aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/SjLjEHPrepare.cpp
blob: e5cb1bb6ea244f108217bd0ab080a5e52739c712 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
//===- SjLjEHPass.cpp - Eliminate Invoke & Unwind instructions -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation is designed for use by code generators which use SjLj
// based exception handling.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sjljehprepare"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;

static cl::opt<bool> DisableOldSjLjEH("disable-old-sjlj-eh", cl::Hidden,
                                      cl::init(true),
    cl::desc("Disable the old SjLj EH preparation pass"));

STATISTIC(NumInvokes, "Number of invokes replaced");
STATISTIC(NumUnwinds, "Number of unwinds replaced");
STATISTIC(NumSpilled, "Number of registers live across unwind edges");

namespace {
  class SjLjEHPass : public FunctionPass {
    const TargetLowering *TLI;
    Type *FunctionContextTy;
    Constant *RegisterFn;
    Constant *UnregisterFn;
    Constant *BuiltinSetjmpFn;
    Constant *FrameAddrFn;
    Constant *StackAddrFn;
    Constant *StackRestoreFn;
    Constant *LSDAAddrFn;
    Value *PersonalityFn;
    Constant *SelectorFn;
    Constant *ExceptionFn;
    Constant *CallSiteFn;
    Constant *DispatchSetupFn;
    Constant *FuncCtxFn;
    Value *CallSite;
    DenseMap<InvokeInst*, BasicBlock*> LPadSuccMap;
  public:
    static char ID; // Pass identification, replacement for typeid
    explicit SjLjEHPass(const TargetLowering *tli = NULL)
      : FunctionPass(ID), TLI(tli) { }
    bool doInitialization(Module &M);
    bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {}
    const char *getPassName() const {
      return "SJLJ Exception Handling preparation";
    }

  private:
    bool setupEntryBlockAndCallSites(Function &F);
    Value *setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads);
    void lowerIncomingArguments(Function &F);
    void lowerAcrossUnwindEdges(Function &F, ArrayRef<InvokeInst*> Invokes);

    void insertCallSiteStore(Instruction *I, int Number, Value *CallSite);
    void markInvokeCallSite(InvokeInst *II, int InvokeNo, Value *CallSite,
                            SwitchInst *CatchSwitch);
    void splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes);
    void splitLandingPad(InvokeInst *II);
    bool insertSjLjEHSupport(Function &F);
  };
} // end anonymous namespace

char SjLjEHPass::ID = 0;

// Public Interface To the SjLjEHPass pass.
FunctionPass *llvm::createSjLjEHPass(const TargetLowering *TLI) {
  return new SjLjEHPass(TLI);
}
// doInitialization - Set up decalarations and types needed to process
// exceptions.
bool SjLjEHPass::doInitialization(Module &M) {
  // Build the function context structure.
  // builtin_setjmp uses a five word jbuf
  Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
  Type *Int32Ty = Type::getInt32Ty(M.getContext());
  FunctionContextTy =
    StructType::get(VoidPtrTy,                        // __prev
                    Int32Ty,                          // call_site
                    ArrayType::get(Int32Ty, 4),       // __data
                    VoidPtrTy,                        // __personality
                    VoidPtrTy,                        // __lsda
                    ArrayType::get(VoidPtrTy, 5),     // __jbuf
                    NULL);
  RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register",
                                     Type::getVoidTy(M.getContext()),
                                     PointerType::getUnqual(FunctionContextTy),
                                     (Type *)0);
  UnregisterFn =
    M.getOrInsertFunction("_Unwind_SjLj_Unregister",
                          Type::getVoidTy(M.getContext()),
                          PointerType::getUnqual(FunctionContextTy),
                          (Type *)0);
  FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
  StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
  StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
  BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp);
  LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda);
  SelectorFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_selector);
  ExceptionFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_exception);
  CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite);
  DispatchSetupFn
    = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_dispatch_setup);
  FuncCtxFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_functioncontext);
  PersonalityFn = 0;

  return true;
}

/// insertCallSiteStore - Insert a store of the call-site value to the
/// function context
void SjLjEHPass::insertCallSiteStore(Instruction *I, int Number,
                                     Value *CallSite) {
  ConstantInt *CallSiteNoC = ConstantInt::get(Type::getInt32Ty(I->getContext()),
                                              Number);
  // Insert a store of the call-site number
  new StoreInst(CallSiteNoC, CallSite, true, I);  // volatile
}

/// splitLandingPad - Split a landing pad. This takes considerable care because
/// of PHIs and other nasties. The problem is that the jump table needs to jump
/// to the landing pad block. However, the landing pad block can be jumped to
/// only by an invoke instruction. So we clone the landingpad instruction into
/// its own basic block, have the invoke jump to there. The landingpad
/// instruction's basic block's successor is now the target for the jump table.
///
/// But because of PHI nodes, we need to create another basic block for the jump
/// table to jump to. This is definitely a hack, because the values for the PHI
/// nodes may not be defined on the edge from the jump table. But that's okay,
/// because the jump table is simply a construct to mimic what is happening in
/// the CFG. So the values are mysteriously there, even though there is no value
/// for the PHI from the jump table's edge (hence calling this a hack).
void SjLjEHPass::splitLandingPad(InvokeInst *II) {
  SmallVector<BasicBlock*, 2> NewBBs;
  SplitLandingPadPredecessors(II->getUnwindDest(), II->getParent(),
                              ".1", ".2", this, NewBBs);

  // Create an empty block so that the jump table has something to jump to
  // which doesn't have any PHI nodes.
  BasicBlock *LPad = NewBBs[0];
  BasicBlock *Succ = *succ_begin(LPad);
  BasicBlock *JumpTo = BasicBlock::Create(II->getContext(), "jt.land",
                                          LPad->getParent(), Succ);
  LPad->getTerminator()->eraseFromParent();
  BranchInst::Create(JumpTo, LPad);
  BranchInst::Create(Succ, JumpTo);
  LPadSuccMap[II] = JumpTo;

  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    Value *Val = PN->removeIncomingValue(LPad, false);
    PN->addIncoming(Val, JumpTo);
  }
}

/// markInvokeCallSite - Insert code to mark the call_site for this invoke
void SjLjEHPass::markInvokeCallSite(InvokeInst *II, int InvokeNo,
                                    Value *CallSite,
                                    SwitchInst *CatchSwitch) {
  ConstantInt *CallSiteNoC= ConstantInt::get(Type::getInt32Ty(II->getContext()),
                                              InvokeNo);
  // The runtime comes back to the dispatcher with the call_site - 1 in
  // the context. Odd, but there it is.
  ConstantInt *SwitchValC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
                                             InvokeNo - 1);

  // If the unwind edge has phi nodes, split the edge.
  if (isa<PHINode>(II->getUnwindDest()->begin())) {
    // FIXME: New EH - This if-condition will be always true in the new scheme.
    if (II->getUnwindDest()->isLandingPad())
      splitLandingPad(II);
    else
      SplitCriticalEdge(II, 1, this);

    // If there are any phi nodes left, they must have a single predecessor.
    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
      PN->eraseFromParent();
    }
  }

  // Insert the store of the call site value
  insertCallSiteStore(II, InvokeNo, CallSite);

  // Record the call site value for the back end so it stays associated with
  // the invoke.
  CallInst::Create(CallSiteFn, CallSiteNoC, "", II);

  // Add a switch case to our unwind block.
  if (BasicBlock *SuccBB = LPadSuccMap[II]) {
    CatchSwitch->addCase(SwitchValC, SuccBB);
  } else {
    CatchSwitch->addCase(SwitchValC, II->getUnwindDest());
  }

  // We still want this to look like an invoke so we emit the LSDA properly,
  // so we don't transform the invoke into a call here.
}

/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
/// we reach blocks we've already seen.
static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
  if (!LiveBBs.insert(BB).second) return; // already been here.

  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    MarkBlocksLiveIn(*PI, LiveBBs);
}

/// splitLiveRangesAcrossInvokes - Each value that is live across an unwind edge
/// we spill into a stack location, guaranteeing that there is nothing live
/// across the unwind edge.  This process also splits all critical edges
/// coming out of invoke's.
/// FIXME: Move this function to a common utility file (Local.cpp?) so
/// both SjLj and LowerInvoke can use it.
void SjLjEHPass::
splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes) {
  // First step, split all critical edges from invoke instructions.
  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
    InvokeInst *II = Invokes[i];
    SplitCriticalEdge(II, 0, this);

    // FIXME: New EH - This if-condition will be always true in the new scheme.
    if (II->getUnwindDest()->isLandingPad())
      splitLandingPad(II);
    else
      SplitCriticalEdge(II, 1, this);

    assert(!isa<PHINode>(II->getNormalDest()) &&
           !isa<PHINode>(II->getUnwindDest()) &&
           "Critical edge splitting left single entry phi nodes?");
  }

  Function *F = Invokes.back()->getParent()->getParent();

  // To avoid having to handle incoming arguments specially, we lower each arg
  // to a copy instruction in the entry block.  This ensures that the argument
  // value itself cannot be live across the entry block.
  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
    ++AfterAllocaInsertPt;
  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
       AI != E; ++AI) {
    Type *Ty = AI->getType();
    // Aggregate types can't be cast, but are legal argument types, so we have
    // to handle them differently. We use an extract/insert pair as a
    // lightweight method to achieve the same goal.
    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
      Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
      NI->insertAfter(EI);
      AI->replaceAllUsesWith(NI);
      // Set the operand of the instructions back to the AllocaInst.
      EI->setOperand(0, AI);
      NI->setOperand(0, AI);
    } else {
      // This is always a no-op cast because we're casting AI to AI->getType()
      // so src and destination types are identical. BitCast is the only
      // possibility.
      CastInst *NC = new BitCastInst(
        AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
      AI->replaceAllUsesWith(NC);
      // Set the operand of the cast instruction back to the AllocaInst.
      // Normally it's forbidden to replace a CastInst's operand because it
      // could cause the opcode to reflect an illegal conversion. However,
      // we're replacing it here with the same value it was constructed with.
      // We do this because the above replaceAllUsesWith() clobbered the
      // operand, but we want this one to remain.
      NC->setOperand(0, AI);
    }
  }

  // Finally, scan the code looking for instructions with bad live ranges.
  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
      // Ignore obvious cases we don't have to handle.  In particular, most
      // instructions either have no uses or only have a single use inside the
      // current block.  Ignore them quickly.
      Instruction *Inst = II;
      if (Inst->use_empty()) continue;
      if (Inst->hasOneUse() &&
          cast<Instruction>(Inst->use_back())->getParent() == BB &&
          !isa<PHINode>(Inst->use_back())) continue;

      // If this is an alloca in the entry block, it's not a real register
      // value.
      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
          continue;

      // Avoid iterator invalidation by copying users to a temporary vector.
      SmallVector<Instruction*,16> Users;
      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
           UI != E; ++UI) {
        Instruction *User = cast<Instruction>(*UI);
        if (User->getParent() != BB || isa<PHINode>(User))
          Users.push_back(User);
      }

      // Find all of the blocks that this value is live in.
      std::set<BasicBlock*> LiveBBs;
      LiveBBs.insert(Inst->getParent());
      while (!Users.empty()) {
        Instruction *U = Users.back();
        Users.pop_back();

        if (!isa<PHINode>(U)) {
          MarkBlocksLiveIn(U->getParent(), LiveBBs);
        } else {
          // Uses for a PHI node occur in their predecessor block.
          PHINode *PN = cast<PHINode>(U);
          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
            if (PN->getIncomingValue(i) == Inst)
              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
        }
      }

      // Now that we know all of the blocks that this thing is live in, see if
      // it includes any of the unwind locations.
      bool NeedsSpill = false;
      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock))
          NeedsSpill = true;
      }

      // If we decided we need a spill, do it.
      // FIXME: Spilling this way is overkill, as it forces all uses of
      // the value to be reloaded from the stack slot, even those that aren't
      // in the unwind blocks. We should be more selective.
      if (NeedsSpill) {
        ++NumSpilled;
        DemoteRegToStack(*Inst, true);
      }
    }
}

/// CreateLandingPadLoad - Load the exception handling values and insert them
/// into a structure.
static Instruction *CreateLandingPadLoad(Function &F, Value *ExnAddr,
                                         Value *SelAddr,
                                         BasicBlock::iterator InsertPt) {
  Value *Exn = new LoadInst(ExnAddr, "exn", false,
                            InsertPt);
  Type *Ty = Type::getInt8PtrTy(F.getContext());
  Exn = CastInst::Create(Instruction::IntToPtr, Exn, Ty, "", InsertPt);
  Value *Sel = new LoadInst(SelAddr, "sel", false, InsertPt);

  Ty = StructType::get(Exn->getType(), Sel->getType(), NULL);
  InsertValueInst *LPadVal = InsertValueInst::Create(llvm::UndefValue::get(Ty),
                                                     Exn, 0,
                                                     "lpad.val", InsertPt);
  return InsertValueInst::Create(LPadVal, Sel, 1, "lpad.val", InsertPt);
}

/// ReplaceLandingPadVal - Replace the landingpad instruction's value with a
/// load from the stored values (via CreateLandingPadLoad). This looks through
/// PHI nodes, and removes them if they are dead.
static void ReplaceLandingPadVal(Function &F, Instruction *Inst, Value *ExnAddr,
                                 Value *SelAddr) {
  if (Inst->use_empty()) return;

  while (!Inst->use_empty()) {
    Instruction *I = cast<Instruction>(Inst->use_back());

    if (PHINode *PN = dyn_cast<PHINode>(I)) {
      ReplaceLandingPadVal(F, PN, ExnAddr, SelAddr);
      if (PN->use_empty()) PN->eraseFromParent();
      continue;
    }

    I->replaceUsesOfWith(Inst, CreateLandingPadLoad(F, ExnAddr, SelAddr, I));
  }
}

bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
  SmallVector<ReturnInst*,16> Returns;
  SmallVector<UnwindInst*,16> Unwinds;
  SmallVector<InvokeInst*,16> Invokes;

  // Look through the terminators of the basic blocks to find invokes, returns
  // and unwinds.
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
      // Remember all return instructions in case we insert an invoke into this
      // function.
      Returns.push_back(RI);
    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
      Invokes.push_back(II);
    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
      Unwinds.push_back(UI);
    }
  }

  NumInvokes += Invokes.size();
  NumUnwinds += Unwinds.size();

  // If we don't have any invokes, there's nothing to do.
  if (Invokes.empty()) return false;

  // Find the eh.selector.*, eh.exception and alloca calls.
  //
  // Remember any allocas() that aren't in the entry block, as the
  // jmpbuf saved SP will need to be updated for them.
  //
  // We'll use the first eh.selector to determine the right personality
  // function to use. For SJLJ, we always use the same personality for the
  // whole function, not on a per-selector basis.
  // FIXME: That's a bit ugly. Better way?
  SmallVector<CallInst*,16> EH_Selectors;
  SmallVector<CallInst*,16> EH_Exceptions;
  SmallVector<Instruction*,16> JmpbufUpdatePoints;

  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    // Note: Skip the entry block since there's nothing there that interests
    // us. eh.selector and eh.exception shouldn't ever be there, and we
    // want to disregard any allocas that are there.
    // 
    // FIXME: This is awkward. The new EH scheme won't need to skip the entry
    //        block.
    if (BB == F.begin()) {
      if (InvokeInst *II = dyn_cast<InvokeInst>(F.begin()->getTerminator())) {
        // FIXME: This will be always non-NULL in the new EH.
        if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
          if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
      }

      continue;
    }

    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
      if (CallInst *CI = dyn_cast<CallInst>(I)) {
        if (CI->getCalledFunction() == SelectorFn) {
          if (!PersonalityFn) PersonalityFn = CI->getArgOperand(1);
          EH_Selectors.push_back(CI);
        } else if (CI->getCalledFunction() == ExceptionFn) {
          EH_Exceptions.push_back(CI);
        } else if (CI->getCalledFunction() == StackRestoreFn) {
          JmpbufUpdatePoints.push_back(CI);
        }
      } else if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
        JmpbufUpdatePoints.push_back(AI);
      } else if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
        // FIXME: This will be always non-NULL in the new EH.
        if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
          if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
      }
    }
  }

  // If we don't have any eh.selector calls, we can't determine the personality
  // function. Without a personality function, we can't process exceptions.
  if (!PersonalityFn) return false;

  // We have invokes, so we need to add register/unregister calls to get this
  // function onto the global unwind stack.
  //
  // First thing we need to do is scan the whole function for values that are
  // live across unwind edges.  Each value that is live across an unwind edge we
  // spill into a stack location, guaranteeing that there is nothing live across
  // the unwind edge.  This process also splits all critical edges coming out of
  // invoke's.
  splitLiveRangesAcrossInvokes(Invokes);


  SmallVector<LandingPadInst*, 16> LandingPads;
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
      // FIXME: This will be always non-NULL in the new EH.
      if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
        LandingPads.push_back(LPI);
  }


  BasicBlock *EntryBB = F.begin();
  // Create an alloca for the incoming jump buffer ptr and the new jump buffer
  // that needs to be restored on all exits from the function.  This is an
  // alloca because the value needs to be added to the global context list.
  unsigned Align = 4; // FIXME: Should be a TLI check?
  AllocaInst *FunctionContext =
    new AllocaInst(FunctionContextTy, 0, Align,
                   "fcn_context", F.begin()->begin());

  Value *Idxs[2];
  Type *Int32Ty = Type::getInt32Ty(F.getContext());
  Value *Zero = ConstantInt::get(Int32Ty, 0);
  // We need to also keep around a reference to the call_site field
  Idxs[0] = Zero;
  Idxs[1] = ConstantInt::get(Int32Ty, 1);
  CallSite = GetElementPtrInst::Create(FunctionContext, Idxs, "call_site",
                                       EntryBB->getTerminator());

  // The exception selector comes back in context->data[1]
  Idxs[1] = ConstantInt::get(Int32Ty, 2);
  Value *FCData = GetElementPtrInst::Create(FunctionContext, Idxs, "fc_data",
                                            EntryBB->getTerminator());
  Idxs[1] = ConstantInt::get(Int32Ty, 1);
  Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs,
                                                  "exc_selector_gep",
                                                  EntryBB->getTerminator());
  // The exception value comes back in context->data[0]
  Idxs[1] = Zero;
  Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs,
                                                   "exception_gep",
                                                   EntryBB->getTerminator());

  // The result of the eh.selector call will be replaced with a a reference to
  // the selector value returned in the function context. We leave the selector
  // itself so the EH analysis later can use it.
  for (int i = 0, e = EH_Selectors.size(); i < e; ++i) {
    CallInst *I = EH_Selectors[i];
    Value *SelectorVal = new LoadInst(SelectorAddr, "select_val", true, I);
    I->replaceAllUsesWith(SelectorVal);
  }

  // eh.exception calls are replaced with references to the proper location in
  // the context. Unlike eh.selector, the eh.exception calls are removed
  // entirely.
  for (int i = 0, e = EH_Exceptions.size(); i < e; ++i) {
    CallInst *I = EH_Exceptions[i];
    // Possible for there to be duplicates, so check to make sure the
    // instruction hasn't already been removed.
    if (!I->getParent()) continue;
    Value *Val = new LoadInst(ExceptionAddr, "exception", true, I);
    Type *Ty = Type::getInt8PtrTy(F.getContext());
    Val = CastInst::Create(Instruction::IntToPtr, Val, Ty, "", I);

    I->replaceAllUsesWith(Val);
    I->eraseFromParent();
  }

  for (unsigned i = 0, e = LandingPads.size(); i != e; ++i)
    ReplaceLandingPadVal(F, LandingPads[i], ExceptionAddr, SelectorAddr);

  // The entry block changes to have the eh.sjlj.setjmp, with a conditional
  // branch to a dispatch block for non-zero returns. If we return normally,
  // we're not handling an exception and just register the function context and
  // continue.

  // Create the dispatch block.  The dispatch block is basically a big switch
  // statement that goes to all of the invoke landing pads.
  BasicBlock *DispatchBlock =
    BasicBlock::Create(F.getContext(), "eh.sjlj.setjmp.catch", &F);

  // Insert a load of the callsite in the dispatch block, and a switch on its
  // value. By default, we issue a trap statement.
  BasicBlock *TrapBlock =
    BasicBlock::Create(F.getContext(), "trapbb", &F);
  CallInst::Create(Intrinsic::getDeclaration(F.getParent(), Intrinsic::trap),
                   "", TrapBlock);
  new UnreachableInst(F.getContext(), TrapBlock);

  Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true,
                                     DispatchBlock);
  SwitchInst *DispatchSwitch =
    SwitchInst::Create(DispatchLoad, TrapBlock, Invokes.size(),
                       DispatchBlock);
  // Split the entry block to insert the conditional branch for the setjmp.
  BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
                                                   "eh.sjlj.setjmp.cont");

  // Populate the Function Context
  //   1. LSDA address
  //   2. Personality function address
  //   3. jmpbuf (save SP, FP and call eh.sjlj.setjmp)

  // LSDA address
  Idxs[0] = Zero;
  Idxs[1] = ConstantInt::get(Int32Ty, 4);
  Value *LSDAFieldPtr =
    GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
                              EntryBB->getTerminator());
  Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
                                 EntryBB->getTerminator());
  new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());

  Idxs[1] = ConstantInt::get(Int32Ty, 3);
  Value *PersonalityFieldPtr =
    GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
                              EntryBB->getTerminator());
  new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
                EntryBB->getTerminator());

  // Save the frame pointer.
  Idxs[1] = ConstantInt::get(Int32Ty, 5);
  Value *JBufPtr
    = GetElementPtrInst::Create(FunctionContext, Idxs, "jbuf_gep",
                                EntryBB->getTerminator());
  Idxs[1] = ConstantInt::get(Int32Ty, 0);
  Value *FramePtr =
    GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep",
                              EntryBB->getTerminator());

  Value *Val = CallInst::Create(FrameAddrFn,
                                ConstantInt::get(Int32Ty, 0),
                                "fp",
                                EntryBB->getTerminator());
  new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());

  // Save the stack pointer.
  Idxs[1] = ConstantInt::get(Int32Ty, 2);
  Value *StackPtr =
    GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep",
                              EntryBB->getTerminator());

  Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
  new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());

  // Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
  Value *SetjmpArg =
    CastInst::Create(Instruction::BitCast, JBufPtr,
                     Type::getInt8PtrTy(F.getContext()), "",
                     EntryBB->getTerminator());
  Value *DispatchVal = CallInst::Create(BuiltinSetjmpFn, SetjmpArg,
                                        "",
                                        EntryBB->getTerminator());

  // Add a call to dispatch_setup after the setjmp call. This is expanded to any
  // target-specific setup that needs to be done.
  CallInst::Create(DispatchSetupFn, DispatchVal, "", EntryBB->getTerminator());

  // check the return value of the setjmp. non-zero goes to dispatcher.
  Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
                                 ICmpInst::ICMP_EQ, DispatchVal, Zero,
                                 "notunwind");
  // Nuke the uncond branch.
  EntryBB->getTerminator()->eraseFromParent();

  // Put in a new condbranch in its place.
  BranchInst::Create(ContBlock, DispatchBlock, IsNormal, EntryBB);

  // Register the function context and make sure it's known to not throw
  CallInst *Register =
    CallInst::Create(RegisterFn, FunctionContext, "",
                     ContBlock->getTerminator());
  Register->setDoesNotThrow();

  // At this point, we are all set up, update the invoke instructions to mark
  // their call_site values, and fill in the dispatch switch accordingly.
  for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
    markInvokeCallSite(Invokes[i], i+1, CallSite, DispatchSwitch);

  // Mark call instructions that aren't nounwind as no-action (call_site ==
  // -1). Skip the entry block, as prior to then, no function context has been
  // created for this function and any unexpected exceptions thrown will go
  // directly to the caller's context, which is what we want anyway, so no need
  // to do anything here.
  for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) {
    for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
      if (CallInst *CI = dyn_cast<CallInst>(I)) {
        // Ignore calls to the EH builtins (eh.selector, eh.exception)
        Constant *Callee = CI->getCalledFunction();
        if (Callee != SelectorFn && Callee != ExceptionFn
            && !CI->doesNotThrow())
          insertCallSiteStore(CI, -1, CallSite);
      } else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
        insertCallSiteStore(RI, -1, CallSite);
      }
  }

  // Replace all unwinds with a branch to the unwind handler.
  // ??? Should this ever happen with sjlj exceptions?
  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
    BranchInst::Create(TrapBlock, Unwinds[i]);
    Unwinds[i]->eraseFromParent();
  }

  // Following any allocas not in the entry block, update the saved SP in the
  // jmpbuf to the new value.
  for (unsigned i = 0, e = JmpbufUpdatePoints.size(); i != e; ++i) {
    Instruction *AI = JmpbufUpdatePoints[i];
    Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp");
    StackAddr->insertAfter(AI);
    Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true);
    StoreStackAddr->insertAfter(StackAddr);
  }

  // Finally, for any returns from this function, if this function contains an
  // invoke, add a call to unregister the function context.
  for (unsigned i = 0, e = Returns.size(); i != e; ++i)
    CallInst::Create(UnregisterFn, FunctionContext, "", Returns[i]);

  return true;
}

/// setupFunctionContext - Allocate the function context on the stack and fill
/// it with all of the data that we know at this point.
Value *SjLjEHPass::
setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads) {
  BasicBlock *EntryBB = F.begin();

  // Create an alloca for the incoming jump buffer ptr and the new jump buffer
  // that needs to be restored on all exits from the function. This is an alloca
  // because the value needs to be added to the global context list.
  unsigned Align =
    TLI->getTargetData()->getPrefTypeAlignment(FunctionContextTy);
  AllocaInst *FuncCtx =
    new AllocaInst(FunctionContextTy, 0, Align, "fn_context", EntryBB->begin());

  // Fill in the function context structure.
  Value *Idxs[2];
  Type *Int32Ty = Type::getInt32Ty(F.getContext());
  Value *Zero = ConstantInt::get(Int32Ty, 0);
  Value *One = ConstantInt::get(Int32Ty, 1);

  // Keep around a reference to the call_site field.
  Idxs[0] = Zero;
  Idxs[1] = One;
  CallSite = GetElementPtrInst::Create(FuncCtx, Idxs, "call_site",
                                       EntryBB->getTerminator());

  // Reference the __data field.
  Idxs[1] = ConstantInt::get(Int32Ty, 2);
  Value *FCData = GetElementPtrInst::Create(FuncCtx, Idxs, "__data",
                                            EntryBB->getTerminator());

  // The exception value comes back in context->__data[0].
  Idxs[1] = Zero;
  Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs,
                                                   "exception_gep",
                                                   EntryBB->getTerminator());

  // The exception selector comes back in context->__data[1].
  Idxs[1] = One;
  Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs,
                                                  "exn_selector_gep",
                                                  EntryBB->getTerminator());

  for (unsigned I = 0, E = LPads.size(); I != E; ++I) {
    LandingPadInst *LPI = LPads[I];
    IRBuilder<> Builder(LPI->getParent()->getFirstInsertionPt());

    Value *ExnVal = Builder.CreateLoad(ExceptionAddr, true, "exn_val");
    ExnVal = Builder.CreateIntToPtr(ExnVal, Type::getInt8PtrTy(F.getContext()));
    Value *SelVal = Builder.CreateLoad(SelectorAddr, true, "exn_selector_val");

    Type *LPadType = LPI->getType();
    Value *LPadVal = UndefValue::get(LPadType);
    LPadVal = Builder.CreateInsertValue(LPadVal, ExnVal, 0, "lpad.val");
    LPadVal = Builder.CreateInsertValue(LPadVal, SelVal, 1, "lpad.val");

    LPI->replaceAllUsesWith(LPadVal);
  }

  // Personality function
  Idxs[1] = ConstantInt::get(Int32Ty, 3);
  if (!PersonalityFn)
    PersonalityFn = LPads[0]->getPersonalityFn();
  Value *PersonalityFieldPtr =
    GetElementPtrInst::Create(FuncCtx, Idxs, "pers_fn_gep",
                              EntryBB->getTerminator());
  new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
                EntryBB->getTerminator());

  // LSDA address
  Idxs[1] = ConstantInt::get(Int32Ty, 4);
  Value *LSDAFieldPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "lsda_gep",
                                                  EntryBB->getTerminator());
  Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
                                 EntryBB->getTerminator());
  new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());

  return FuncCtx;
}

/// lowerIncomingArguments - To avoid having to handle incoming arguments
/// specially, we lower each arg to a copy instruction in the entry block. This
/// ensures that the argument value itself cannot be live out of the entry
/// block.
void SjLjEHPass::lowerIncomingArguments(Function &F) {
  BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin();
  while (isa<AllocaInst>(AfterAllocaInsPt) &&
         isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsPt)->getArraySize()))
    ++AfterAllocaInsPt;

  for (Function::arg_iterator
         AI = F.arg_begin(), AE = F.arg_end(); AI != AE; ++AI) {
    Type *Ty = AI->getType();

    // Aggregate types can't be cast, but are legal argument types, so we have
    // to handle them differently. We use an extract/insert pair as a
    // lightweight method to achieve the same goal.
    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
      Instruction *EI = ExtractValueInst::Create(AI, 0, "", AfterAllocaInsPt);
      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
      NI->insertAfter(EI);
      AI->replaceAllUsesWith(NI);

      // Set the operand of the instructions back to the AllocaInst.
      EI->setOperand(0, AI);
      NI->setOperand(0, AI);
    } else {
      // This is always a no-op cast because we're casting AI to AI->getType()
      // so src and destination types are identical. BitCast is the only
      // possibility.
      CastInst *NC =
        new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp",
                        AfterAllocaInsPt);
      AI->replaceAllUsesWith(NC);

      // Set the operand of the cast instruction back to the AllocaInst.
      // Normally it's forbidden to replace a CastInst's operand because it
      // could cause the opcode to reflect an illegal conversion. However, we're
      // replacing it here with the same value it was constructed with.  We do
      // this because the above replaceAllUsesWith() clobbered the operand, but
      // we want this one to remain.
      NC->setOperand(0, AI);
    }
  }
}

/// lowerAcrossUnwindEdges - Find all variables which are alive across an unwind
/// edge and spill them.
void SjLjEHPass::lowerAcrossUnwindEdges(Function &F,
                                        ArrayRef<InvokeInst*> Invokes) {
  // Finally, scan the code looking for instructions with bad live ranges.
  for (Function::iterator
         BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
    for (BasicBlock::iterator
           II = BB->begin(), IIE = BB->end(); II != IIE; ++II) {
      // Ignore obvious cases we don't have to handle. In particular, most
      // instructions either have no uses or only have a single use inside the
      // current block. Ignore them quickly.
      Instruction *Inst = II;
      if (Inst->use_empty()) continue;
      if (Inst->hasOneUse() &&
          cast<Instruction>(Inst->use_back())->getParent() == BB &&
          !isa<PHINode>(Inst->use_back())) continue;

      // If this is an alloca in the entry block, it's not a real register
      // value.
      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
        if (isa<ConstantInt>(AI->getArraySize()) && BB == F.begin())
          continue;

      // Avoid iterator invalidation by copying users to a temporary vector.
      SmallVector<Instruction*, 16> Users;
      for (Value::use_iterator
             UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) {
        Instruction *User = cast<Instruction>(*UI);
        if (User->getParent() != BB || isa<PHINode>(User))
          Users.push_back(User);
      }

      // Find all of the blocks that this value is live in.
      std::set<BasicBlock*> LiveBBs;
      LiveBBs.insert(Inst->getParent());
      while (!Users.empty()) {
        Instruction *U = Users.back();
        Users.pop_back();

        if (!isa<PHINode>(U)) {
          MarkBlocksLiveIn(U->getParent(), LiveBBs);
        } else {
          // Uses for a PHI node occur in their predecessor block.
          PHINode *PN = cast<PHINode>(U);
          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
            if (PN->getIncomingValue(i) == Inst)
              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
        }
      }

      // Now that we know all of the blocks that this thing is live in, see if
      // it includes any of the unwind locations.
      bool NeedsSpill = false;
      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
          NeedsSpill = true;
        }
      }

      // If we decided we need a spill, do it.
      // FIXME: Spilling this way is overkill, as it forces all uses of
      // the value to be reloaded from the stack slot, even those that aren't
      // in the unwind blocks. We should be more selective.
      if (NeedsSpill) {
        ++NumSpilled;
        DemoteRegToStack(*Inst, true);
      }
    }
  }

  // Go through the landing pads and remove any PHIs there.
  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
    BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
    LandingPadInst *LPI = UnwindBlock->getLandingPadInst();

    // Place PHIs into a set to avoid invalidating the iterator.
    SmallPtrSet<PHINode*, 8> PHIsToDemote;
    for (BasicBlock::iterator
           PN = UnwindBlock->begin(); isa<PHINode>(PN); ++PN)
      PHIsToDemote.insert(cast<PHINode>(PN));
    if (PHIsToDemote.empty()) continue;

    // Demote the PHIs to the stack.
    for (SmallPtrSet<PHINode*, 8>::iterator
           I = PHIsToDemote.begin(), E = PHIsToDemote.end(); I != E; ++I)
      DemotePHIToStack(*I);

    // Move the landingpad instruction back to the top of the landing pad block.
    LPI->moveBefore(UnwindBlock->begin());
  }
}

/// setupEntryBlockAndCallSites - Setup the entry block by creating and filling
/// the function context and marking the call sites with the appropriate
/// values. These values are used by the DWARF EH emitter.
bool SjLjEHPass::setupEntryBlockAndCallSites(Function &F) {
  SmallVector<ReturnInst*,     16> Returns;
  SmallVector<InvokeInst*,     16> Invokes;
  SmallVector<LandingPadInst*, 16> LPads;

  // Look through the terminators of the basic blocks to find invokes.
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
      Invokes.push_back(II);
      LPads.push_back(II->getUnwindDest()->getLandingPadInst());
    } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
      Returns.push_back(RI);
    }

  if (Invokes.empty()) return false;

  lowerIncomingArguments(F);
  lowerAcrossUnwindEdges(F, Invokes);

  Value *FuncCtx = setupFunctionContext(F, LPads);
  BasicBlock *EntryBB = F.begin();
  Type *Int32Ty = Type::getInt32Ty(F.getContext());

  Value *Idxs[2] = {
    ConstantInt::get(Int32Ty, 0), 0
  };

  // Get a reference to the jump buffer.
  Idxs[1] = ConstantInt::get(Int32Ty, 5);
  Value *JBufPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "jbuf_gep",
                                             EntryBB->getTerminator());

  // Save the frame pointer.
  Idxs[1] = ConstantInt::get(Int32Ty, 0);
  Value *FramePtr = GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep",
                                              EntryBB->getTerminator());

  Value *Val = CallInst::Create(FrameAddrFn,
                                ConstantInt::get(Int32Ty, 0),
                                "fp",
                                EntryBB->getTerminator());
  new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());

  // Save the stack pointer.
  Idxs[1] = ConstantInt::get(Int32Ty, 2);
  Value *StackPtr = GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep",
                                              EntryBB->getTerminator());

  Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
  new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());

  // Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
  Value *SetjmpArg = CastInst::Create(Instruction::BitCast, JBufPtr,
                                      Type::getInt8PtrTy(F.getContext()), "",
                                      EntryBB->getTerminator());
  CallInst::Create(BuiltinSetjmpFn, SetjmpArg, "", EntryBB->getTerminator());

  // Store a pointer to the function context so that the back-end will know
  // where to look for it.
  Value *FuncCtxArg = CastInst::Create(Instruction::BitCast, FuncCtx,
                                       Type::getInt8PtrTy(F.getContext()), "",
                                       EntryBB->getTerminator());
  CallInst::Create(FuncCtxFn, FuncCtxArg, "", EntryBB->getTerminator());

  // At this point, we are all set up, update the invoke instructions to mark
  // their call_site values.
  for (unsigned I = 0, E = Invokes.size(); I != E; ++I) {
    insertCallSiteStore(Invokes[I], I + 1, CallSite);

    ConstantInt *CallSiteNum =
      ConstantInt::get(Type::getInt32Ty(F.getContext()), I + 1);

    // Record the call site value for the back end so it stays associated with
    // the invoke.
    CallInst::Create(CallSiteFn, CallSiteNum, "", Invokes[I]);
  }

  // Mark call instructions that aren't nounwind as no-action (call_site ==
  // -1). Skip the entry block, as prior to then, no function context has been
  // created for this function and any unexpected exceptions thrown will go
  // directly to the caller's context, which is what we want anyway, so no need
  // to do anything here.
  for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;)
    for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
      if (CallInst *CI = dyn_cast<CallInst>(I)) {
        if (!CI->doesNotThrow())
          insertCallSiteStore(CI, -1, CallSite);
      } else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
        insertCallSiteStore(RI, -1, CallSite);
      }

  // Register the function context and make sure it's known to not throw
  CallInst *Register = CallInst::Create(RegisterFn, FuncCtx, "",
                                        EntryBB->getTerminator());
  Register->setDoesNotThrow();

  // Finally, for any returns from this function, if this function contains an
  // invoke, add a call to unregister the function context.
  for (unsigned I = 0, E = Returns.size(); I != E; ++I)
    CallInst::Create(UnregisterFn, FuncCtx, "", Returns[I]);

  return true;
}

bool SjLjEHPass::runOnFunction(Function &F) {
  bool Res = false;
  if (!DisableOldSjLjEH)
    Res = insertSjLjEHSupport(F);
  else
    Res = setupEntryBlockAndCallSites(F);
  return Res;
}