1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
|
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
STATISTIC(NumFinished, "Number of splits finished");
STATISTIC(NumSimple, "Number of splits that were simple");
STATISTIC(NumCopies, "Number of copies inserted for splitting");
STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: MF(vrm.getMachineFunction()),
VRM(vrm),
LIS(lis),
Loops(mli),
TII(*MF.getTarget().getInstrInfo()),
CurLI(0),
LastSplitPoint(MF.getNumBlockIDs()) {}
void SplitAnalysis::clear() {
UseSlots.clear();
UseBlocks.clear();
ThroughBlocks.clear();
CurLI = 0;
DidRepairRange = false;
}
SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
// Compute split points on the first call. The pair is independent of the
// current live interval.
if (!LSP.first.isValid()) {
MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
if (FirstTerm == MBB->end())
LSP.first = MBBEnd;
else
LSP.first = LIS.getInstructionIndex(FirstTerm);
// If there is a landing pad successor, also find the call instruction.
if (!LPad)
return LSP.first;
// There may not be a call instruction (?) in which case we ignore LPad.
LSP.second = LSP.first;
for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
I != E;) {
--I;
if (I->isCall()) {
LSP.second = LIS.getInstructionIndex(I);
break;
}
}
}
// If CurLI is live into a landing pad successor, move the last split point
// back to the call that may throw.
if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
return LSP.first;
// Find the value leaving MBB.
const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
if (!VNI)
return LSP.first;
// If the value leaving MBB was defined after the call in MBB, it can't
// really be live-in to the landing pad. This can happen if the landing pad
// has a PHI, and this register is undef on the exceptional edge.
// <rdar://problem/10664933>
if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
return LSP.first;
// Value is properly live-in to the landing pad.
// Only allow splits before the call.
return LSP.second;
}
MachineBasicBlock::iterator
SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
if (LSP == LIS.getMBBEndIdx(MBB))
return MBB->end();
return LIS.getInstructionFromIndex(LSP);
}
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
void SplitAnalysis::analyzeUses() {
assert(UseSlots.empty() && "Call clear first");
// First get all the defs from the interval values. This provides the correct
// slots for early clobbers.
for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
E = CurLI->vni_end(); I != E; ++I)
if (!(*I)->isPHIDef() && !(*I)->isUnused())
UseSlots.push_back((*I)->def);
// Get use slots form the use-def chain.
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineRegisterInfo::use_nodbg_iterator
I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
++I)
if (!I.getOperand().isUndef())
UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
array_pod_sort(UseSlots.begin(), UseSlots.end());
// Remove duplicates, keeping the smaller slot for each instruction.
// That is what we want for early clobbers.
UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
SlotIndex::isSameInstr),
UseSlots.end());
// Compute per-live block info.
if (!calcLiveBlockInfo()) {
// FIXME: calcLiveBlockInfo found inconsistencies in the live range.
// I am looking at you, RegisterCoalescer!
DidRepairRange = true;
++NumRepairs;
DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
const_cast<LiveIntervals&>(LIS)
.shrinkToUses(const_cast<LiveInterval*>(CurLI));
UseBlocks.clear();
ThroughBlocks.clear();
bool fixed = calcLiveBlockInfo();
(void)fixed;
assert(fixed && "Couldn't fix broken live interval");
}
DEBUG(dbgs() << "Analyze counted "
<< UseSlots.size() << " instrs in "
<< UseBlocks.size() << " blocks, through "
<< NumThroughBlocks << " blocks.\n");
}
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
/// where CurLI is live.
bool SplitAnalysis::calcLiveBlockInfo() {
ThroughBlocks.resize(MF.getNumBlockIDs());
NumThroughBlocks = NumGapBlocks = 0;
if (CurLI->empty())
return true;
LiveInterval::const_iterator LVI = CurLI->begin();
LiveInterval::const_iterator LVE = CurLI->end();
SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
UseI = UseSlots.begin();
UseE = UseSlots.end();
// Loop over basic blocks where CurLI is live.
MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
for (;;) {
BlockInfo BI;
BI.MBB = MFI;
SlotIndex Start, Stop;
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
// If the block contains no uses, the range must be live through. At one
// point, RegisterCoalescer could create dangling ranges that ended
// mid-block.
if (UseI == UseE || *UseI >= Stop) {
++NumThroughBlocks;
ThroughBlocks.set(BI.MBB->getNumber());
// The range shouldn't end mid-block if there are no uses. This shouldn't
// happen.
if (LVI->end < Stop)
return false;
} else {
// This block has uses. Find the first and last uses in the block.
BI.FirstInstr = *UseI;
assert(BI.FirstInstr >= Start);
do ++UseI;
while (UseI != UseE && *UseI < Stop);
BI.LastInstr = UseI[-1];
assert(BI.LastInstr < Stop);
// LVI is the first live segment overlapping MBB.
BI.LiveIn = LVI->start <= Start;
// When not live in, the first use should be a def.
if (!BI.LiveIn) {
assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
assert(LVI->start == BI.FirstInstr && "First instr should be a def");
BI.FirstDef = BI.FirstInstr;
}
// Look for gaps in the live range.
BI.LiveOut = true;
while (LVI->end < Stop) {
SlotIndex LastStop = LVI->end;
if (++LVI == LVE || LVI->start >= Stop) {
BI.LiveOut = false;
BI.LastInstr = LastStop;
break;
}
if (LastStop < LVI->start) {
// There is a gap in the live range. Create duplicate entries for the
// live-in snippet and the live-out snippet.
++NumGapBlocks;
// Push the Live-in part.
BI.LiveOut = false;
UseBlocks.push_back(BI);
UseBlocks.back().LastInstr = LastStop;
// Set up BI for the live-out part.
BI.LiveIn = false;
BI.LiveOut = true;
BI.FirstInstr = BI.FirstDef = LVI->start;
}
// A LiveRange that starts in the middle of the block must be a def.
assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
if (!BI.FirstDef)
BI.FirstDef = LVI->start;
}
UseBlocks.push_back(BI);
// LVI is now at LVE or LVI->end >= Stop.
if (LVI == LVE)
break;
}
// Live segment ends exactly at Stop. Move to the next segment.
if (LVI->end == Stop && ++LVI == LVE)
break;
// Pick the next basic block.
if (LVI->start < Stop)
++MFI;
else
MFI = LIS.getMBBFromIndex(LVI->start);
}
assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
return true;
}
unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
if (cli->empty())
return 0;
LiveInterval *li = const_cast<LiveInterval*>(cli);
LiveInterval::iterator LVI = li->begin();
LiveInterval::iterator LVE = li->end();
unsigned Count = 0;
// Loop over basic blocks where li is live.
MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
SlotIndex Stop = LIS.getMBBEndIdx(MFI);
for (;;) {
++Count;
LVI = li->advanceTo(LVI, Stop);
if (LVI == LVE)
return Count;
do {
++MFI;
Stop = LIS.getMBBEndIdx(MFI);
} while (Stop <= LVI->start);
}
}
bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
unsigned OrigReg = VRM.getOriginal(CurLI->reg);
const LiveInterval &Orig = LIS.getInterval(OrigReg);
assert(!Orig.empty() && "Splitting empty interval?");
LiveInterval::const_iterator I = Orig.find(Idx);
// Range containing Idx should begin at Idx.
if (I != Orig.end() && I->start <= Idx)
return I->start == Idx;
// Range does not contain Idx, previous must end at Idx.
return I != Orig.begin() && (--I)->end == Idx;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
CurLI = li;
analyzeUses();
}
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa,
LiveIntervals &lis,
VirtRegMap &vrm,
MachineDominatorTree &mdt)
: SA(sa), LIS(lis), VRM(vrm),
MRI(vrm.getMachineFunction().getRegInfo()),
MDT(mdt),
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
Edit(0),
OpenIdx(0),
SpillMode(SM_Partition),
RegAssign(Allocator)
{}
void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
Edit = &LRE;
SpillMode = SM;
OpenIdx = 0;
RegAssign.clear();
Values.clear();
// Reset the LiveRangeCalc instances needed for this spill mode.
LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
&LIS.getVNInfoAllocator());
if (SpillMode)
LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
&LIS.getVNInfoAllocator());
// We don't need an AliasAnalysis since we will only be performing
// cheap-as-a-copy remats anyway.
Edit->anyRematerializable(0);
}
void SplitEditor::dump() const {
if (RegAssign.empty()) {
dbgs() << " empty\n";
return;
}
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
dbgs() << '\n';
}
VNInfo *SplitEditor::defValue(unsigned RegIdx,
const VNInfo *ParentVNI,
SlotIndex Idx) {
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
LiveInterval *LI = Edit->get(RegIdx);
// Create a new value.
VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator, bool> InsP =
Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
ValueForcePair(VNI, false)));
// This was the first time (RegIdx, ParentVNI) was mapped.
// Keep it as a simple def without any liveness.
if (InsP.second)
return VNI;
// If the previous value was a simple mapping, add liveness for it now.
if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
SlotIndex Def = OldVNI->def;
LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
// No longer a simple mapping. Switch to a complex, non-forced mapping.
InsP.first->second = ValueForcePair();
}
// This is a complex mapping, add liveness for VNI
SlotIndex Def = VNI->def;
LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
return VNI;
}
void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
assert(ParentVNI && "Mapping NULL value");
ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
VNInfo *VNI = VFP.getPointer();
// ParentVNI was either unmapped or already complex mapped. Either way, just
// set the force bit.
if (!VNI) {
VFP.setInt(true);
return;
}
// This was previously a single mapping. Make sure the old def is represented
// by a trivial live range.
SlotIndex Def = VNI->def;
Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
// Mark as complex mapped, forced.
VFP = ValueForcePair(0, true);
}
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
VNInfo *ParentVNI,
SlotIndex UseIdx,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
MachineInstr *CopyMI = 0;
SlotIndex Def;
LiveInterval *LI = Edit->get(RegIdx);
// We may be trying to avoid interference that ends at a deleted instruction,
// so always begin RegIdx 0 early and all others late.
bool Late = RegIdx != 0;
// Attempt cheap-as-a-copy rematerialization.
LiveRangeEdit::Remat RM(ParentVNI);
if (Edit->canRematerializeAt(RM, UseIdx, true)) {
Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
++NumRemats;
} else {
// Can't remat, just insert a copy from parent.
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
.addReg(Edit->getReg());
Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
.getRegSlot();
++NumCopies;
}
// Define the value in Reg.
return defValue(RegIdx, ParentVNI, Def);
}
/// Create a new virtual register and live interval.
unsigned SplitEditor::openIntv() {
// Create the complement as index 0.
if (Edit->empty())
Edit->create();
// Create the open interval.
OpenIdx = Edit->size();
Edit->create();
return OpenIdx;
}
void SplitEditor::selectIntv(unsigned Idx) {
assert(Idx != 0 && "Cannot select the complement interval");
assert(Idx < Edit->size() && "Can only select previously opened interval");
DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
OpenIdx = Idx;
}
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before enterIntvBefore");
DEBUG(dbgs() << " enterIntvBefore " << Idx);
Idx = Idx.getBaseIndex();
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "enterIntvBefore called with invalid index");
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
return VNI->def;
}
SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before enterIntvAfter");
DEBUG(dbgs() << " enterIntvAfter " << Idx);
Idx = Idx.getBoundaryIndex();
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "enterIntvAfter called with invalid index");
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
llvm::next(MachineBasicBlock::iterator(MI)));
return VNI->def;
}
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
SlotIndex End = LIS.getMBBEndIdx(&MBB);
SlotIndex Last = End.getPrevSlot();
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return End;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id);
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
SA.getLastSplitPointIter(&MBB));
RegAssign.insert(VNI->def, End, OpenIdx);
DEBUG(dump());
return VNI->def;
}
/// useIntv - indicate that all instructions in MBB should use OpenLI.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
assert(OpenIdx && "openIntv not called before useIntv");
DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
RegAssign.insert(Start, End, OpenIdx);
DEBUG(dump());
}
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
// The interval must be live beyond the instruction at Idx.
SlotIndex Boundary = Idx.getBoundaryIndex();
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Boundary.getNextSlot();
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
assert(MI && "No instruction at index");
// In spill mode, make live ranges as short as possible by inserting the copy
// before MI. This is only possible if that instruction doesn't redefine the
// value. The inserted COPY is not a kill, and we don't need to recompute
// the source live range. The spiller also won't try to hoist this copy.
if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
MI->readsVirtualRegister(Edit->getReg())) {
forceRecompute(0, ParentVNI);
defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
return Idx;
}
VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
llvm::next(MachineBasicBlock::iterator(MI)));
return VNI->def;
}
SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before leaveIntvBefore");
DEBUG(dbgs() << " leaveIntvBefore " << Idx);
// The interval must be live into the instruction at Idx.
Idx = Idx.getBaseIndex();
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Idx.getNextSlot();
}
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "No instruction at index");
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
return VNI->def;
}
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
if (!ParentVNI) {
DEBUG(dbgs() << ": not live\n");
return Start;
}
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
MBB.SkipPHIsAndLabels(MBB.begin()));
RegAssign.insert(Start, VNI->def, OpenIdx);
DEBUG(dump());
return VNI->def;
}
void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
assert(OpenIdx && "openIntv not called before overlapIntv");
const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
"Parent changes value in extended range");
assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
"Range cannot span basic blocks");
// The complement interval will be extended as needed by LRCalc.extend().
if (ParentVNI)
forceRecompute(0, ParentVNI);
DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
RegAssign.insert(Start, End, OpenIdx);
DEBUG(dump());
}
//===----------------------------------------------------------------------===//
// Spill modes
//===----------------------------------------------------------------------===//
void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
LiveInterval *LI = Edit->get(0);
DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
RegAssignMap::iterator AssignI;
AssignI.setMap(RegAssign);
for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
VNInfo *VNI = Copies[i];
SlotIndex Def = VNI->def;
MachineInstr *MI = LIS.getInstructionFromIndex(Def);
assert(MI && "No instruction for back-copy");
MachineBasicBlock *MBB = MI->getParent();
MachineBasicBlock::iterator MBBI(MI);
bool AtBegin;
do AtBegin = MBBI == MBB->begin();
while (!AtBegin && (--MBBI)->isDebugValue());
DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
LI->removeValNo(VNI);
LIS.RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent();
// Adjust RegAssign if a register assignment is killed at VNI->def. We
// want to avoid calculating the live range of the source register if
// possible.
AssignI.find(Def.getPrevSlot());
if (!AssignI.valid() || AssignI.start() >= Def)
continue;
// If MI doesn't kill the assigned register, just leave it.
if (AssignI.stop() != Def)
continue;
unsigned RegIdx = AssignI.value();
if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n');
forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
} else {
SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
AssignI.setStop(Kill);
}
}
}
MachineBasicBlock*
SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB) {
if (MBB == DefMBB)
return MBB;
assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
const MachineLoopInfo &Loops = SA.Loops;
const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
MachineDomTreeNode *DefDomNode = MDT[DefMBB];
// Best candidate so far.
MachineBasicBlock *BestMBB = MBB;
unsigned BestDepth = UINT_MAX;
for (;;) {
const MachineLoop *Loop = Loops.getLoopFor(MBB);
// MBB isn't in a loop, it doesn't get any better. All dominators have a
// higher frequency by definition.
if (!Loop) {
DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
<< MBB->getNumber() << " at depth 0\n");
return MBB;
}
// We'll never be able to exit the DefLoop.
if (Loop == DefLoop) {
DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
<< MBB->getNumber() << " in the same loop\n");
return MBB;
}
// Least busy dominator seen so far.
unsigned Depth = Loop->getLoopDepth();
if (Depth < BestDepth) {
BestMBB = MBB;
BestDepth = Depth;
DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
<< MBB->getNumber() << " at depth " << Depth << '\n');
}
// Leave loop by going to the immediate dominator of the loop header.
// This is a bigger stride than simply walking up the dominator tree.
MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
// Too far up the dominator tree?
if (!IDom || !MDT.dominates(DefDomNode, IDom))
return BestMBB;
MBB = IDom->getBlock();
}
}
void SplitEditor::hoistCopiesForSize() {
// Get the complement interval, always RegIdx 0.
LiveInterval *LI = Edit->get(0);
LiveInterval *Parent = &Edit->getParent();
// Track the nearest common dominator for all back-copies for each ParentVNI,
// indexed by ParentVNI->id.
typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
// Find the nearest common dominator for parent values with multiple
// back-copies. If a single back-copy dominates, put it in DomPair.second.
for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
VI != VE; ++VI) {
VNInfo *VNI = *VI;
if (VNI->isUnused())
continue;
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
assert(ParentVNI && "Parent not live at complement def");
// Don't hoist remats. The complement is probably going to disappear
// completely anyway.
if (Edit->didRematerialize(ParentVNI))
continue;
MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
DomPair &Dom = NearestDom[ParentVNI->id];
// Keep directly defined parent values. This is either a PHI or an
// instruction in the complement range. All other copies of ParentVNI
// should be eliminated.
if (VNI->def == ParentVNI->def) {
DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
Dom = DomPair(ValMBB, VNI->def);
continue;
}
// Skip the singly mapped values. There is nothing to gain from hoisting a
// single back-copy.
if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
continue;
}
if (!Dom.first) {
// First time we see ParentVNI. VNI dominates itself.
Dom = DomPair(ValMBB, VNI->def);
} else if (Dom.first == ValMBB) {
// Two defs in the same block. Pick the earlier def.
if (!Dom.second.isValid() || VNI->def < Dom.second)
Dom.second = VNI->def;
} else {
// Different basic blocks. Check if one dominates.
MachineBasicBlock *Near =
MDT.findNearestCommonDominator(Dom.first, ValMBB);
if (Near == ValMBB)
// Def ValMBB dominates.
Dom = DomPair(ValMBB, VNI->def);
else if (Near != Dom.first)
// None dominate. Hoist to common dominator, need new def.
Dom = DomPair(Near, SlotIndex());
}
DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
<< " for parent " << ParentVNI->id << '@' << ParentVNI->def
<< " hoist to BB#" << Dom.first->getNumber() << ' '
<< Dom.second << '\n');
}
// Insert the hoisted copies.
for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
DomPair &Dom = NearestDom[i];
if (!Dom.first || Dom.second.isValid())
continue;
// This value needs a hoisted copy inserted at the end of Dom.first.
VNInfo *ParentVNI = Parent->getValNumInfo(i);
MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
// Get a less loopy dominator than Dom.first.
Dom.first = findShallowDominator(Dom.first, DefMBB);
SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
Dom.second =
defFromParent(0, ParentVNI, Last, *Dom.first,
SA.getLastSplitPointIter(Dom.first))->def;
}
// Remove redundant back-copies that are now known to be dominated by another
// def with the same value.
SmallVector<VNInfo*, 8> BackCopies;
for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
VI != VE; ++VI) {
VNInfo *VNI = *VI;
if (VNI->isUnused())
continue;
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
const DomPair &Dom = NearestDom[ParentVNI->id];
if (!Dom.first || Dom.second == VNI->def)
continue;
BackCopies.push_back(VNI);
forceRecompute(0, ParentVNI);
}
removeBackCopies(BackCopies);
}
/// transferValues - Transfer all possible values to the new live ranges.
/// Values that were rematerialized are left alone, they need LRCalc.extend().
bool SplitEditor::transferValues() {
bool Skipped = false;
RegAssignMap::const_iterator AssignI = RegAssign.begin();
for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
DEBUG(dbgs() << " blit " << *ParentI << ':');
VNInfo *ParentVNI = ParentI->valno;
// RegAssign has holes where RegIdx 0 should be used.
SlotIndex Start = ParentI->start;
AssignI.advanceTo(Start);
do {
unsigned RegIdx;
SlotIndex End = ParentI->end;
if (!AssignI.valid()) {
RegIdx = 0;
} else if (AssignI.start() <= Start) {
RegIdx = AssignI.value();
if (AssignI.stop() < End) {
End = AssignI.stop();
++AssignI;
}
} else {
RegIdx = 0;
End = std::min(End, AssignI.start());
}
// The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
LiveInterval *LI = Edit->get(RegIdx);
// Check for a simply defined value that can be blitted directly.
ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
if (VNInfo *VNI = VFP.getPointer()) {
DEBUG(dbgs() << ':' << VNI->id);
LI->addRange(LiveRange(Start, End, VNI));
Start = End;
continue;
}
// Skip values with forced recomputation.
if (VFP.getInt()) {
DEBUG(dbgs() << "(recalc)");
Skipped = true;
Start = End;
continue;
}
LiveRangeCalc &LRC = getLRCalc(RegIdx);
// This value has multiple defs in RegIdx, but it wasn't rematerialized,
// so the live range is accurate. Add live-in blocks in [Start;End) to the
// LiveInBlocks.
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
SlotIndex BlockStart, BlockEnd;
tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
// The first block may be live-in, or it may have its own def.
if (Start != BlockStart) {
VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
assert(VNI && "Missing def for complex mapped value");
DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
// MBB has its own def. Is it also live-out?
if (BlockEnd <= End)
LRC.setLiveOutValue(MBB, VNI);
// Skip to the next block for live-in.
++MBB;
BlockStart = BlockEnd;
}
// Handle the live-in blocks covered by [Start;End).
assert(Start <= BlockStart && "Expected live-in block");
while (BlockStart < End) {
DEBUG(dbgs() << ">BB#" << MBB->getNumber());
BlockEnd = LIS.getMBBEndIdx(MBB);
if (BlockStart == ParentVNI->def) {
// This block has the def of a parent PHI, so it isn't live-in.
assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
assert(VNI && "Missing def for complex mapped parent PHI");
if (End >= BlockEnd)
LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
} else {
// This block needs a live-in value. The last block covered may not
// be live-out.
if (End < BlockEnd)
LRC.addLiveInBlock(LI, MDT[MBB], End);
else {
// Live-through, and we don't know the value.
LRC.addLiveInBlock(LI, MDT[MBB]);
LRC.setLiveOutValue(MBB, 0);
}
}
BlockStart = BlockEnd;
++MBB;
}
Start = End;
} while (Start != ParentI->end);
DEBUG(dbgs() << '\n');
}
LRCalc[0].calculateValues();
if (SpillMode)
LRCalc[1].calculateValues();
return Skipped;
}
void SplitEditor::extendPHIKillRanges() {
// Extend live ranges to be live-out for successor PHI values.
for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
E = Edit->getParent().vni_end(); I != E; ++I) {
const VNInfo *PHIVNI = *I;
if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
continue;
unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
LiveInterval *LI = Edit->get(RegIdx);
LiveRangeCalc &LRC = getLRCalc(RegIdx);
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
SlotIndex End = LIS.getMBBEndIdx(*PI);
SlotIndex LastUse = End.getPrevSlot();
// The predecessor may not have a live-out value. That is OK, like an
// undef PHI operand.
if (Edit->getParent().liveAt(LastUse)) {
assert(RegAssign.lookup(LastUse) == RegIdx &&
"Different register assignment in phi predecessor");
LRC.extend(LI, End);
}
}
}
}
/// rewriteAssigned - Rewrite all uses of Edit->getReg().
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
// LiveDebugVariables should have handled all DBG_VALUE instructions.
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
MO.setReg(0);
continue;
}
// <undef> operands don't really read the register, so it doesn't matter
// which register we choose. When the use operand is tied to a def, we must
// use the same register as the def, so just do that always.
SlotIndex Idx = LIS.getInstructionIndex(MI);
if (MO.isDef() || MO.isUndef())
Idx = Idx.getRegSlot(MO.isEarlyClobber());
// Rewrite to the mapped register at Idx.
unsigned RegIdx = RegAssign.lookup(Idx);
LiveInterval *LI = Edit->get(RegIdx);
MO.setReg(LI->reg);
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':' << RegIdx << '\t' << *MI);
// Extend liveness to Idx if the instruction reads reg.
if (!ExtendRanges || MO.isUndef())
continue;
// Skip instructions that don't read Reg.
if (MO.isDef()) {
if (!MO.getSubReg() && !MO.isEarlyClobber())
continue;
// We may wan't to extend a live range for a partial redef, or for a use
// tied to an early clobber.
Idx = Idx.getPrevSlot();
if (!Edit->getParent().liveAt(Idx))
continue;
} else
Idx = Idx.getRegSlot(true);
getLRCalc(RegIdx).extend(LI, Idx.getNextSlot());
}
}
void SplitEditor::deleteRematVictims() {
SmallVector<MachineInstr*, 8> Dead;
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
LiveInterval *LI = *I;
for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
LII != LIE; ++LII) {
// Dead defs end at the dead slot.
if (LII->end != LII->valno->def.getDeadSlot())
continue;
MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
assert(MI && "Missing instruction for dead def");
MI->addRegisterDead(LI->reg, &TRI);
if (!MI->allDefsAreDead())
continue;
DEBUG(dbgs() << "All defs dead: " << *MI);
Dead.push_back(MI);
}
}
if (Dead.empty())
return;
Edit->eliminateDeadDefs(Dead);
}
void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
++NumFinished;
// At this point, the live intervals in Edit contain VNInfos corresponding to
// the inserted copies.
// Add the original defs from the parent interval.
for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
E = Edit->getParent().vni_end(); I != E; ++I) {
const VNInfo *ParentVNI = *I;
if (ParentVNI->isUnused())
continue;
unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
defValue(RegIdx, ParentVNI, ParentVNI->def);
// Force rematted values to be recomputed everywhere.
// The new live ranges may be truncated.
if (Edit->didRematerialize(ParentVNI))
for (unsigned i = 0, e = Edit->size(); i != e; ++i)
forceRecompute(i, ParentVNI);
}
// Hoist back-copies to the complement interval when in spill mode.
switch (SpillMode) {
case SM_Partition:
// Leave all back-copies as is.
break;
case SM_Size:
hoistCopiesForSize();
break;
case SM_Speed:
llvm_unreachable("Spill mode 'speed' not implemented yet");
}
// Transfer the simply mapped values, check if any are skipped.
bool Skipped = transferValues();
if (Skipped)
extendPHIKillRanges();
else
++NumSimple;
// Rewrite virtual registers, possibly extending ranges.
rewriteAssigned(Skipped);
// Delete defs that were rematted everywhere.
if (Skipped)
deleteRematVictims();
// Get rid of unused values and set phi-kill flags.
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
(*I)->RenumberValues(LIS);
// Provide a reverse mapping from original indices to Edit ranges.
if (LRMap) {
LRMap->clear();
for (unsigned i = 0, e = Edit->size(); i != e; ++i)
LRMap->push_back(i);
}
// Now check if any registers were separated into multiple components.
ConnectedVNInfoEqClasses ConEQ(LIS);
for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
// Don't use iterators, they are invalidated by create() below.
LiveInterval *li = Edit->get(i);
unsigned NumComp = ConEQ.Classify(li);
if (NumComp <= 1)
continue;
DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
SmallVector<LiveInterval*, 8> dups;
dups.push_back(li);
for (unsigned j = 1; j != NumComp; ++j)
dups.push_back(&Edit->create());
ConEQ.Distribute(&dups[0], MRI);
// The new intervals all map back to i.
if (LRMap)
LRMap->resize(Edit->size(), i);
}
// Calculate spill weight and allocation hints for new intervals.
Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops);
assert(!LRMap || LRMap->size() == Edit->size());
}
//===----------------------------------------------------------------------===//
// Single Block Splitting
//===----------------------------------------------------------------------===//
bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
bool SingleInstrs) const {
// Always split for multiple instructions.
if (!BI.isOneInstr())
return true;
// Don't split for single instructions unless explicitly requested.
if (!SingleInstrs)
return false;
// Splitting a live-through range always makes progress.
if (BI.LiveIn && BI.LiveOut)
return true;
// No point in isolating a copy. It has no register class constraints.
if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
return false;
// Finally, don't isolate an end point that was created by earlier splits.
return isOriginalEndpoint(BI.FirstInstr);
}
void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
openIntv();
SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
LastSplitPoint));
if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
} else {
// The last use is after the last valid split point.
SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
useIntv(SegStart, SegStop);
overlapIntv(SegStop, BI.LastInstr);
}
}
//===----------------------------------------------------------------------===//
// Global Live Range Splitting Support
//===----------------------------------------------------------------------===//
// These methods support a method of global live range splitting that uses a
// global algorithm to decide intervals for CFG edges. They will insert split
// points and color intervals in basic blocks while avoiding interference.
//
// Note that splitSingleBlock is also useful for blocks where both CFG edges
// are on the stack.
void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
unsigned IntvIn, SlotIndex LeaveBefore,
unsigned IntvOut, SlotIndex EnterAfter){
SlotIndex Start, Stop;
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
<< ") intf " << LeaveBefore << '-' << EnterAfter
<< ", live-through " << IntvIn << " -> " << IntvOut);
assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
if (!IntvOut) {
DEBUG(dbgs() << ", spill on entry.\n");
//
// <<<<<<<<< Possible LeaveBefore interference.
// |-----------| Live through.
// -____________ Spill on entry.
//
selectIntv(IntvIn);
SlotIndex Idx = leaveIntvAtTop(*MBB);
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
(void)Idx;
return;
}
if (!IntvIn) {
DEBUG(dbgs() << ", reload on exit.\n");
//
// >>>>>>> Possible EnterAfter interference.
// |-----------| Live through.
// ___________-- Reload on exit.
//
selectIntv(IntvOut);
SlotIndex Idx = enterIntvAtEnd(*MBB);
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
(void)Idx;
return;
}
if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
DEBUG(dbgs() << ", straight through.\n");
//
// |-----------| Live through.
// ------------- Straight through, same intv, no interference.
//
selectIntv(IntvOut);
useIntv(Start, Stop);
return;
}
// We cannot legally insert splits after LSP.
SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
DEBUG(dbgs() << ", switch avoiding interference.\n");
//
// >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
// |-----------| Live through.
// ------======= Switch intervals between interference.
//
selectIntv(IntvOut);
SlotIndex Idx;
if (LeaveBefore && LeaveBefore < LSP) {
Idx = enterIntvBefore(LeaveBefore);
useIntv(Idx, Stop);
} else {
Idx = enterIntvAtEnd(*MBB);
}
selectIntv(IntvIn);
useIntv(Start, Idx);
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
return;
}
DEBUG(dbgs() << ", create local intv for interference.\n");
//
// >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
// |-----------| Live through.
// ==---------== Switch intervals before/after interference.
//
assert(LeaveBefore <= EnterAfter && "Missed case");
selectIntv(IntvOut);
SlotIndex Idx = enterIntvAfter(EnterAfter);
useIntv(Idx, Stop);
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
selectIntv(IntvIn);
Idx = leaveIntvBefore(LeaveBefore);
useIntv(Start, Idx);
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
}
void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
unsigned IntvIn, SlotIndex LeaveBefore) {
SlotIndex Start, Stop;
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
<< "), uses " << BI.FirstInstr << '-' << BI.LastInstr
<< ", reg-in " << IntvIn << ", leave before " << LeaveBefore
<< (BI.LiveOut ? ", stack-out" : ", killed in block"));
assert(IntvIn && "Must have register in");
assert(BI.LiveIn && "Must be live-in");
assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
DEBUG(dbgs() << " before interference.\n");
//
// <<< Interference after kill.
// |---o---x | Killed in block.
// ========= Use IntvIn everywhere.
//
selectIntv(IntvIn);
useIntv(Start, BI.LastInstr);
return;
}
SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
//
// <<< Possible interference after last use.
// |---o---o---| Live-out on stack.
// =========____ Leave IntvIn after last use.
//
// < Interference after last use.
// |---o---o--o| Live-out on stack, late last use.
// ============ Copy to stack after LSP, overlap IntvIn.
// \_____ Stack interval is live-out.
//
if (BI.LastInstr < LSP) {
DEBUG(dbgs() << ", spill after last use before interference.\n");
selectIntv(IntvIn);
SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
useIntv(Start, Idx);
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
} else {
DEBUG(dbgs() << ", spill before last split point.\n");
selectIntv(IntvIn);
SlotIndex Idx = leaveIntvBefore(LSP);
overlapIntv(Idx, BI.LastInstr);
useIntv(Start, Idx);
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
}
return;
}
// The interference is overlapping somewhere we wanted to use IntvIn. That
// means we need to create a local interval that can be allocated a
// different register.
unsigned LocalIntv = openIntv();
(void)LocalIntv;
DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
if (!BI.LiveOut || BI.LastInstr < LSP) {
//
// <<<<<<< Interference overlapping uses.
// |---o---o---| Live-out on stack.
// =====----____ Leave IntvIn before interference, then spill.
//
SlotIndex To = leaveIntvAfter(BI.LastInstr);
SlotIndex From = enterIntvBefore(LeaveBefore);
useIntv(From, To);
selectIntv(IntvIn);
useIntv(Start, From);
assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
return;
}
// <<<<<<< Interference overlapping uses.
// |---o---o--o| Live-out on stack, late last use.
// =====------- Copy to stack before LSP, overlap LocalIntv.
// \_____ Stack interval is live-out.
//
SlotIndex To = leaveIntvBefore(LSP);
overlapIntv(To, BI.LastInstr);
SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
useIntv(From, To);
selectIntv(IntvIn);
useIntv(Start, From);
assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
}
void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
unsigned IntvOut, SlotIndex EnterAfter) {
SlotIndex Start, Stop;
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
<< "), uses " << BI.FirstInstr << '-' << BI.LastInstr
<< ", reg-out " << IntvOut << ", enter after " << EnterAfter
<< (BI.LiveIn ? ", stack-in" : ", defined in block"));
SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
assert(IntvOut && "Must have register out");
assert(BI.LiveOut && "Must be live-out");
assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
DEBUG(dbgs() << " after interference.\n");
//
// >>>> Interference before def.
// | o---o---| Defined in block.
// ========= Use IntvOut everywhere.
//
selectIntv(IntvOut);
useIntv(BI.FirstInstr, Stop);
return;
}
if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
DEBUG(dbgs() << ", reload after interference.\n");
//
// >>>> Interference before def.
// |---o---o---| Live-through, stack-in.
// ____========= Enter IntvOut before first use.
//
selectIntv(IntvOut);
SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
useIntv(Idx, Stop);
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
return;
}
// The interference is overlapping somewhere we wanted to use IntvOut. That
// means we need to create a local interval that can be allocated a
// different register.
DEBUG(dbgs() << ", interference overlaps uses.\n");
//
// >>>>>>> Interference overlapping uses.
// |---o---o---| Live-through, stack-in.
// ____---====== Create local interval for interference range.
//
selectIntv(IntvOut);
SlotIndex Idx = enterIntvAfter(EnterAfter);
useIntv(Idx, Stop);
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
openIntv();
SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
useIntv(From, Idx);
}
|