // from the LHS interval, we can use its value #.
      if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
        continue;

      // Figure out the value # from the LHS.
      LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
      assert(lr && "Cannot find live range");
      RHSValsDefinedFromLHS[VNI] = lr->valno;
    }

    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
    NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());

    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
        continue;
      ComputeUltimateVN(VNI, NewVNInfo,
                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
                        LHSValNoAssignments, RHSValNoAssignments);
    }
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
         i != e; ++i) {
      VNInfo *VNI = *i;
      unsigned VN = VNI->id;
      if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
        continue;
      // If this value number isn't a copy from the LHS, it's a new number.
      if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
        NewVNInfo.push_back(VNI);
        RHSValNoAssignments[VN] = NewVNInfo.size()-1;
        continue;
      }

      ComputeUltimateVN(VNI, NewVNInfo,
                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
                        RHSValNoAssignments, LHSValNoAssignments);
    }
  }

  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
  // interval lists to see if these intervals are coalescable.
  LiveInterval::const_iterator I = LHS.begin();
  LiveInterval::const_iterator IE = LHS.end();
  LiveInterval::const_iterator J = RHS.begin();
  LiveInterval::const_iterator JE = RHS.end();

  // Skip ahead until the first place of potential sharing.
  if (I->start < J->start) {
    I = std::upper_bound(I, IE, J->start);
    if (I != LHS.begin()) --I;
  } else if (J->start < I->start) {
    J = std::upper_bound(J, JE, I->start);
    if (J != RHS.begin()) --J;
  }

  while (1) {
    // Determine if these two live ranges overlap.
    bool Overlaps;
    if (I->start < J->start) {
      Overlaps = I->end > J->start;
    } else {
      Overlaps = J->end > I->start;
    }

    // If so, check value # info to determine if they are really different.
    if (Overlaps) {
      // If the live range overlap will map to the same value number in the
      // result liverange, we can still coalesce them.  If not, we can't.
      if (LHSValNoAssignments[I->valno->id] !=
          RHSValNoAssignments[J->valno->id])
        return false;
      // If it's re-defined by an early clobber somewhere in the live range,
      // then conservatively abort coalescing.
      if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
        return false;
    }

    if (I->end < J->end) {
      ++I;
      if (I == IE) break;
    } else {
      ++J;
      if (J == JE) break;
    }
  }

  // Update kill info. Some live ranges are extended due to copy coalescing.
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
    VNInfo *VNI = I->first;
    unsigned LHSValID = LHSValNoAssignments[VNI->id];
    NewVNInfo[LHSValID]->removeKill(VNI->def);
    if (VNI->hasPHIKill())
      NewVNInfo[LHSValID]->setHasPHIKill(true);
    RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
  }

  // Update kill info. Some live ranges are extended due to copy coalescing.
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
    VNInfo *VNI = I->first;
    unsigned RHSValID = RHSValNoAssignments[VNI->id];
    NewVNInfo[RHSValID]->removeKill(VNI->def);
    if (VNI->hasPHIKill())
      NewVNInfo[RHSValID]->setHasPHIKill(true);
    LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
  }

  // If we get here, we know that we can coalesce the live ranges.  Ask the
  // intervals to coalesce themselves now.
  if ((RHS.ranges.size() > LHS.ranges.size() &&
      TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
      TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
    RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo,
             mri_);
    Swapped = true;
  } else {
    LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
             mri_);
    Swapped = false;
  }
  return true;
}

namespace {
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
  // depth of the basic block (the unsigned), and then on the MBB number.
  struct DepthMBBCompare {
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
      // Deeper loops first
      if (LHS.first != RHS.first)
        return LHS.first > RHS.first;

      // Prefer blocks that are more connected in the CFG. This takes care of
      // the most difficult copies first while intervals are short.
      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
      if (cl != cr)
        return cl > cr;

      // As a last resort, sort by block number.
      return LHS.second->getNumber() < RHS.second->getNumber();
    }
  };
}

void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
                                               std::vector<CopyRec> &TryAgain) {
  DEBUG(dbgs() << MBB->getName() << ":\n");

  std::vector<CopyRec> VirtCopies;
  std::vector<CopyRec> PhysCopies;
  std::vector<CopyRec> ImpDefCopies;
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
       MII != E;) {
    MachineInstr *Inst = MII++;

    // If this isn't a copy nor a extract_subreg, we can't join intervals.
    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
    bool isInsUndef = false;
    if (Inst->isExtractSubreg()) {
      DstReg = Inst->getOperand(0).getReg();
      SrcReg = Inst->getOperand(1).getReg();
    } else if (Inst->isInsertSubreg()) {
      DstReg = Inst->getOperand(0).getReg();
      SrcReg = Inst->getOperand(2).getReg();
      if (Inst->getOperand(1).isUndef())
        isInsUndef = true;
    } else if (Inst->isInsertSubreg() || Inst->isSubregToReg()) {
      DstReg = Inst->getOperand(0).getReg();
      SrcReg = Inst->getOperand(2).getReg();
    } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
      continue;

    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    if (isInsUndef ||
        (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty()))
      ImpDefCopies.push_back(CopyRec(Inst, 0));
    else if (SrcIsPhys || DstIsPhys)
      PhysCopies.push_back(CopyRec(Inst, 0));
    else
      VirtCopies.push_back(CopyRec(Inst, 0));
  }

  // Try coalescing implicit copies and insert_subreg <undef> first,
  // followed by copies to / from physical registers, then finally copies
  // from virtual registers to virtual registers.
  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = ImpDefCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = PhysCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = VirtCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
}

void SimpleRegisterCoalescing::joinIntervals() {
  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");

  std::vector<CopyRec> TryAgainList;
  if (loopInfo->empty()) {
    // If there are no loops in the function, join intervals in function order.
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      CopyCoalesceInMBB(I, TryAgainList);
  } else {
    // Otherwise, join intervals in inner loops before other intervals.
    // Unfortunately we can't just iterate over loop hierarchy here because
    // there may be more MBB's than BB's.  Collect MBB's for sorting.

    // Join intervals in the function prolog first. We want to join physical
    // registers with virtual registers before the intervals got too long.
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
      MachineBasicBlock *MBB = I;
      MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
    }

    // Sort by loop depth.
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());

    // Finally, join intervals in loop nest order.
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
  }

  // Joining intervals can allow other intervals to be joined.  Iteratively join
  // until we make no progress.
  bool ProgressMade = true;
  while (ProgressMade) {
    ProgressMade = false;

    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
      CopyRec &TheCopy = TryAgainList[i];
      if (!TheCopy.MI)
        continue;

      bool Again = false;
      bool Success = JoinCopy(TheCopy, Again);
      if (Success || !Again) {
        TheCopy.MI = 0;   // Mark this one as done.
        ProgressMade = true;
      }
    }
  }
}

/// Return true if the two specified registers belong to different register
/// classes.  The registers may be either phys or virt regs.
bool
SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
                                                   unsigned RegB) const {
  // Get the register classes for the first reg.
  if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
    assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
           "Shouldn't consider two physregs!");
    return !mri_->getRegClass(RegB)->contains(RegA);
  }

  // Compare against the regclass for the second reg.
  const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
  if (TargetRegisterInfo::isVirtualRegister(RegB)) {
    const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
    return RegClassA != RegClassB;
  }
  return !RegClassA->contains(RegB);
}

/// lastRegisterUse - Returns the last (non-debug) use of the specific register
/// between cycles Start and End or NULL if there are no uses.
MachineOperand *
SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
                                          SlotIndex End,
                                          unsigned Reg,
                                          SlotIndex &UseIdx) const{
  UseIdx = SlotIndex();
  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    MachineOperand *LastUse = NULL;
    for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg),
           E = mri_->use_nodbg_end(); I != E; ++I) {
      MachineOperand &Use = I.getOperand();
      MachineInstr *UseMI = Use.getParent();
      unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
      if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
          SrcReg == DstReg)
        // Ignore identity copies.
        continue;
      SlotIndex Idx = li_->getInstructionIndex(UseMI);
      // FIXME: Should this be Idx != UseIdx? SlotIndex() will return something
      // that compares higher than any other interval.
      if (Idx >= Start && Idx < End && Idx >= UseIdx) {
        LastUse = &Use;
        UseIdx = Idx.getUseIndex();
      }
    }
    return LastUse;
  }

  SlotIndex s = Start;
  SlotIndex e = End.getPrevSlot().getBaseIndex();
  while (e >= s) {
    // Skip deleted instructions
    MachineInstr *MI = li_->getInstructionFromIndex(e);
    while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) {
      e = e.getPrevIndex();
      MI = li_->getInstructionFromIndex(e);
    }
    if (e < s || MI == NULL)
      return NULL;

    // Ignore identity copies.
    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
    if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
          SrcReg == DstReg))
      for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
        MachineOperand &Use = MI->getOperand(i);
        if (Use.isReg() && Use.isUse() && Use.getReg() &&
            tri_->regsOverlap(Use.getReg(), Reg)) {
          UseIdx = e.getUseIndex();
          return &Use;
        }
      }

    e = e.getPrevIndex();
  }

  return NULL;
}

void SimpleRegisterCoalescing::releaseMemory() {
  JoinedCopies.clear();
  ReMatCopies.clear();
  ReMatDefs.clear();
}

bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  mri_ = &fn.getRegInfo();
  tm_ = &fn.getTarget();
  tri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  li_ = &getAnalysis<LiveIntervals>();
  AA = &getAnalysis<AliasAnalysis>();
  loopInfo = &getAnalysis<MachineLoopInfo>();

  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
               << "********** Function: "
               << ((Value*)mf_->getFunction())->getName() << '\n');

  allocatableRegs_ = tri_->getAllocatableSet(fn);
  for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
         E = tri_->regclass_end(); I != E; ++I)
    allocatableRCRegs_.insert(std::make_pair(*I,
                                             tri_->getAllocatableSet(fn, *I)));

  // Join (coalesce) intervals if requested.
  if (EnableJoining) {
    joinIntervals();
    DEBUG({
        dbgs() << "********** INTERVALS POST JOINING **********\n";
        for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
             I != E; ++I){
          I->second->print(dbgs(), tri_);
          dbgs() << "\n";
        }
      });
  }

  // Perform a final pass over the instructions and compute spill weights
  // and remove identity moves.
  SmallVector<unsigned, 4> DeadDefs;
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    MachineBasicBlock* mbb = mbbi;
    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
         mii != mie; ) {
      MachineInstr *MI = mii;
      unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
      if (JoinedCopies.count(MI)) {
        // Delete all coalesced copies.
        bool DoDelete = true;
        if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
          assert((MI->isExtractSubreg() || MI->isInsertSubreg() ||
                  MI->isSubregToReg()) && "Unrecognized copy instruction");
          DstReg = MI->getOperand(0).getReg();
          if (TargetRegisterInfo::isPhysicalRegister(DstReg))
            // Do not delete extract_subreg, insert_subreg of physical
            // registers unless the definition is dead. e.g.
            // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
            // or else the scavenger may complain. LowerSubregs will
            // delete them later.
            DoDelete = false;
        }
        if (MI->allDefsAreDead()) {
          LiveInterval &li = li_->getInterval(DstReg);
          if (!ShortenDeadCopySrcLiveRange(li, MI))
            ShortenDeadCopyLiveRange(li, MI);
          DoDelete = true;
        }
        if (!DoDelete)
          mii = llvm::next(mii);
        else {
          li_->RemoveMachineInstrFromMaps(MI);
          mii = mbbi->erase(mii);
          ++numPeep;
        }
        continue;
      }

      // Now check if this is a remat'ed def instruction which is now dead.
      if (ReMatDefs.count(MI)) {
        bool isDead = true;
        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
          const MachineOperand &MO = MI->getOperand(i);
          if (!MO.isReg())
            continue;
          unsigned Reg = MO.getReg();
          if (!Reg)
            continue;
          if (TargetRegisterInfo::isVirtualRegister(Reg))
            DeadDefs.push_back(Reg);
          if (MO.isDead())
            continue;
          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
              !mri_->use_nodbg_empty(Reg)) {
            isDead = false;
            break;
          }
        }
        if (isDead) {
          while (!DeadDefs.empty()) {
            unsigned DeadDef = DeadDefs.back();
            DeadDefs.pop_back();
            RemoveDeadDef(li_->getInterval(DeadDef), MI);
          }
          li_->RemoveMachineInstrFromMaps(mii);
          mii = mbbi->erase(mii);
          continue;
        } else
          DeadDefs.clear();
      }

      // If the move will be an identity move delete it
      bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
      if (isMove && SrcReg == DstReg) {
        if (li_->hasInterval(SrcReg)) {
          LiveInterval &RegInt = li_->getInterval(SrcReg);
          // If def of this move instruction is dead, remove its live range
          // from the dstination register's live interval.
          if (MI->registerDefIsDead(DstReg)) {
            if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
              ShortenDeadCopyLiveRange(RegInt, MI);
          }
        }
        li_->RemoveMachineInstrFromMaps(MI);
        mii = mbbi->erase(mii);
        ++numPeep;
        continue;
      }

      ++mii;

      // Check for now unnecessary kill flags.
      if (li_->isNotInMIMap(MI)) continue;
      SlotIndex UseIdx = li_->getInstructionIndex(MI).getUseIndex();
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg() || !MO.isKill()) continue;
        unsigned reg = MO.getReg();
        if (!reg || !li_->hasInterval(reg)) continue;
        LiveInterval &LI = li_->getInterval(reg);
        const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
        if (!LR ||
            (!LR->valno->isKill(UseIdx.getDefIndex()) &&
             LR->valno->def != UseIdx.getDefIndex()))
          MO.setIsKill(false);
      }
    }
  }

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
   li_->print(O, m);
}

RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
  return new SimpleRegisterCoalescing();
}

// Make sure that anything that uses RegisterCoalescer pulls in this file...
DEFINING_FILE_FOR(SimpleRegisterCoalescing)